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Abstract—Minimum-Latency Aggregation Scheduling (MLAS)
is a problem of fundamental importance in wireless sensor
networks. There however has been very little effort spent on
designing algorithms to achieve sufficiently fast data aggregation
under the physical interference model which is a more realistic
model than traditional protocol interference model. In partic-
ular, a distributed solution to the problem under the physical
interference model is challenging because of the need for global-
scale information to compute the cumulative interference at any
individual node. In this paper, we propose a distributed algorithm
that solves theMLAS problem under the physical interference
model in networks of arbitrary topology in O(K) time slots,
where K is the logarithm of the ratio between the lengths of
the longest and shortest links in the network. We also give a
centralized algorithm to serve as a benchmark for comparison
purposes, which aggregates data from all sources inO(log3(n))
time slots (where n is the total number of nodes). This is the
current best algorithm for the problem in the literature. Th e
distributed algorithm partitions the network into cells according
to the value K, thus obviating the need for global information.
The centralized algorithm strategically combines our aggregation
tree construction algorithm with the non-linear power assignment
strategy in [13]. We prove the correctness and efficiency of our
algorithms, and conduct empirical studies under realisticsettings
to validate our analytical results.

I. I NTRODUCTION

Data aggregation is a habitual operation of practical use in
all wireless sensor networks, which transfers data (e.g., tem-
perature) collected by individual sensor nodes to a sink node.
The aggregation typically follows a tree topology rooted atthe
sink. Intermediate sensor nodes of the tree may simply merge
and forward all received data or perform certain operations
(e.g., computing the sum, maximum or mean) on the data. In a
wireless environment, because of the interference among wire-
less transmissions, transmissions to forward the data needto
be meticulously coordinated. The fundamental challenge can
be stated as: How to schedule the aggregation transmissionsin
a wireless sensor network such that no undesired interference
may occur and the total number of time slots used (referred
to asaggregation latency) is minimized? This is known as the
Minimum-Latency Aggregation Scheduling (MLAS)problem in
the literature [5], [10], [19]–[21]. Note that we divide thetime
into time slots, which makes the design and analysis more
tractable.

TheMLASproblem is typically approached in two steps: (i)
data aggregation tree construction, and (ii) link transmission
scheduling. For (ii), we assume the simplest mode where
every non-leaf node in the tree will make only one trans-
mission which is after all the data from its child nodes have
been received. To solve the MLAS problem, we require that
no collision of transmissions should occur due to wireless
interference. If the above two steps are being carried out
simultaneously, we have a “joint” design.

To model the interferences, most existing literature assume
the protocol interference model. The best results known for
the MLAS problem or similar ones ( [10], [19]–[21]) bound
the aggregation latency inO(∆ + R) time slots, whereR is
the radius of the sensor network counted by hop count and
∆ is the maximal node degree. A more realistic model than
the protocol interference model is thephysical interference
model[17]. So far, however, very little research has been done
to address theMLASproblem under the physical interference
model.

The protocol interference model considers only interfer-
ences within a limited region, whereas the physical interfer-
ence model tries to capture the cumulative interferences from
all other currently transmitting nodes or links. More precisely,
in the physical interference model, the transmission of link
ei can be successful if the following Signal-to-Interference-
Noise-Ratio (SINR) condition is satisfied:

Pi/dα
ii

N0 +
∑

ej∈Λ−{ei} Pj/dα
ji

≥ β (1)

Here Λ denotes the set of links that transmit simultaneously
with ei. Pi and Pj denote the transmission powers at the
transmitter of linkei and that of linkej , respectively.dii (dji)
is the distance between the transmitter of linkei (ej) and the
receiver of linkei. α is the path loss ratio, which has a typical
value between 2 and 6.N0 is the ambient noise.β is theSINR
threshold for a successful transmission, which is at least1.

A solution to the MLAS problem can be a centralized one,
a distributed one, or something in between. For a large sensor
network, a distributed solution is certainly the desired choice.
Distributed scheduling algorithm design is significantly more
challenging with the physical interference model, as “global”
information in principle is needed by each node to compute the
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cumulative interference at the node. The only work targeting
the physical interference model we are aware of is [11] which
presents an efficient distributed solution to theMLASproblem
with latency bound ofO(∆ + R). One of the drawbacks of
their work is that no efficiency guarantee can be given for
arbitrary topologies.

In this paper, we tackle the minimum-latency aggregation
scheduling problem under the physical interference model,by
designing both a centralized and a distributed scheduling al-
gorithm. Our algorithms are applicable to arbitrary topologies.
Our main focus is on the proposed distributed algorithm; the
centralized algorithm is included for the purpose of serving as
a benchmark in the performance comparison, which however
may be a practical solution for situations where centralization
is not a problem. The distributed algorithm we propose,
Cell-AS, circumvents the need to collect global interference
information by partitioning the network into cells according to
a parameter called link length diversity (K) which is the log-
arithm of the ratio between the lengths of the longest and the
shortest links. Our centralized algorithm,NN-AS, has the best
aggregation performance with respect to the current literature.
It combines our aggregation tree construction algorithm with
the non-linear power assignment strategy proposed in [13].

We conduct theoretical analysis to prove the correctness
and efficiency of our algorithms. We show that the distributed
algorithm Cell-ASachieves a worst-case aggregation latency
bound ofO(K) (whereK is the link length diversity), and the
centralized algorithmNN-ASachieves a worst-case bound of
O(log3 n) (wheren is the total number of sensor nodes). In
addition, we derive a theoretical optimal lower bound for the
MLASproblem under any interference model—log(n). Given
this optimal bound, the approximation ratios ofCell-ASand
NN-ASareO(K/ log n) andO(log2 n), respectively. We also
compare our distributed algorithm with Li et al.’s algorithm
in [11] both analytically and experimentally. We show that
both algorithms have anO(n) latency upper bound for their
respective worst cases whileCell-AScan still be effective in
Li et al.’s worst cases. Our experiments under realistic settings
demonstrate thatCell-AS can achieve up to a35% latency
reduction as compared to Li et al.’s. Besides, we have found
that, inUniform topologies, the aggregation latencies forNN-
AS and Li et al.’s algorithm can be reduced toO(log2 n)
andO(log7 n) respectively whileCell-AS’s latency should be
betweenO(log5 n) andO(log6 n).

