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Abstract—Minimum-Latency Aggregation Scheduling (MLAS) The MLAS problem is typically approached in two steps: (i)
is a problem of fundamental importance in wireless sensor data aggregation tree construction, and (i) link transiois

networks. There however has been very little effort spent on geheqyling. For (i), we assume the simplest mode where
designing algorithms to achieve sufficiently fast data aggmgation leaf node in the t il K | t
under the physical interference model which is a more realisc eYerY non'.ea _no € in the tree wi m"f‘ e o_ny one trans-
model than traditional protocol interference model. In partic- Mission which is after all the data from its child nodes have
ular, a distributed solution to the problem under the physical been received. To solve the MLAS problem, we require that
interference model is challenging because of the need foralal- no collision of transmissions should occur due to wireless
scale information to compute the cumulative interference Bany jnterference. If the above two steps are being carried out
individual node. In this paper, we propose a distributed algrithm . W em .
simultaneously, we have a “joint” design.

that solves theMLAS problem under the physical interference ) ) )
model in networks of arbitrary topology in O(K) time slots, To model the interferences, most existing literature agsum

where K is the logarithm of the ratio between the lengths of the protocol interference modelThe best results known for
the longest and shortest links in the network. We also give a the MLAS problem or similar ones ( [10], [19]-[21]) bound
centralized algorithm to serve as a benchmark for compariso the aggregation latency i@(A + R) time slots, whereR is

purposes, which aggregates data from all sources i®(log*(n)) .
time slots (wheren is the total number of nodes). This is the the radius of the sensor network counted by hop count and

current best algorithm for the problem in the literature. The A is the maximal node degree. A more realistic model than
distributed algorithm partitions the network into cells according the protocol interference model is thghysical interference
to the value K, thus obviating the need for global information. model[17]. So far, however, very little research has been done

The centralized algorithm strategically combines our aggegation 4 5qdress th&LAS problem under the physical interference
tree construction algorithm with the non-linear power assgnment

strategy in [13]. We prove the correctness and efficiency ofuy model. . . .
algorithms, and conduct empirical studies under realisticsettings The protocol interference model considers only interfer-

to validate our analytical results. ences within a limited region, whereas the physical interfe
ence model tries to capture the cumulative interferencas fr
I. INTRODUCTION all other currently transmitting nodes or links. More pesty,

in the physical interference model, the transmission df lin
Data aggregation is a habitual operation of practical usedp can be successful if the following Signal-to-Interference
all wireless sensor networks, which transfers datg,(tem- Noise-Ratio §INR condition is satisfied:

perature) collected by individual sensor nodes to a sinkenod P,/
The aggregation typically follows a tree topology rootedhat N s e P id >3 (1)
sink. Intermediate sensor nodes of the tree may simply merge 0 ejeA—{e;} 7/ Vi

and forward all received data or perform certain operatiohtere A denotes the set of links that transmit simultaneously
(e.g, computing the sum, maximum or mean) on the data. Invéith e;. P; and P; denote the transmission powers at the
wireless environment, because of the interference amoreg witransmitter of linke, and that of linke;, respectivelyd,; (d;;)

less transmissions, transmissions to forward the data teeeds the distance between the transmitter of link(e;) and the

be meticulously coordinated. The fundamental challenge ceeceiver of linke;. « is the path loss ratio, which has a typical
be stated as: How to schedule the aggregation transmigsiongalue between 2 and &V, is the ambient noises is theSINR

a wireless sensor network such that no undesired intexderethreshold for a successful transmission, which is at léast
may occur and the total number of time slots used (referredA solution to the MLAS problem can be a centralized one,
to asaggregation latencyis minimized? This is known as thea distributed one, or something in between. For a large senso
Minimum-Latency Aggregation Scheduling (MLA®)blem in  network, a distributed solution is certainly the desiredich.

the literature [5], [10], [19]-[21]. Note that we divide thieme Distributed scheduling algorithm design is significantlpne
into time slots, which makes the design and analysis markallenging with the physical interference model, as “gldb
tractable. information in principle is needed by each node to compuge th
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cumulative interference at the node. The only work targgtirproblem [5], [10], [11], [19]-[21]. Minimizing the aggretian
the physical interference model we are aware of is [11] whidtheduling length is one of the most important concerns.
presents an efficient distributed solution to MeAS problem To the best of our knowledge, all except one paper [11]
with latency bound ofO(A + R). One of the drawbacks of assume the protocol interference model. [5] proposed a data
their work is that no efficiency guarantee can be given faggregation algorithm with latency bound @ — 1) R, where
arbitrary topologies. R is the network radius by hop count ad is the maximal
In this paper, we tackle the minimum-latency aggregatiorode degree. The NP-hard proof of thi& AS problem is also
scheduling problem under the physical interference mdgel, presented. The current best contributions [10], [19]-f&fjnd
designing both a centralized and a distributed scheduling the aggregation latency b9(A + R).
gorithm. Our algorithms are applicable to arbitrary togis. [10] is the first work that converted from a multiplicative
Our main focus is on the proposed distributed algorithm; tHactor to an additive one. The algorithm builds on the basis
centralized algorithm is included for the purpose of segvas of maximal independent set which is also used in [21]. The
a benchmark in the performance comparison, which howevetter one actually gives a distributed solution.
may be a practical solution for situations where centrébza  In [19], the MLAS problem is cast in multihop wireless
is not a problem. The distributed algorithm we proposeetworks with the assumption that each node has a unit
Cell-AS circumvents the need to collect global interferenasommunication range and an interference range bf1. [20]
information by partitioning the network into cells accardito proposes an aggregation schedule for a distributed solatid
a parameter called link length diversit)Kf which is the log- proves a lower-bound afax{logn, R} on the latency of data
arithm of the ratio between the lengths of the longest and thggregation under any graph-based interference modethe
shortest links. Our centralized algorithidN-AS has the best network size.
aggregation performance with respect to the current tileea  The only solution for the MLAS problem under the physical
It combines our aggregation tree construction algorithrthwiinterference model is [11] by Li et al. They have proposed
the non-linear power assignment strategy proposed in [13]a distributed aggregation scheduling algorithm with canst
We conduct theoretical analysis to prove the correctngsswer assignment, which can achieve a latency bound of
and efficiency of our algorithms. We show that the distriduteO(A + R) when the transmission range is setds Here,
algorithm Cell-AS achieves a worst-case aggregation laten¢y < § < 1 is a configuration parameter and is the
bound of O(K) (whereK is the link length diversity), and the maximum achievable transmission range under the physical
centralized algorithnNN-ASachieves a worst-case bound ofnterference model with power assignmentand P]CZQ = L.
O(log® n) (wheren is the total number of sensor nodes). ItHowever, no deterministic latency bound can be derived when
addition, we derive a theoretical optimal lower bound fag ththe transmission range is changedrtdo which they applied
MLAS problem under any interference moddbg(n). Given mainly probabilistic analysis. In addition, the efficienoy
this optimal bound, the approximation ratios Géll-ASand their algorithm cannot be guaranteed in arbitrary top@sgi
NN-ASare O(K/logn) and O(log® n), respectively. We also which is a consequence of constant power assignment.
compare our distributed algorithm with Li et al’s algorith _ _ )
in [11] both analytically and experimentally. We show thaB- Link Scheduling under the Physical Interference Model
both algorithms have a®(n) latency upper bound for their The physical interference model has received increased
respective worst cases whieell-AScan still be effective in attention in recent years for its more realistic abstractd
Li et al.’s worst cases. Our experiments under realistitrggt  wireless networks [17]. For the physical interference nhode
demonstrate tha€ell-AS can achieve up to 85% latency some have focused on the maximum achievable network
reduction as compared to Li et al's. Besides, we have foundpacity which is primarily determined by the result of the
that, in Uniform topologies, the aggregation latencies M- Minimum Length link Scheduling (ML®yoblem. The MLS
AS and Li et al’s algorithm can be reduced t@(log>n) problem is closely related to the link scheduling step of our
andO(log” n) respectively whileCell-ASs latency should be MLAS problem here. Recent results [1]-[4], [13]-[15] demon
betweenO(log® n) and O(log® n). strate that, with the physical interference model, as opgos
The remainder of this paper is organized as follows. We the protocol interference model, the network capacity ca
discuss related work in Sec. Il and formally present thee greatly increased.
problem model in Sec. Ill. Th€ell-ASandNN-ASalgorithms Moscibroda et al. formally propose the problem of link
are presented in Sec. IV and V, with extensive theoretice¢theduling complexity in [14]. In [15], Moscibroda et alugy
analysis given in Sec. VI. We report our empirical studies abpology control for the physical interference model anthob
the algorithms in Sec. VII. Finally, we conclude the paper ia theoretical upper bound on the scheduling complexity of
Sec. VIII. arbitrary topologies in wireless networks.
In [13], Moscibroda applies link scheduling to the data
) gathering tree in wireless sensor networks withitog?n)
A. Data Aggregation complexity. It was the first time a scaling law that describes
Data aggregation is a prominent problem in wireless sengbe achievable data rate in worst-case sensor networksevas d
networks. There exist a lot of exciting work trying to solet rived. Goussevskaia et al. [8] make the milestone coniohut

Il. RELATED WORK



of proving the NP-completeness of a special case oMh& IV. DISTRIBUTED AGGREGATION SCHEDULING

problem. Our main contribution is an efficiertistributedscheduling
algorithm calledCell Aggregation Scheduling (Cell-ASr
solving theMLASproblem with arbitrary distribution of sensor
nodes.

Our distributed algorithm features joint tree construatio

L X link scheduling- trol i hase-by-ph fasidio
distributed sensor nodes, v1,...,v,_1 and a sink node,,. Nk SCREAUING-POWET controt in & phase-by-phase tasimon

. chieve minimum aggregation latency; whereas tree casistru
Let directed graphG = (V, E) denote the tree constructecﬁ ggreg Y

. ~tion and link scheduling are separate steps in [11]. We first
for data aggregation from all the sensor nodes to the S"}:kesent the key idea behind our algorithm design and then
where V. = {vg,v1,...,v,} is the set of all nodes, anddis

. o ) . cuss important techniques to implement the algorithra in
E = {ep,e1, ..., en—1} is the set of transmission links iNso P q P g

. ) . distributed fashion.
the tree withe; representing the link from sensor nodeto y
its parent. A. Design Idea