The remainder of this paper is organized as follows. We
discuss related work in Sec. II and formally present the
problem model in Sec. III. TheCell-ASandNN-ASalgorithms
are presented in Sec. IV and V, with extensive theoretical
analysis given in Sec. VI. We report our empirical studies of
the algorithms in Sec. VII. Finally, we conclude the paper in
Sec. VIII.

II. RELATED WORK

A. Data Aggregation

Data aggregation is a prominent problem in wireless sensor
networks. There exist a lot of exciting work trying to solve the

problem [5], [10], [11], [19]–[21]. Minimizing the aggregation
scheduling length is one of the most important concerns.

To the best of our knowledge, all except one paper [11]
assume the protocol interference model. [5] proposed a data
aggregation algorithm with latency bound of(∆−1)R, where
R is the network radius by hop count and∆ is the maximal
node degree. The NP-hard proof of theMLASproblem is also
presented. The current best contributions [10], [19]–[21]bound
the aggregation latency byO(∆ + R).

[10] is the first work that converted∆ from a multiplicative
factor to an additive one. The algorithm builds on the basis
of maximal independent set which is also used in [21]. The
latter one actually gives a distributed solution.

In [19], the MLAS problem is cast in multihop wireless
networks with the assumption that each node has a unit
communication range and an interference range ofρ ≥ 1. [20]
proposes an aggregation schedule for a distributed solution and
proves a lower-bound ofmax{logn, R} on the latency of data
aggregation under any graph-based interference model;n is the
network size.

The only solution for the MLAS problem under the physical
interference model is [11] by Li et al. They have proposed
a distributed aggregation scheduling algorithm with constant
power assignment, which can achieve a latency bound of
O(∆ + R) when the transmission range is set asδr. Here,
0 < δ < 1 is a configuration parameter andr is the
maximum achievable transmission range under the physical
interference model with power assignmentP and P/rα

N0
= β.

However, no deterministic latency bound can be derived when
the transmission range is changed tor, to which they applied
mainly probabilistic analysis. In addition, the efficiencyof
their algorithm cannot be guaranteed in arbitrary topologies,
which is a consequence of constant power assignment.

B. Link Scheduling under the Physical Interference Model

The physical interference model has received increased
attention in recent years for its more realistic abstraction of
wireless networks [17]. For the physical interference model,
some have focused on the maximum achievable network
capacity which is primarily determined by the result of the
Minimum Length link Scheduling (MLS)problem. The MLS
problem is closely related to the link scheduling step of our
MLAS problem here. Recent results [1]–[4], [13]–[15] demon-
strate that, with the physical interference model, as opposed
to the protocol interference model, the network capacity can
be greatly increased.

Moscibroda et al. formally propose the problem of link
scheduling complexity in [14]. In [15], Moscibroda et al. study
topology control for the physical interference model and obtain
a theoretical upper bound on the scheduling complexity of
arbitrary topologies in wireless networks.

In [13], Moscibroda applies link scheduling to the data
gathering tree in wireless sensor networks with anO(log2n)
complexity. It was the first time a scaling law that describes
the achievable data rate in worst-case sensor networks was de-
rived. Goussevskaia et al. [8] make the milestone contribution
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of proving the NP-completeness of a special case of theMLS
problem.

III. T HE PROBLEM MODEL

We consider a wireless sensor network ofn arbitrarily
distributed sensor nodesv0, v1, . . . , vn−1 and a sink nodevn.
Let directed graphG = (V, E) denote the tree constructed
for data aggregation from all the sensor nodes to the sink,
where V = {v0, v1, . . . , vn} is the set of all nodes, and
E = {e0, e1, ..., en−1} is the set of transmission links in
the tree withei representing the link from sensor nodevi to
its parent.

Our problem at hand is to pick the directed links inE
to construct the tree and to come up with an aggregation
scheduleS = {S0, S1, ..., ST−1}, whereT is the total time
span for the schedule andSt denotes the subset of links in
E scheduled to transmit in time slott, ∀t = 0, . . . , T − 1.
A correct aggregation schedule must satisfy the following
conditions. First, any link should be scheduled exactly once,
i.e.,

⋃T−1
t=0 St = E and Si ∩ Sj = ∅ wherei 6= j. Second, a

node cannot act as a transmitter and a receiver in the same
time slot, in order to avoid theprimary interference. Let
T (ei) and R(ei) be the transmitter and the receiver of link
ei, respectively, andT (St) and R(St) denote the transmitter
set and receiver set for the links inSt, respectively. We have
T (St)∩R(St) = ∅, ∀t = 0, . . . , T − 1. Third, a non-leaf node
vi transmits to its parent only after all the links in the subtree
rooted atvi have been scheduled,i.e., T (Si) ∩ R(Sj) = ∅
where i < j. Finally, each scheduled transmission in time
slot t, i.e., link ei ∈ St, should be correctly received by
the corresponding receiver under the physical interference
model considering the aggregate interference from concurrent
transmissions of all linksej ∈ St − {ei} i.e., the condition

Pi/dα
ii

N0+
∑

ej∈St−{ei}
Pj/dα

ji

≥ β should be satisfied.

The minimum-latency aggregation scheduling problem can
be formally defined as follows:

Definition 1 (Minimum-Latency Aggregation Scheduling):
Given a set of nodes{v0, v1, . . . , vn−1} and a sink vn,
construct an aggregation treeG = (V, E) and a link
scheduleS = {S0, S1, ..., ST−1} satisfying

⋃T−1
t=0 St = E,

Si ∩ Sj = ∅ where i 6= j, and T (Si) ∩ R(Sj) = ∅ where
i ≤ j, such that the total number of time slotsT is minimized
and all transmissions can be correctly received under the
physical interference model.

Without loss of generality, we assume that the minimum
Euclidean distance between each pair of nodes is1. As our
algorithm design targets at arbitrary distribution of sensor
nodes, we assume the upper bound of the transmission power
at each node to be large enough to cover the maximum node
distance of the network, such that no node would be isolated.
Each node in the network knows its location. This is not hard
to achieve during bootstrapping stage in a network where the
sensors are stationary.

IV. D ISTRIBUTED AGGREGATIONSCHEDULING

Our main contribution is an efficientdistributedscheduling
algorithm calledCell Aggregation Scheduling (Cell-AS)for
solving theMLASproblem with arbitrary distribution of sensor
nodes.

Our distributed algorithm features joint tree construction-
link scheduling-power control in a phase-by-phase fashionto
achieve minimum aggregation latency; whereas tree construc-
tion and link scheduling are separate steps in [11]. We first
present the key idea behind our algorithm design and then
discuss important techniques to implement the algorithm ina
fully distributed fashion.

A. Design Idea

Our distributed algorithm first aggregates data from sensor
nodes in each small area with short transmission links, and
then further aggregates data in a larger area by collecting from
those small ones with longer transmission links; this process
repeats until the entire network as the largest area is covered.

We classify the lengths of all possible transmission links
in the network intoK + 1 categories:[30, 2 · 30], (2 · 30, 2 ·
31], . . . , (2·3K−1, 2·3K ], whereK is bounded by the network’s
maximum node distanceD with 2·3K−1 < D ≤ 2·3K . A link
from nodevi to nodevj falls into categoryk if the Euclidean
distance between these two nodes lies within(2 · 3k−1, 2 · 3k]
with k = 1, . . . , K or [30, 2 · 30] with k = 0. We defineK as
the link length diversitywhich is proportional to the logarithm
of the ratio between the lengths of the longest and the shortest
possible links in the network. In our design, aggregation links
in categoryk are treated and their transmissions are scheduled
(to aggregate data in the smaller areas) before links in category
k + 1 are processed (to aggregate data in the larger areas).

Our algorithm carries out its actions in an iterative fashion:
In round k (k = 0, . . . , K), we divide the network into
hexagonal cells of side length3k. In each cell, a node with the
shortest distance to the sink is selected as the head, responsible
for data aggregation; the other nodes in the cell directly
transmit to the head with links no longer than2 · 3k. In the
next round (k +1), only the head nodes in the previous round
remain in the picture. The network is covered by hexagonal
cells of side length3k+1 and a new head is selected for data
aggregation in each cell. AfterK +1 rounds of the algorithm,
only one node will remain, which should have collected all
the data in network, and will transmit the aggregated data to
the sink node in one hop. Fig. 1 gives an example of the
algorithm in a sensor network with3 link length categories,
in which selected head nodes are in black.

In each roundk of the algorithm, links of length categoryk
are scheduled as follows to avoid interference and to minimize
the aggregation latency. We assign colors to the cells and only
cells with the same color can schedule their link transmissions
concurrently. To bound the interference among concurrent
transmissions, cells of the same color need to be sufficiently
far apart. We use163 X2 + 12X + 7 colors in total, such that
cells of the same color are separated by a distance of at
least 2(X + 1)3k with X = (6β(1 + ( 2√

3
)α 1

α−2 ) + 1)1/α,
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(a) Round 0.

(b) Round 1. (c) Round 2.

Fig. 1. The iterations ofCell-AS: an example with 3 link length categories
with sink in the center.

as illustrated in Fig. 2. (The red cell in the center represents a
landmark cell in Sec. IV.B and A-F are six zones for analysis
in Sec. VI.) We will show in Sec. VI that by using these many
colors, we are able to bound the interferences and thus prove
the correctness and efficiency of our algorithm. Inside each
cell, the transmission links from all other nodes to the head
are scheduled sequentially.

2(X+1)3^k

(0,0) x

y

Fig. 2. Link scheduling in one round ofCell-AS: cells with the same color
are separated by a distance of at least2(X + 1)3k .

TheCell-ASalgorithm is summarized as Algorithm 1 where
the scheduling of links in cells of the same color is carried
out according to Algorithm 2.

Algorithm 1 Distributed Aggregation Scheduling (Cell-AS)
Input : Node setV with sink vn.
Output : Tree link setE and link scheduleS.

1: k := 0; V := V − {vn}; t := 0;
2: X := (6β(1 + ( 2

√

3
)α 1

α−2
) + 1)1/α;

3: while |V | 6= 1 do
4: Cover the network with cells of side length3k and color them

with 16

3
X2 + 12X + 7 colors;

5: for i := 1 to 16

3
X2 + 12X + 7 do

6: Ei := ∅, whereEi is link set in cells of colori;
7: for each cellj with color i do
8: Select nodevh in cell j closest to sinkvn as head;
9: Construct links from all other nodes in cellj to vh;

10: Add the links toEi andE;
11: Remove all the nodes in cellj exceptvh from V ;
12: end for
13: S := S ∪ Same-Color-Cell-Scheduler(Ei, t);
14: end for
15: k := k + 1;
16: end while
17: vh := the only node inV ; Construct linkeh from vh to vn;
18: E := E ∪ {eh}; S := S ∪ {{eh}};
19: return E andS;

Algorithm 2 Same-Color-Cell-Scheduler
Input : Link set Ei and time slot indext.
Output : Partial link schedule PSi for links in
Ei.

1: X := (6β(1 + ( 2
√

3
)α 1

α−2
) + 1)1/α;

2: Define constantc := N0βXα;
3: PSi := ∅;
4: while Ei 6= ∅ do
5: St := ∅;
6: for each cellj with color i do
7: Choose one non-scheduled linkem in cell j;
8: Assign transmission powerPm := c × dα

mm;
9: St := St ∪ {em}; Ei := Ei − {em};

10: end for
11: PSi := PSi ∪ {St}; t := t + 1;
12: end while
13: return PSi;

B. Distributed Implementation

The algorithm can be implemented in a fully distributed
fashion. The key is to decide at each peer the following:

1) Location and synchronization:In the bootstrapping
phase, the origin(0, 0) is set to a central position in the sensor
network. Each node learns its location coordinates(x, y) with
respect to the origin, using GPS. In fact, only a small number
of nodes need to use GPS, while the others can obtain their
coordinates through relative positioning. (e.g., [16]).