Our problem at hand is to pick the directed links in Our distributed algorithm first aggregates data from sensor
to construct the tree and to come up with an aggregationdes in each small area with short transmission links, and
scheduleS = {Sy, Sy, ..., Sr—1}, whereT is the total time then further aggregates data in a larger area by colleatorg f
span for the schedule ant} denotes the subset of links inthose small ones with longer transmission links; this pssce
E scheduled to transmit in time sletvt = 0,...,7 — 1. repeats until the entire network as the largest area is edver
A correct aggregation schedule must satisfy the following We classify the lengths of all possible transmission links
conditions. First, any link should be scheduled exactlyepndn the network intoK + 1 categories{3°,2 - 3%], (2 - 3°,2 -
ie., UtT;(Jl S; = E andS; N S; = (h wherei # j. Second, a 3'],...,(2:3%~1,2.3%], whereK is bounded by the network’s
node cannot act as a transmitter and a receiver in the samaximum node distancP with 2-35-1 < D < 2.35. Alink
time slot, in order to avoid theprimary interference Let from nodev; to nodev; falls into categoryk if the Euclidean
T(e;) and R(e;) be the transmitter and the receiver of linkdistance between these two nodes lies wittn3*~1, 2 . 3¥]

e;, respectively, and’(S;) and R(S;) denote the transmitter with k = 1,..., K or [3°,2- 3% with k = 0. We defineK as

set and receiver set for the links B, respectively. We have thelink length diversitywhich is proportional to the logarithm
T(S;)NR(S;) =0,vt=0,...,T—1. Third, a non-leaf node of the ratio between the lengths of the longest and the sttorte
v; transmits to its parent only after all the links in the subtrepossible links in the network. In our design, aggregatiokdi
rooted atv; have been schedulede., T'(S;) N R(S;) = 0 in categoryk are treated and their transmissions are scheduled
where: < j. Finally, each scheduled transmission in timéo aggregate data in the smaller areas) before links igoage
slot ¢, i.e, link e; € S, should be correctly received byk + 1 are processed (to aggregate data in the larger areas).
the corresponding receiver under the physical interfexenc Our algorithm carries out its actions in an iterative faghio
model considering the aggregate interference from coantirrin round & (¢ = 0,..., K), we divide the network into
transmissions of all linkg; € S; — {e;} i.e., the condition hexagonal cells of side lengftf. In each cell, a node with the

IIl. THE PROBLEM MODEL

We consider a wireless sensor network ofarbitrarily

Pi/d; > 3 should be satisfied. shortest distance to the sink is selected as the head, sbf®on
N°+Zejest—{ei}Pf'/d?i - for data aggregation; the other nodes in the cell directly
The minimum-latency aggregation scheduling problem cagnsmit to the head with links no longer than 3. In the
be formally defined as follows: next round § + 1), only the head nodes in the previous round
Definition 1 (Minimum-Latency Aggregation Scheduling): remain in the picture. The network is covered by hexagonal
Given a set of nodegvg,v1,...,v,—1} and a sinkv,, cells of side lengtt8*+! and a new head is selected for data
construct an aggregation tre€ = (V,E) and a link aggregation in each cell. Afték 4 1 rounds of the algorithm,
scheduleS = {Sy, S1, ..., Sr—1} satisfyingUtT:}f S = E, only one node will remain, which should have collected all

S;NS; = 0 wherei # j, andT'(S;) N R(S;) = 0 where the data in network, and will transmit the aggregated data to
1 < 7, such that the total number of time sldfsis minimized the sink node in one hop. Fig. 1 gives an example of the
and all transmissions can be correctly received under thkrjorithm in a sensor network with link length categories,
physical interference model. in which selected head nodes are in black.

Without loss of generality, we assume that the minimum In each round: of the algorithm, links of length categoky
Euclidean distance between each pair of nodek. ids our are scheduled as follows to avoid interference and to miremi
algorithm design targets at arbitrary distribution of sensthe aggregation latency. We assign colors to the cells afyd on
nodes, we assume the upper bound of the transmission po@lfs with the same color can schedule their link transroissi
at each node to be large enough to cover the maximum ndd@currently. To bound the interference among concurrent
distance of the network, such that no node would be isolatdtRnsmissions, cells of the same color need to be suffigientl
Each node in the network knows its location. This is not hafgr apart. We useX? + 12X + 7 colors in total, such that
to achieve during bootstrapping stage in a network where t@ells of the same color are separated by a distance of at
sensors are stationary. least2(X + 1)3% with X = (68(1 + (%)“ﬁ) + 1)t/e,
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(a) Round 0.

Fig. 1.

(b) Round 1.
The iterations o€ell-AS an example with 3 link length categories Output: Partial link schedule PS; for links in

with sink in the center.

(c) Round 2.

Algorithm 1 Distributed Aggregation Schedulin@¢€ll-AS
Input: Node setV with sink v,,.
Output: Tree link setE’ and link schedules.
Lk:=0;,V:=V—{v,}; t:=0;
20 X = (68(1 + (%) 555) + DV
3: while |V| # 1 do
4:  Cover the network with cells of side leng#i and color them
with 22X? + 12X + 7 colors;

5. fori:=1t028X?+12X +7do

6: FE; := 0, whereE; is link set in cells of color;

7: for each cellj with color i do

8: Select nodey;, in cell 5 closest to sinky,, as head;
9: Construct links from all other nodes in cgllto vp;
10: Add the links toE; and E;

11 Remove all the nodes in cejl exceptvy, from V;
12: end for

13: S := S U Same-Color-Cell-Scheduldt(, t);

14:  end for

15: =k+1;

16: end while

17: vy, := the only node inV; Construct linkey, from vy, to vy
18: E:= EU{en}; S:=SU{{en}t}

19: return E and S;

Algorithm 2 Same-Color-Cell-Scheduler
Input: Link set E; and time slot index.

as illustrated in Fig. 2. (The red cell in the center represan 2: Define constant := NoSX;

landmark cell in Sec. IV.B and A-F are six zones for analysi§’

: PSZ = (Z);
4: while E; # 0 do

in Sec. VI.) We will show in Sec. VI that by using these many. S, = -

colors, we are able to bound the interferences and thus proge for each cellj with color i do
the correctness and efficiency of our algorithm. Inside each Choose one non-scheduled link, in cell j;
cell, the transmission links from all other nodes to the heaé: Assign transmission poweP,, := ¢ X dy,m;

are scheduled sequentially. 121_ endtfc:)r: SiU{em}; Ei == Ei — {em};
11:  PS;:=PS;U{S};t:=t+1,
12: end while

13: return PS;;

B. Distributed Implementation

coordinates through relative positioning.d, [16]).