Each node in the sensor network carries out the distributed
algorithm in a synchronized fashion—i.e., it knows the start
of each roundk. Such synchronization can be achieved using
one of the effective synchronization algorithms in the literature
(e.g., [12]).

2) Neighbor discovery:In each roundk, the network is
divided into cells of side length3k in the fashion as illustrated
in Fig. 2. Each node can determine the cell it resides in in this



5

round based on its location. It can then discover its neighbors
in the cell via local broadcasting [7]. The broadcasting range
is 2 ·3k+1, such that all nodes in the same cell can be reached.

3) Head selection:The head of a cell in roundk is the node
in the cell closest to the sink. All the nodes are informed of
the sink’s location in the bootstrapping stage of the algorithm,
or even before they have been placed in the field. Since each
node knows the location information of all its neighbors in
the same cell, it can infer whether itself is the head, or some
other neighbor is the head of the cell in this round.

4) Distributed link scheduling:In each roundk, coloring of
the cells are done as illustrated in Fig. 2. As each node knows
which cell it resides in, it can calculate colori of its cell in
this round. Cells of the same color are scheduled according
to the sequence of their color indices,i.e., cells with colori
can schedule their transmissions before those with colori+1.
The head node in a cell is responsible to decide when the
other nodes in its cell can start to transmit, and to announce
the completion of transmissions in its cell to all head nodes
within 2(X + 1)3k distance.

A head node in a cell with colori + 1 waits until it has
received completion notifications from all head nodes in cells
of color i within 2(X + 1)3k distance. It then schedules the
transmission of all the other nodes in its cell one by one, by
sending “pulling” messages. For a non-head node in the cell,
it waits for the “pulling” message from the head node and then
transmits its data to the head.

When the algorithm is executed round after round, only the
nodes that have not transmitted (the heads in previous rounds)
remain in the execution, until their transmission time slots
arrive.

V. CENTRALIZED AGGREGATIONSCHEDULING

When global information is assumed to be available at each
sensor, a centralized scheduling algorithm can achieve the
best aggregation latency for theMLAS problem. We present
in the following a centralized algorithm,Nearest-Neighbor
Aggregation Scheduling (NN-AS), which does exactly that.

Our centralized algorithm progresses also in a phase-by-
phase fashion, with joint tree construction and link scheduling.
In each round, we find a nearest neighbor matching among
all the sensor nodes that have not transmitted their data, and
schedule all the links in the matching.

We start the algorithm with all the sensor nodes inV −{vn}.
We find for each nodevi the nearest neighbor nodevj , where
neithervi nor vj has already been included in the matching,
and establish a directed link fromvi to vj . For example, in
Fig. 3 where a sensor network of 6 sensor nodes is shown, the
matching we identify in round 0 contains two links, from 1 to
3 and from 4 to 6, respectively. We then schedule the links in
matchingM0 (of round 0), using the link scheduling algorithm
with non-linear power assignment proposed in [13]. This
algorithm schedules a set of links in a network generated as
the nearest neighbor matching as in our case, with guaranteed
scheduling correctness under the physical model. After all
transmissions in round 0 are scheduled, all the nodes that have

3

1 2

6

4 5

(a) Round 0

3

2

6

5

(b) Round 1

3 6

(c) Round 2

Fig. 3. The iterations ofNN-AS: an example of 6 sensor nodes.

Algorithm 3 Centralized Aggregation Scheduling (NN-AS)
Input : Node setV with sink vn.
Output : Tree link setE and link scheduleS.

1: k := 0; E := ∅; S := ∅; V = V − {vn};
2: while |V | 6= 1 do
3: Mk := ∅;
4: for eachvi ∈ V do
5: if vi /∈ T (Mk) ∪ R(Mk) then
6: Find vi’s nearest-neighborvj ∈ V ;
7: if vj /∈ T (Mk) ∪ R(Mk) then
8: Construct linkei from vi to vj ; Mk := Mk ∪ {ei};
9: end if

10: end if
11: end for
12: E := E ∪ Mk; S := S ∪ Phase-Scheduler(Mk);
13: V := V − T (Mk); k := k + 1;
14: end while
15: vi := the only node inV ; Construct linkei from vi to vn;
16: E := E ∪ {ei}; S := S ∪ {{ei}};
17: return E andS;

transmitted are removed, and the algorithm repeats with the
reduced node set. In Fig. 3(b), nodes 2, 3, 5, and 6 remain, and
two links are generated using the nearest neighbor criterion
and scheduled for transmission. The process repeats until only
one sensor node remains, which will transmit the aggregate
data to the sink node in one hop.

The centralized algorithm is summarized as Algorithm 3,
where Phase-Schedulercalls upon the algorithm in [13] to
generate the schedule for links in matchingMk in roundk.

Algorithm 4 Phase-Scheduler
Input : Link set Mk.
Output : Link scheduleSm.

1: For space limitation, please refer to [13] for details.

VI. A NALYSIS

In this section, we prove the correctness of our distributed
and centralized algorithms and analyze their efficiency with
respect to the bound of aggregation latency.

A. Correctness

We first prove that163 X2 + 12X + 7 colors are enough to
separate the cells with the same color by a distance of at least
2(X+1)d, whered = 3k is the side length of cells in category
k.

Lemma 1:At most 16
3 X2 + 12X + 7 hexagons with size

length ofd can cover the disk with radius of2(X + 1)d.
Proof:
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As shown in fig. 2, we divide the disk into 6 equal-sized
non-overlapping cones. It is clear that the maximum number
of hexagons to cover the disk is at most 6 times of that to
cover each cone.

Take coneA for instance, we have at most1
6 hexagons in

range of12d, 1
6 +1 hexagons in range of2d, 1

6 +1+2 hexagons
in range of72d, et al. So it is not hard to prove by induction that
we have at most1/6+

∑j
i=0 i hexagons in range of1+3j

2 d in
one cone. So in a range of2(X+1)d, for whichj ≤ 4(X+1)−1

3 ,

we have at most1/6+
4(X+1)−1

3 (
4(X+1)−1

3 +1)

2 hexagons in one
cone, which means at most16

3 X2 + 12X + 7 in the disk.
So lemma proven.
Theorem 1 (Correctness ofCell-AS): The distributedCell-

AS in Algorithm 1 can construct a data aggregation tree and
correctly schedule the transmissions under the physical model.

Proof: The algorithm in Algorithm 1 guarantees that each
sensor node transmits for exactly once and will not serve
as a receiver again after transmission. Hence the resulting
transmission links constitute a tree.

The link scheduling guarantees that a node would not trans-
mit and receive at the same time and a non-leaf node transmits
only after all the nodes in its subtree have transmitted. We next
prove that each transmission is successful under the physical
interference model.

In [6], a safe CSMA protocol under the physical interference
model is presented. The core idea is to separate each pair of
concurrent transmitters by a predefined distance such that the
cumulative interference in network can be bounded. However,
the background noise is not considered in [6]. We revise the
conclusion in [6] to adapt to the physical interference model
in this paper.

We know that any two concurrent transmitters of links in the
same categoryk are separated by at least2(X + 1)3k, where
X = (6β(1+( 2√

3
)α 1

α−2 )+1)1/α. For any scheduled link with
length ofr, we have the power assignment asP = N0βXαrα.
According to the conclusion in [6], the cumulative interference
I at any receiver of link in categoryk is that

I ≤ 6(
1

X
)α(1 + (

2√
3
)α 1

α − 2
)
N0βXα(2 · 3k)α

(2 · 3k)α

= 6(1 + (
2√
3
)α 1

α − 2
)N0β

= N0(X
α − 1)

So theSINRvalue for any scheduled link with length ofr
should be

P/rα

N0 + I
≥ N0βXα

N0 + N0(Xα − 1)
= β

We can conclude that each link transmission is successful
under the physical interference model.

Theorem 2 (Correctness ofNN-AS): The centralizedNN-
AS in Algorithm 3 can construct a data aggregation tree
and correctly schedule the transmission under the physical
interference model.

Proof: The algorithm in Algorithm 3 guarantees that each
node will be removed from the node setV after selected for

transmission and hence will be the transmitter for exactly once.
At the end of each round, receivers and other non-scheduled
nodes remain inV , and all aggregated data resides on the
remaining nodes. Therefore, the generated transmission links
correctly construct a data aggregation tree.

For link scheduling, Algorithm 3 applies the algorithm in
[13], whose correctness under the physical interference model
has been proven in [13].

B. Aggregation Latency

We now analyze the efficiency of the algorithms. We also
derive a theoretically optimal lower bound of the aggregation
latency forMLASproblems under any interference model and
show the approximation ratio of our algorithms to this bound.

Distributed Cell-AS

Lemma 2: If the minimum distance between any node pair
is 1, there can be at most 7 nodes in a hexagon with side
length of 1.

Proof: We prove by utilizing an existing result from [19]:
supposeC is a disk of radiusr andU is a set of points with
mutual distances at least1. Then

|U ∩ C| ≤ 2π√
3
r2 + πr + 1

A hexagon of side length1 can be included in diskC of
radius1 centered at the center of the hexagon. Then we derive

|U ∩ C| ≤ 2π√
3
× 12 + π × 1 + 1 = 7.7692 < 8. (2)

Hence there can be at most 7 nodes with mutual distance of
1 in the unit disk, and therefore in the hexagon.

An example is given in Fig. 4 with 7 nodes in one hexagon
with side lengthd = 1.

Theorem 3 (Aggregation Latency ofCell-AS): The aggre-
gation latency for the distributedCell-AS in Algorithm 1 is
upper bounded by12(16

3 X2+12X+7)K−32X2−72X−29 =
O(K), (whereK is the link length diversity andX is any
constant value withX = (6β(1 + ( 2√

3
)α 1

α−2 ) + 1)1/α).
Proof: From lemma 2, we know that there can be at

most 6 links transmitting to the head node in each cell of
side length30. Each cell of side length3k with k > 0 covers
at most13 cells of side length3k−1 (an illustration is given in
Fig. 1(b) and (c)). Therefore, at most6 time slots are needed
for scheduling transmissions in cell of side length30, and at
most 12 for cells of side length3k (k > 0), to avoid the
primary interference.

As we cover cells of the same size with163 X2 + 12X + 7
colors, at most163 X2+12X+7 rounds are needed to schedule
all the cells of the same link length category. Thus at most
6(16

3 X2 + 12X + 7) time slots are needed for scheduling of
all cells with side length30, and12(16

3 X2 + 12X + 7) time
slots for cells of side length3k (k > 0). Since2 · 3K ≥ D
(the maximum node distance of the network), cells of side
length 3K can cover the whole network. There can be only
one cell of this size, so at most12 time slots are needed for
scheduling of its links. In summary, at most6(16

3 X2 +12X +
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Fig. 4. 7 nodes in a hexagon cell.Fig. 5. Node 0 as nearest neighbor
of 7 other nodes: a contradiction

7)+12(16
3 X2 +12X +7)(K − 1)+12 = 12(16

3 X2 +12X +
7)K − 32X2 − 72X − 30 time slots are needed to schedule
all transmissions in the data aggregation tree.

One additional time slot is required to transmit all the
aggregated data to the sink. Therefore the overall aggregation
latency is at most12(16

3 X2+12X+7)K−32X2−72X−29.
SinceX is a constant value withX = (6β(1+ ( 2√

3
)α 1

α−2 )+

1)1/α, we have that the overall aggregation latency isO(K).

Centralized NN-AS

Lemma 3:Each node can be the nearest neighbor of at most
6 other nodes on a plane.

Proof: Fig. 4 gives an example that one node (node0)
can be the nearest neighbor of6 other nodes.