Fig. 2. Link scheduling in one round @ell-AS cells with the same color
are separated by a distance of at lexsX + 1)3F.

(e.g, [12)]).

The algorithm can be implemented in a fully distributed
fashion. The key is to decide at each peer the following:

1) Location and synchronizationin the bootstrapping
phase, the origiif0, 0) is set to a central position in the sensor
network. Each node learns its location coordindtes) with
respect to the origin, using GPS. In fact, only a small number
of nodes need to use GPS, while the others can obtain their

Each node in the sensor network carries out the distributed
algorithm in a synchronized fashioni-e, it knows the start
of each round:. Such synchronization can be achieved using
one of the effective synchronization algorithms in theréitere

TheCell-ASalgorithm is summarized as Algorithm 1 where 2) Neighbor discovery:In each roundk, the network is
the scheduling of links in cells of the same color is carriedivided into cells of side lengtB” in the fashion as illustrated

out according to Algorithm 2.

in Fig. 2. Each node can determine the cell it resides in is thi



round based on its location. It can then discover its neighbo @/@ ®.\®
in the cell via local broadcasting [7]. The broadcastinggen ® @ ® S,
is 2351 such that all nodes in the same cell can be reached. (2) Round 0 (b) Round 1

3) Head selectionThe head of a cell in rounklis the node © ®
in the cell closest to the sink. All the nodes are informed of
the sink’s location in the bootstrapping stage of the atbaoni (c) Round 2
or even before they have been placed in the field. Since each Fig- 3. The iterations oNN-AS an example of 6 sensor nodes.
node knows the location information of all its neighbors in
the same cell, it can infer whether itself is the head, or sonf¢gorithm 3 Centralized Aggregation Scheduliny§-A3
other neighbor is the head of the cell in this round. Input: Node setl” with sink v,.

4) Distributed link schedulingln each roundk, coloring of Output: Tree link setZ and link schedule'.
the cells are done as illustrated in Fig. 2. As each node knows ¥ = 0; E:=0; S:=0; V.=V — {on};

. . . L L . 2: while |[V| #1 do
which cell it resides in, it can calculate colorof its cell in . . )
this round. Cells of the same color are scheduled according for eachy; € v do

to the sequence of their color indicés., cells with colori s: if v; ¢ T(My)U R(My) then
can schedule their transmissions before those with dofar.  6: Find v;’s nearest-neighbor; € V;
The head node in a cell is responsible to decide when thg if v; & T(My) U R(Mg) then
L . 8: Construct linke; from v; to vj; My := M U {e; };
other nodes in its cell can start to transmit, and to announcg end if
the completion of transmissions in its cell to all head nodeg. end if
within 2(X + 1)3* distance. 11:  end for

A head node in a cell with coloi + 1 waits until it has 12: E:= EUM,; S := .5 U Phase-Schedule¥(y);
received completion notifications from all head nodes ifscel*> X ilv —T(My) b=k +1;
of color i within 2(X + 1)3* distance. It then schedules theﬁj 5:]::Wthlee0n|y node inV: Construct linke; from v; t0 v,:
transmission of all the other nodes in its cell one by one, bY: £ .= E U {e;}; 5 := SU {{e:}}; '
sending “pulling” messages. For a non-head node in the calt; return E and S;
it waits for the “pulling” message from the head node and thén

transmits its data to the head.

When the algorithm is executed round after round, only thgansmitted are removed, and the algorithm repeats with the
nodes that have not transmitted (the heads in previous B)ungduced node set. In Fig. 3(b), nodes 2, 3, 5, and 6 remain, and
remain in the exeCUtiOI’], Until their transmiSSion t|me SIO&WO |inks are generated using the nearest neighbor Cni'terio
arrive. and scheduled for transmission. The process repeats aitil o
one sensor node remains, which will transmit the aggregate
) o ) data to the sink node in one hop.

When global information is assumed to be available at eachtphe centralized algorithm is summarized as Algorithm 3,
sensor, a centralized scheduling algorithm can achieve {hgere Phase-Schedulecalls upon the algorithm in [13] to

best aggregation latency for tLAS problem. We present generate the schedule for links in matchihg, in round k.
in the following a centralized algorithnm\learest-Neighbor

Aggregation Scheduling (NN-ASyhich does exactly that.  Algorithm 4 Phase-Scheduler

Our centralized algorithm progresses also in a phase-typut: Link set M.
phase fashion, with joint tree construction and link schiegu Output: Link schedulesS;.
In each round, we find a nearest neighbor matching amont For space limitation, please refer to [13] for details.
all the sensor nodes that have not transmitted their dath, an
schedule all the links in the matching.

We start the algorithm with all the sensor node¥ir {v, }.
We find for each node; the nearest neighbor node, where  In this section, we prove the correctness of our distributed
neitherv; nor v; has already been included in the matchingind centralized algorithms and analyze their efficiencyhwit
and establish a directed link from to v;. For example, in respect to the bound of aggregation latency.
Fig. 3 where a sensor network of 6 sensor nodes is shown, the
matching we identify in round O contains two links, from 1 téA" Correctness
3 and from 4 to 6, respectively. We then schedule the links inWe first prove thati® X2 + 12X + 7 colors are enough to
matchingh, (of round 0), using the link scheduling algorithmseparate the cells with the same color by a distance of &t leas
with non-linear power assignment proposed in [13]. Tha(X +1)d, whered = 3 is the side length of cells in category
algorithm schedules a set of links in a network generated fas
the nearest neighbor matching as in our case, with guanteeLemma 1:At most %XQ + 12X + 7 hexagons with size
scheduling correctness under the physical model. After #&hgth ofd can cover the disk with radius &{X + 1)d.
transmissions in round O are scheduled, all the nodes that ha  Proof:

V. CENTRALIZED AGGREGATIONSCHEDULING

VI. ANALYSIS



As shown in fig. 2, we divide the disk into 6 equal-sizetransmission and hence will be the transmitter for exaatiyeo
non-overlapping cones. It is clear that the maximum numbAt the end of each round, receivers and other non-scheduled
of hexagons to cover the disk is at most 6 times of that tiodes remain inV, and all aggregated data resides on the
cover each cone. remaining nodes. Therefore, the generated transmissiéas i

Take coneA for instance, we have at mo%thexagons in correctly construct a data aggregation tree.
range of%d, %+1 hexagons in range @fd, %+1+2 hexagons  For link scheduling, Algorithm 3 applies the algorithm in
in range of%d, etal. So itis not hard to prove by induction thaf13], whose correctness under the physical interferencgemno
we have at most/6+ > _7_ i hexagons in range o&g—?’jd in has been proven in [13]. [ |

one cone. So in a range ®(X +1)d, for whichj < 2&+U=1

4(X+1)—1 (4(X+1)—1
3 3

we have at most/6+ 5 +1) hexagons in one
cone, which means at mo%@X2 + 12X + 7 in the disk.

B. Aggregation Latency

We now analyze the efficiency of the algorithms. We also
So | derive a theoretically optimal lower bound of the aggregati
0 lémma proven. latency forMLAS problems under any interference model and

T.heorem.l (Correctness @ell-AS): The d|str|bqted3ell- show the approximation ratio of our algorithms to this bound
ASin Algorithm 1 can construct a data aggregation tree and .
Distributed Cell-AS

correctly schedule the transmissions under the physicdemo
Proof: The algorithm in Algorithm 1 guarantees that each Lemma 2:1f the minimum distance between any node pair

sensor node transmits for exactly once and will not seri& 1, there can be at most 7 nodes in a hexagon with side

as a receiver again after transmission. Hence the resultieggth of 1.

transmission links constitute a tree. Proof: We prove by utilizing an existing result from [19]:
The link scheduling guarantees that a node would not trarspposeC is a disk of radius- andU is a set of points with

mit and receive at the same time and a non-leaf node transmitgtual distances at least Then

only after all the nodes i_n it§ su_btree have transmitted. & n Unc|< 2_7rr2 foar a1

prove that each transmission is successful under the piysic V3

interference model. _ : L
In [6], a safe CSMA protocol under the physical interference A hexagon of side length can be included in disk’ of

model is presented. The core idea is to separate each paiFatﬂ’uSl centered at the center of the hexagon. Then we derive

concurrent transmitters by a predefined distance suchtibat t Unc| < 2 x 124+ x14+1=77692<8. (2)
V3

cumulative interference in network can be bounded. However V3

the background noise is not considered in [6]. We revise tifence there can be at most 7 nodes with mutual distance of

conclusion in [6] to adapt to the physical interference mode in the unit disk, and therefore in the hexagon. [ ]

in this paper. An example is given in Fig. 4 with 7 nodes in one hexagon
We know that any two concurrent transmitters of links in th@ith side lengthd = 1.

same Catego“g aLe feparatiag by at leatX + 1)3", .Wher? Theorem 3 (Aggregation Latency @fell-AS): The aggre-

X = (66(1+(5)" 5—5)+1)"/*. Forany scheduled link with i |atency for the distribute@ell-ASin Algorithm 1 is

length ofr, we have the power assignmentias= No[GX *r. upper bounded by2(16 X2 +12X +7)K —32X2—72X —29 =

According to the conclusion in [6], the cumulative intedece O(K), (where K is t%e link length diversity and¥ is any

I at any receiver of link in category is thaof - constant value withX = (63(1 + (%)aﬁ) + 1)y,
I< 6(i)a(1+ (l)a 1 )NOBX (2-3%) Proof: From lemma 2, we know that there can be at
X V3T a—2 (2-3F) most 6 links transmitting to the head node in each cell of
—6(1+ (l)aL)Noﬁ side length3. Each cell of side lengtB* with k£ > 0 covers
V3 -2 at most13 cells of side lengtl3*—! (an illustration is given in
= No(X“=1) Fig. 1(b) and (c)). Therefore, at moéttime slots are needed
So theSINRvalue for any scheduled link with length of for scheduling transmi_ssions in C,?” of side length a_md at
should be most 12 for cells of side length3® (k > 0), to avoid the
P/re NopX© primary interference.
No+1~ No+ No(Xe—1) B As we cover cells of the same size witi X2 + 12X + 7

) o colors, at mostl X 2+12X +7 rounds are needed to schedule
We can conclude that each link transmission is successiijll the cells of the same link length category. Thus at most
under the physical interference model. B 6(%X2+ 12X +7) time slots are needed for scheduling of
Theorem 2 (Correctness ®MN-AS): The centralized\N- all cells with side lengttg®, and 12(§X2 + 12X 4 7) time
AS in Algorithm 3 can construct a data aggregation tresots for cells of side lengtB* (k > 0). Since2-3% > D
and correctly schedule the transmission under the physi¢dde maximum node distance of the network), cells of side
interference model. length 3% can cover the whole network. There can be only
Proof: The algorithm in Algorithm 3 guarantees that eacbne cell of this size, so at mo%® time slots are needed for
node will be removed from the node sEtafter selected for scheduling of its links. In summary, at m<ﬁ{t1—§X2+12X+



Since|V| < n, we haveO(n) links to schedule in each round.