Suppose that a node can be the nearest neighbor of 7 other
nodes,e.g., node 0 in Fig. 5. Let dij present the distance
between nodei and j in the figure. We haved10 ≤ d12 and
d20 ≤ d12, and thus∠102 ≥ ∠012 and∠102 ≥ ∠021. Since
∠102 + ∠012 + ∠021 = π, we have∠102 ≥ π

3 .
Similarly, we can derive∠203 ≥ π

3 , ∠304 ≥ π
3 , ∠405 ≥ π

3 ,
∠506 ≥ π

3 , ∠607 ≥ π
3 , and ∠701 ≥ π

3 . Therefore∠102 +
∠203 + ∠304 + ∠405 + ∠506 + ∠607 + ∠701 ≥ 7π

3 > 2π,
which is obviously a contradiction. Therefore a node can be
the nearest neighbor of at most 6 nodes.

Lemma 4:At least 1
7 |V | nodes are removed from node set

V in each round ofNN-AS.
Proof: In each round ofNN-AS, each nodevi ∈ V is the

nearest neighbor to at most6 nodes (lemma 3). Then at least
one link will be established from or to one of these 7 nodes,
and at least one node out of these 7 will be removed from
V at the end of this round. Therefore at least1

7 |V | nodes are
removed fromV in total.

Lemma 5:The data aggregation tree can be constructed
with at most⌈log 7

6
n⌉ rounds inNN-AS.

Proof: From lemma 4, we know at most67 |V | nodes are
left in V after each round of the algorithm. The algorithm
terminates when only one node remains inV . Let k be the
maximum number of rounds the algorithm is executed. We
have⌈ 6

7

k
n⌉ = 1, and thusk = ⌈log 7

6
n⌉.

Lemma 6:The link scheduling latency in each round of
NN-ASis O(log2 n).

Proof: In each round ofNN-AS, the number of links to
be scheduled is exactly the number of nodes removed from
V , i.e., at least17 |V | (lemma 4). Meanwhile, as each node can
only be either the transmitter or the receiver in one round, the
number of links to be scheduled is upper bounded by1

2 |V |.

Since|V | ≤ n, we haveO(n) links to schedule in each round.
The link scheduling algorithm achieves a latency ofO(log2 n)
with n links [13]. Therefore, the link scheduling latency in
each round ofNN-ASis O(log2 n).

Theorem 4 (Aggregation Latency of CentralizedNN-AS):
The aggregation latency for the centralizedNN-AS in
Algorithm 3 is upper bounded byO(log3 n).

Proof: From lemma 5 and lemma 6, we know thatNN-AS
is executed for at most⌈log 7

6
n⌉ rounds and the link scheduling

latency in each round isO(log2 n). In total, NN-ASschedules
the data aggregation inO(⌈log 7

6
n⌉ log2 n) time slots, which

is equivalent toO(log3 n).

Optimal Lower Bound

Theorem 5 (Optimal Lower Bound of Aggregation Latency):
The aggregation latency for theMLAS problem under any
interference model is lower bounded bylog n.

Proof: Under any interference model, as a node cannot
transmit and receive at the same time, at most|V |

2 links can be
scheduled for transmission in one time slot. Since each node
only transmits for exactly once, at most|V |

2 nodes complete
their transmissions in one time slot.

Suppose we needk time slots to aggregate all the data. We
have ⌈ n

2k ⌉ = 1, and thusk = ⌈log n⌉, i.e., the aggregation
latency under any interference model is at leastlog n.

As compared to the optimal lower bound, our distributed
Cell-AS achieves an approximation ratio ofO(K/ log n),
and the centralizedNN-AS has an approximation ratio of
O(log3 n)/ log n, which is equivalent toO(log2 n). Note that
O(K) is betweenO(log n) and O(n) based on the detailed
analysis on the range ofK in Appendix A.

C. Comparison with Li et al.’s Algorithm in [11]

We next analytically compare our distributedCell-ASwith
the distributed algorithm proposed by Li et al. [11] (referred
to asLi et al.’s algorithmhereinafter), which is the only ex-
isting work addressing theMLASproblem under the physical
interference model, as far as we are aware of.

Li et al.’s algorithm includes four consecutive steps,
—Topology Center Selection: the node with the shortest

network radius in terms of hop counts is chosen as the
topology center.

—BFS Tree Construction: using topology center as the root,
BFS is executed over the network to build BFS tree.

—Connected Dominating Set (CDS) Construction: a CDS is
constructed as the backbone of aggregation tree by an existing
approach [18] based on BFS tree.

—Link Scheduling: the network is separated into grids
with side length l = δr/

√
2, where 0 < δ < 1 is

a configuration parameter, which is assigned before execu-
tion, and r is the maximum achievable transmission range
under the physical interference model with constant power
assignmentP and P/rα

N0
= β. The grids are colored with

⌈( 4βτP ·l−α

(
√

2)−αP ·l−α−βN0
)

1
α + 1 +

√
2⌉ colors and links are sched-

uled with respect to grid color. Here,τ = α(1+2− α
2 )

α−1 + π2− α
2

2(α−2) .
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Aggregation Latency

Li et al.’s algorithm solves theMLASproblem inO(∆+R)
time slots, whereR is the network radius counted by node
hops and∆ is the maximum node degree. In the worst case,
eitherR or ∆ can beO(n). And R = O(log n) in best case.
Our Cell-ASachieves an aggregation latency ofO(K), which
also equals toO(n) in the worst case andO(log n) in the
best case. Therefore the two algorithms share the same order
of worst-case and best-case aggregation latency.

Computational and Message Complexity

Cell-AS can have an upper bound ofO(min{Kn, 13K})
for both computational complexity and message complexity.
SinceK = n in worst case, both computational complexity
and message complexity are at mostO(n2).

Li et al.’s algorithm has a computational complexity of
O(n|E|) and message complexity ofO(n+ |E|). As |E| = n2

in worst case,Li et al.’s algorithm’s computational and mes-
sage complexity areO(n3) andO(n2) respectively.

We can have thatCell-AShas a better computational com-
plexity while sharing the same order of message complexity
with Li et al.’s algorithm. More details of the analysis of our
algorithm andLi et al.’s algorithm can be found in Appendix
B.

Case Study

We continue with the comparison by showing thatCell-AS
can outperformLi et al.’s algorithm in its worst cases. Note
that, without loss of generality, the minimum link length isset
to one unit in the following examples.

Topology Center

n
r1 r

nn
r 2

… … 1 … …
n r1 n

2 22
1

Fig. 6. An example of worst case forLi et al.’s algorithm.

Fig. 6 is a worst case ofLi et al.’s algorithm. Nodes
are located along the line withr = 1 distance between
neighboring nodes. The topology center should be in the center
of line which leads toR = n

2 . According to the latency bound
O(∆ + R), Li et al.’s algorithm takesO(n) time slots to
complete aggregation.

On the other hand, the maximum node distance in Fig. 6 is
n − 1. So the link length diversityK should belog3

n−1
2 .

According to latency boundO(K), the scheduling latency
should beO(log n) with Cell-AS, which is better thanO(n).

1
2

n
1

2

n2

n

1

2

n

1n

Fig. 7. Another example of worst case forLi et al.’s algorithm.

Fig. 7 is another worst case forLi et al.’s algorithm in which
all nodes reside on the circle with unit distance except node1
in the center. The radius of the circle isr > 1. So node 1 has
the maximum node degree∆ of n−1. With respect to latency
boundO(∆ + R), O(n) time slots are required to complete
aggregation withLi et al.’s algorithm.

Meanwhile, the maximum node distance in Fig. 7 should
be 2r. Since the distance between any neighboring nodes on
the circle is1, we havelimn→∞ n − 1 = 2πr, which leads
to limn→∞

n−1
π = 2r. Then the link diversityK should be

log3
n−1
2π . So we have the aggregation latency asO(log n) with

Cell-AS, which is better thanO(n).

VII. E MPIRICAL STUDY

We have implemented our proposed distributed algorithm
Cell-AS, centralized algorithmNN-AS, as well asLi et al.’s
algorithm, and carried out extensive simulation experiments
to verify and compare their efficiency empirically.

In our experiments, three types of sensor network topolo-
gies, namelyUniform, PoissonandCluster, are generated with
n = 100 to 1000 nodes distributed in a square area of40000
square meters. The nodes areuniformly randomly distributed
in Uniform topologies, and are distributed with thePoisson
distribution in Poissontopologies. InCluster topologies [9],
nC cluster centers are uniformly randomly located in the
square and n

nC
nodes are uniformly randomly distributed

within the disk of radiusrC centered at each cluster center.
We use the same settings as in [9],nC = 10 andrC = 20, in
our experiments. We setN0 to the same constant value0.1 as
in [11] (which nevertheless would not affect the aggregation
latency). The transmission power in our implementation ofLi
et al.’s algorithm is assigned the minimum value to maintain
the connectivity of the respective network, whileδ is set to
0.6 in compliance with the simulation settings in [11]. Since
2 < α < 6 andβ ≥ 1, we experiment withα set to 3, 4 and 5,
andβ to values between 2 to 20, respectively. All our results
presented are the average of1000 trials.

We first compare the aggregation latency among the three
algorithms with different combinations ofα and β values in
three types of topologies. The results are presented in Fig.8,
9, 10.

From our plots in Fig. 8, we observe that withCell-AS
algorithm, as expected, the aggregation latency is larger with
smaller α, which represents less path loss of power and
thus larger interference from neighbor nodes, and largerβ,
corresponding to higher SINR requirement. However, similar
latency performance is observed withNN-ASin Fig. 9, at dif-
ferent values ofα andβ. This shows that network topology is
the dominant influential factor to aggregation latency forNN-
AS, given itsnearest-neighbormechanism in tree construction
andnon-linearpower assignment [13] for link scheduling.

For Li et al.’s algorithm, from Fig. 10,we observe that most
of the curves produced at differentβ values are linear lines
overlapping onto each other, except in the following cases with
Uniform topologies:β = 2 when α = 4 , β = 2, β = 4
and β = 6 when α = 5 . The reason behind the linear
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Fig. 8. Aggregation latency forCell-AS in different topologies.

overlapping lines is that each grid is scheduled one by one
without any concurrency withLi et al.’s algorithm in cases
of the PoissonandCluster topologies, as well as theUniform
topologies with smallerα and largerβ. The no-concurrency
phenomenon can be further explained: Since the number of
colors is⌈( 4βτP ·l−α

(
√

2)−αP ·l−α−βN0
)

1
α + 1 +

√
2⌉ with l = δr/

√
2,

τ = α(1+2− α
2 )

α−1 + π2− α
2

2(α−2) and P/rα

N0
= β (See Sec. VI.C for

description ofLi et al.’s algorithm), smallerα and largerβ
lead to a larger number of colors needed. On the other hand,
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(f) α = 5, Poisson
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Fig. 9. Aggregation latency forNN-ASin different topologies.

in Poissonand Cluster topologies, the nodes are not evenly
distributed, thus requesting a largerr to maintain the network
connectivity as well, which leads to a smaller number of grids
since the side length of each grid isδr/

√
2. In these cases, the

number of required colors in the algorithm, as decided byα
andβ, is larger than the total number of grids in the network
(which is proportional to1/r). Therefore, each grid is actually
scheduled one by one. In comparison, the number of cells in
our Cell-ASis only related to the link length diversity but not
r. Therefore, our algorithm has much more concurrency of
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Fig. 10. Aggregation latency forLi et al.’s algorithm in different topologies.

link scheduling across different cells, leading to the sublinear
curves.

Fig. 8—10 show that concurrent link scheduling (across
different cells/grids) occurs with all three algorithms only in
four cases in theUniform topologies: (1)α = 4, β = 2; (2)
α = 5, β = 2; (3) α = 5, β = 4; (4) α = 5, β = 6.
We next compare the aggregation latencies achieved by the
three algorithms in those four cases. Fig. 11 shows that our
centralizedNN-ASachieves a much lower aggregation latency
as compared to the other two algorithms, which remains at a
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(c) α = 5, β = 4, Uniform
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(d) α = 5, β = 6, Uniform

Fig. 11. Aggregation latency comparison among three algorithms in selected
network settings.
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Fig. 12. Asymptotic performance of aggregation latency forthree algorithms
(α = 4, β = 2).

similar level regardless of the network sizes. The performance
of our distributedCell-AS is similar to that of Li et al.’s
algorithm wheren ≤ 200, but becomes up to35% better than
the latter when the network becomes larger.