1 ;& 3 The link scheduling algorithm achieves a latencygfog? n)
L with n links [13]. Therefore, the link scheduling latency in
1 1%; each round oNN-ASis O(log” n). ]
M 4 Theorem 4 (Aggregation Latency of CentralizéN-AS):
: ( The aggregation latency for the centralizeédN-AS in
S 1 4 > Algorithm 3 is upper bounded b§ (log® n).

i ; Fig. 5. Node 0 as nearest neighbor
Fig. 4. 7 nodes in a hexagon cell. /=2 "~ - = contradiction Proof: From lemma 5 and lemma 6, we know tiNXI-AS

TV 12(BX2 412X +7)(K —1)+12 = 12(28 X2 4 12X + is executed for at mostogz n] rounds and the link scheduling
K — 35¥2 _ 79X — 30 time slots are needed to scheduldtency in each round _ié)(log2 n). In tg)tal, NN-ASschedules
all transmissions in the data aggregation tree. the data aggregation i@([logz n]log” n) time slots, which

One additional time slot is required to transmit all thés equivalent taO(log” n). u
aggregated data to the sink. Therefore the overall aggoggat Optimal Lower Bound

latency is at mosl2(§X2+12_X+7)K—32X22—72X1— 29 Theorem 5 (Optimal Lower Bound of Aggregation Latency):
Since X is a constant value wittk' = (65(1+(5)*3=5)+ The aggregation latency for th&ILAS problem under any
1)/, we have that the overall aggregation latencyigy). interference model is lower bounded g n.
u Proof: Under any interference model, as a node cannot
Centralized NN-AS transmit and receive at the same time, at n#é%ﬂinks can be
gé:peduled for transmission in one time slot. Since each node
i \
only transmits for exactly once, at mo%/k nodes complete
. . their transmissions in one time slot.
Proof: Fig. 4 gives an example that one node (naye Suppose we neekd time slots to aggregate all the data. We
can be the nearest neighbor®bther nodes. : )
. have [+ ] = 1, and thusk = [logn], i.e., the aggregation
Suppose that a node can be the nearest neighbor of 7 oﬁh(gr 2 . .
S . atency under any interference model is at |dagtn. ]
nodes,e.g, node0 in Fig. 5. Letd;; present the distance . o
. . . As compared to the optimal lower bound, our distributed
between node andj in the figure. We havel < dy and - " oo chieves an approximation ratio ab(K/logn)
dao < dyo, and thus/102 > 2012 and £102 > £021. Since . bp @i/ logn),
/102 + /012 + /021 — 7. we haves/102 > = and the centrallzec.NN—.AS hgs an approximation ratio of
’ =3 O(log® n)/logn, which is equivalent ta)(log® n). Note that

Similarly, we can derive/203 > %, Z304 > 7, £405 > %, . ¢
/506 > T, /607 > T, and £701 > . Therefore/102 + O(K) is betweenO(logn)_and O(n) _based on the detailed
3 3 3 analysis on the range df’ in Appendix A.

£203 + £304 + £405 + £506 + £607 + £701 > %’r > 27,

which is obviously a contradiction. Therefore a node can @ Comparison with Li et al’s Algorithm in [11]

the nearest neighbor of at most 6 nodes. [ ]
Lemma 4:At least 1|V| nodes are removed from node sef,

V' in each round oNN-AS to asLi et al’s algorithm hereinafter), which is the only ex-

Proof: In each round oNN-AS each node; € V'is the jgting work addressing th®ILAS problem under the physical
nearest neighbor to at mostnodes (lemma 3). Then at leastarference model. as far as we are aware of.

one link will be established from or to one of these 7 nodes, Li et al’s algorithm includes four consecutive steps,

and at least one node out of these 7 will be removed from—TopoIogy Center Selectiorihe node with the shortest
V at the end of this round. Therefore at lea$t’| nodes are poyyork radius in terms of hop counts is chosen as the
removed fromV in total. . " ology center.
Lemma 5:The data aggregation tree can be constructed__grg Tree Constructionusing topology center as the root,
with at most[logz n] rounds inNN-AS BFS is executed over the network to build BFS tree.
Proof: From lemma 4, we know at mo${V'| nodes are  __Connected Dominating Set (CDS) ConstructiaiCDS is

left in V' after each round of the algorithm. The algorithngonstructed as the backbone of aggregation tree by anrexisti
terminates when only one node remainsVin Let £ be the approach [18] based on BFS tree.

maximum number of rounds the algorithm is executed. We | ink Scheduling the network is separated into grids

Lemma 3:Each node can be the nearest neighbor of at m
6 other nodes on a plane.

We next analytically compare our distribut€ll-ASwith
e distributed algorithm proposed by Li et al. [11] (reésir

have(gkn] =1, and thusk = [logz n|. B with side lengthl = 6r/v/2, where0 < ¢ < 1 is
Lemma 6:The link scheduling latency in each round ot configuration parameter, which is assigned before execu-
NN-ASis O(log? n). tion, andr is the maximum achievable transmission range

Proof: In each round oNN-AS the number of links to under the physical interference model with constant power
be scheduled is exactly the number of nodes removed fragsignmentP and P]q) = (. The grids are colored with
V,i.e, atleastl|V| (lemma 4). Meanwhile, as each node ca 4BTP-1"" 1 ;

1S db 7 ' <1 O APt % 414 4/2] colors and links are sched-
only be either the transmitter or the receiver in one rouhe, trp((ﬂ) opi “*51\’0) 1 B N
number of links to be scheduled is upper boundediblf|. uled with respect to grid color. Here,= otz %) 4 a5y