To obtain a better understanding of the asymptotic perfor-
mance of each algorithm, we further divide the aggregation
latency in Fig. 11 by log2 n, log5 n, log6 n and log7 n,
respectively, and plot the results in Fig. 12 (Since the curves
are similar in all four cases, we show the results obtained
at α = 4 and β = 2 as representatives). Our rationale is
that, if the aggregation latency of an algorithm has a higher
(lower) order thanO(logi n), its curve in the respective plot
should go up (down) with the increase of the network size,
and a relatively flat curve would indicate that the aggregation
latency is O(logi n). From Fig. 12(a) and 12(d), we infer
that the average aggregation latency ofNN-ASandLi et al.’s
algorithm isO(log2 n) andO(log7 n), respectively. The curves
corresponding toCell-ASalgorithm slightly go up in Fig. 12(b)
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and slightly goes down in Fig. 12(c) revealing thatCell-AS
algorithm achieves an average aggregation latency between
O(log5 n) andO(log6 n).

Our analysis in Sec. VI gives an aggregation latency up-
per bound ofO(K) for Cell-AS and O(log3 n) for NN-AS,
respectively. Our experiments have shown that the average
aggregation latency under practical settings are better for the
algorithms in Uniform topologies.

VIII. C ONCLUDING REMARKS

This paper tackles the minimum-latency aggregation
scheduling problem under the physical interference model.
Despite the abundant results on theMLASproblem under the
protocol interference model, they are much less relevant toreal
networks than any solution under the physical model which
is much closer to the physical reality. The physical model is
favored also because of its potential to enhance the network
capacity [1]–[4], [13]–[15]. Although the physical model adds
to the difficulty of a distributed solution for the problem,
we propose a distributed algorithm to solve the problem in
networks of arbitrary topologies. By strategically dividing the
network into cells according to the link length diversity (K),
the algorithm obviates the need for global information and
can be implemented in fully distributed fashion. We also
present a centralized algorithm that represents the current
most efficient algorithm for the problem, as well as prove an
optimal lower bound of the aggregation latency for theMLAS
problem under any interference model. Our extensive analysis
shows that the distributed algorithm aggregates all the data
in O(K) time slots (with approximation ratioO(K/ log n)
with respect to the optimal lower bound), and the centralized
algorithm in at mostO(log3n) time slots (with approximation
ratio O(log2n)). Our empirical studies under realistic settings
further demonstrate that, bothCell-ASandNN-ASoutperform
Li et al.’s algorithm in all three topologies tested.
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APPENDIX A
ANALYSIS OF THE RANGE OFK

Fig. 13 is a worst case example forCell-AS. The minimum
geometric node distance is 1 and the maximum geometric node
distance is

∑n−2
i=0 3i = (3n−1 − 1)/2. So K = log3

3n−1−1
4 ,

which is in O(n), in the worst case.

133
3

n2
3

n

Fig. 13. An example of worst case for both Cell-NA and Li’s algorithm.

Recall the existing result from [19]: supposeC, which is
the whole network, is a disk of radiusr = 3K andU , which
is the node setV , is a set of points with mutual distances at
least1. Then
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|U ∩ C| ≤ 2π√
3
r2 + πr + 1

⇒ n ≤ 2π√
3
(3K)2 + π3K + 1

⇒ K ≥ log3 (

√
3

4π
(

√

π2 +
8π√

3
(n − 1) − π))

So K is in O(log n) in the best case.

APPENDIX B
COMPUTATIONAL AND MESSAGE COMPLEXITY OFCell-AS

AND Li et al.’ S ALGORITHM

Computational Complexity

Cell-AS has three main function modules,i.e., neighbor
discovery, head selection, and link scheduling. During the
neighbor discovery in each round, each node carries out
exactly one local broadcast. There aren nodes in round0
and at mostmin{n, 13K−k+1} nodes in roundk > 0. So
at mostn +

∑K
k=1 min{n, 13K−k+1} = min{(K + 1)n, n +

13(13K−1)
12 } local broadcast operations are involved inK + 1

rounds. For head selection, the total numbers of location
comparisons to decide the heads in round0 and in round
k > 0 are at most7n and min{13Kn,

∑K
k=1 13K−k+1},

respectively, as there are at most 7 nodes in each cell in
round 0 and 13 per cell in roundk > 0. Hence the overall
computational complexity for head selection throughout the
algorithm is at most7n + min{13Kn, 169(13K−1)

12 }. Simi-
larly, link scheduling also has a computational complexityof
7n + min{13Kn, 169(13K−1)

12 }. In summary,Cell-AS has an
overall computational complexity ofO(min{Kn, 13K}).

Li et al.’s algorithm can be divided into four phases,i.e.,
topology center selection, BFS tree construction, connected
dominating set (CDS) construction, and link scheduling. For
topology center selection, the node with the shortest network
radius in terms of hop counts is chosen as the topology center.
if the classical Bellman-Ford algorithm is applied to derive the
routing matrix, the complexity for this phase isO(|V ||E|). For
BFS tree construction, the complexity isO(|V | + |E|). The
CDS construction phase also has a complexity ofO(|V | +
|E|). Their link scheduling phase consists of an outer iteration
on the nodes and an inner iteration on the colors. Let the
number of colors beγ, the computational complexity in this
phase isO(γ|V |). In summary, Li et al.’s algorithm requires
a computational complexity ofO(|V ||E|).

Message Complexity

Cell-AS: During both neighbor discovery and link schedul-
ing, n nodes in round0 and at mostmin{n, 13K−k+1}
nodes in roundk send messages to their neighbors. Thus, the
message complexity involved in these two functions are both
min{(K+1)n, n+ 13(13K−1)

12 }. As head selection is conducted
based on neighbor location information obtained during neigh-
bor discovery, its message complexity is 0. HenceCell-ASre-
quires an overall message complexity ofO(min{Kn, 13K}).

Li et al.’s algorithm: The message complexity for topology
center selection, BFS tree construction, and CDS construction
are O(|V | + |E|). We are unable to analyze the message
complexity of the link scheduling phase, as no implementation
details are given in the paper [11].