Aggregation Latency Fig. 7 is another worst case for et al’s algorithm in which

Li et al’s algorithm solves th&LAS problem inO(A + R) gll nodes reside on thg circle with unit_distance except riode
time slots, whereR is the network radius counted by noddn the center. The radius of the circlesis> 1. So node 1 has
hops andA is the maximum node degree. In the worst casi!® maximum node degrek of n — 1. With respect to latency
either R or A can beO(n). And R = O(logn) in best case. POUNdO(A + R), O(n) time slots are required to complete
Our Cell-ASachieves an aggregation latency®fk ), which 2ggregation witiii et al’s algorithm. o
also equals ta)(n) in the worst case and(logn) in the Meanwhlle, the maximum node d|stanc_e in F|_g. 7 should
best case. Therefore the two algorithms share the same offe¢”- Since the distance between any neighboring nodes on

of worst-case and best-case aggregation latency. the circle is1, we havelim, ..o n —1 = 27r, which leads

to lim, o 2=% = 2r. Then the link diversityX should be

sy

log; 1. So we have the aggregation latency$og n) with
Cell-AS can have an upper bound 6(min{Kn,13"}) Cell-AS which is better tharO(n).

for both computational complexity and message complexity.
Since K = n in worst case, both computational complexity VIl. EMPIRICAL STUDY

and message complexity are at moxn?). We have implemented our proposed distributed algorithm
Li et al's algorithm has a computational complexity ofCell-AS centralized algorithnNN-AS as well asLi et al’s
O(n|E|) and message complexity 6f(n+|E|). As|E| =n®  algorithm, and carried out extensive simulation experiten
in worst casel.i et al’s algorithm’s computational and mes-to verify and compare their efficiency empirically.
sage complexity ar®(n*) andO(n?) respectively. In our experiments, three types of sensor network topolo-
We can have thaCell-AShas a better computational comgies, namelyJniform, PoissonandCluster, are generated with
plexity while sharing the same order of message complexity= 100 to 1000 nodes distributed in a square area46600
with Li et al’s algorithm. More details of the analysis of oursquare meters. The nodes amiformly randomly distributed
algorithm andLi et als algorithm can be found in Appendixin Uniform topologies, and are distributed with tfReisson
B. distribution in Poissontopologies. InCluster topologies [9],
Case Study ne cluster centers are uniformly randomly located in the
square and_> nodes are uniformly randomly distributed
within the disk of radiusrc centered at each cluster center.
We use the same settings as in [8} = 10 andrg = 20, in
our experiments. We séY,, to the same constant valtel as
in [11] (which nevertheless would not affect the aggregatio
latency). The transmission power in our implementatiom.iof
et al’s algorithm is assigned the minimum value to maintain
the connectivity of the respective network, whileis set to
@‘r_@ """ @_' "@ """ @_r_@ 0.6 in compliance with the simulation settings in [11]. Since
2 < a<6andg > 1, we experiment withy set to 3, 4 and 5,
Fig. 6 is a worst case ofi et al’s algorithm. Nodes and g to values between 2 to 20, respectively. All our results

are located along the line with = 1 distance between presenFed are the averagelobo tr_|als.

neighboring nodes. The topology center should be in theecent Ve first compare the aggregation latency among the three
of line which leads taz = 2. According to the latency bound algorithms with dlffere.nt combinations ef and 3 vaIue§ in
O(A + R), Li et al’s algorithm takesO(n) time siots to three types of topologies. The results are presented in&rig.

complete aggregation. ' N .
On the other hand, the maximum node distance in Fig. 6 isF0M our plots in Fig. 8, we observe that wilell-AS
n — 1. So the link length diversityk should belog, =1 algorithm, as expected, the aggregation latency is larggr w

2 " :
According to latency bound)(K), the scheduling latency smaller o, which represents less path loss of power and

should beO(log n) with Cell-AS which is better tharO(n). thus Iarger_interfer_ence from neighbor nodes, and Ia@e_r
corresponding to higher SINR requirement. However, simila

latency performance is observed witiN-ASin Fig. 9, at dif-

@ ferent values oftxr and 8. This shows that network topology is
@ ﬁ the dominant influential factor to aggregation latency -

/ r N\

. r. N

Computational and Message Complexity

We continue with the comparison by showing tiGsll-AS
can outperformii et al’s algorithm in its worst cases. Note
that, without loss of generality, the minimum link lengthsist
to one unit in the following examples.

Topology Center

Fig. 6. An example of worst case fai et al's algorithm.

AS given itsnearest-neighbomechanism in tree construction
' ;ji ‘ and non-linearpower assignment [13] for link scheduling.

/

I

I o ForLi et al.’s algorithm, from Fig. 10,we observe that most

P of the curves produced at differeftvalues are linear lines

@ \QD overlapping onto each other, except in the following caséis w
@ Uniform topologies:3 = 2 whena =4, 3 =2, 8 = 4

Fig. 7. Another example of worst case foret al.s algorithm. and 3 = 6 whena = 5 . The reason behind the linear
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Fig. 8. Aggregation latency fo€ell-ASin different topologies.

(i) a = 5, Cluster
Fig. 9. Aggregation latency foN-ASin different topologies.

overlapping lines is that each grid is scheduled one by ol Poissonand Cluster topologies, the nodes are not evenly

without any concurrency with.i et al’s algorithm in cases distributed, thus requesting a largeto maintain the network
of the Poissonand Clustertopologies, as well as theniform connectivity as well, which leads to a smaller number of grid
topologies with smallen and larger3. The no-concurrency SINce the side length of each griddis/+/2. In these cases, the

phenomenon can be further explained: Since the number BfmPer of required colors in the algorithm, as decidedaby
and g, is larger than the total number of grids in the network

colors is[(—=8T2L"___\& 41+ /2] with [ = 6r//2, P . A
! [(7(A/5)*QP-11(;75N0) +a V2w r/V2 (which is proportional td /r). Therefore, each grid is actually
T = a(l;rfl 2) 4 2”(2_22) and P]Q’; = [ (See Sec. VI.C for scheduled one by one. In comparison, the number of cells in

description ofLi et al.'s algorithm), smallera and larger3 our Cell-ASis only related to the link length diversity but not
lead to a larger number of colors needed. On the other hand,Therefore, our algorithm has much more concurrency of
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Fig. 10. Aggregation latency fdri et al.’s algorithm in different topologies.

link scheduling across different cells, leading to the mdar
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curves.
Fig. 8—10 show that concurrent link scheduling (acrodbat, if the aggregation latency of an algorithm has a higher

different cells/grids) occurs with all three algorithmslyom
four cases in thaJniform topologies: (1)a = 4, 5 = 2; (2)
a=508=2 8 a=5 =4, @4 a =25 08=0=6.
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network settings.
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similar level regardless of the network sizes. The perforrea
of our distributedCell-AS is similar to that ofLi et al’s
algorithm wheren < 200, but becomes up t85% better than
the latter when the network becomes larger.

To obtain a better understanding of the asymptotic perfor-
mance of each algorithm, we further divide the aggregation
latency in Fig. 11 bylog®n, log’n, log®n and log” n,
respectively, and plot the results in Fig. 12 (Since the esirv
are similar in all four cases, we show the results obtained
at o = 4 and § = 2 as representatives). Our rationale is

(lower) order thanO(log" n), its curve in the respective plot
should go up (down) with the increase of the network size,
and a relatively flat curve would indicate that the aggregeti

We next compare the aggregation latencies achieved by tagency is O(log’ n). From Fig. 12(a) and 12(d), we infer
three algorithms in those four cases. Fig. 11 shows that dhat the average aggregation latencyNM-ASandLi et al’s

centralizedNN-ASachieves a much lower aggregation latencglgorithm isO(log” n) andO(log” n), respectively. The curves
as compared to the other two algorithms, which remains atarresponding t&€ell-ASalgorithm slightly go up in Fig. 12(b)
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i i 3 i i i ; Approximation Algorithm for Data Aggregation in Multi-hop/ireless
algorithm in at mosO(log°n) time slots (with approximation Sensor Networksin proceedings of FOWANC'00, May 18, 2009, New

ratio O(log®n)). Our empirical studies under realistic Settings  oyjeans, Louisiana, USA.

further demonstrate that, bo@ell-ASandNN-ASoutperform [21] B. Yu, J. Li and Y. Li, Distributed Data Aggregation Scheduling in

Li et als algorithm in all three topologies tested. Wireless Sensor Networkin proceedings of INFOCOM'09, April 19-
25, 2009, Rio de Janeiro, Brazil.

VIIl. CONCLUDING REMARKS
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Li et al’s algorithm: The message complexity for topology
center selection, BFS tree construction, and CDS congruct
are O(|V| + |E|). We are unable to analyze the message
complexity of the link scheduling phase, as no implemeotati
details are given in the paper [11].

V3
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So K is in O(logn) in the best case.

APPENDIXB
COMPUTATIONAL AND MESSAGE COMPLEXITY OFCell-AS
AND Li et al.”S ALGORITHM

Computational Complexity

Cell-AS has three main function modulesg. neighbor
discovery, head selection, and link scheduling. During the
neighbor discovery in each round, each node carries out
exactly one local broadcast. There arenodes in round)
and at mostmin{n, 13X-*+1} nodes in roundk > 0. So
at mostn + ZkK ,min{n, 135=*1} = min{(K + 1)n,n +
M} local broadcast operations are involvedAn+ 1
rounds. For head selection, the total numbers of location
comparisons to decide the heads in roundnd in round
k > 0 are at most7n and min{13Kn, >, 135-k+1},
respectively, as there are at most 7 nodes in each cell in
round 0 and 13 per cell in roundk > 0. Hence the overall
computational complexity for head selection throughowt th
algorithm is at most7n + min{13Kn, 220301 Simi-

12
larly, link scheduling also has a computational complexity

™ + min{13Kn, %j_l)}. In summary,Cell-AS has an
overall computational complexity a(min{Kn, 135}).

Li et al’s algorithm can be divided into four phases.,
topology center selection, BFS tree construction, coratect
dominating set (CDS) construction, and link scheduling. Fo
topology center selection, the node with the shortest nétwo
radius in terms of hop counts is chosen as the topology center
if the classical Bellman-Ford algorithm is applied to derthe
routing matrix, the complexity for this phased@¥|V||E|). For
BFS tree construction, the complexity @3(|V| + |E|). The
CDS construction phase also has a complexityOdfV| +
|E|). Their link scheduling phase consists of an outer iteration
on the nodes and an inner iteration on the colors. Let the
number of colors bey, the computational complexity in this
phase isO(v|V|). In summary, Li et al.'s algorithm requires
a computational complexity aD(|V|| E]).

Message Complexity

Cell-AS During both neighbor discovery and link schedul-
ing, » nodes in round0 and at mostmin{n, 13X-*+11
nodes in round: send messages to their neighbors. Thus, the
message complexity involved in these two functions are both
min{(K+1)n, n+13(+;<71)}. As head selection is conducted
based on neighbor location information obtained duringinei
bor discovery, its message complexity is 0. He@edl-ASre-

quires an overall message complexity@fmin{Kn, 135}).





