Language Virtualization for Heterogeneous Parallel Computing

Hassan Chafi* Zach DeVito*

Pat Hanrahan*

Adriaan Moors'
Martin Odersky"

Tiark Rompff  Arvind K. Sujeeth*
Kunle Olukotun*

*Stanford University: {hchafi, zdevito, asujeeth, hanrahan, kunle } @stanford.edu
YEPFL: {firstname.lastname } @epfl.ch

Abstract

As heterogeneous parallel systems become dominant, appli-
cation developers are being forced to turn to an incompatible
mix of low level programming models (e.g. OpenMP, MPI,
CUDA, OpenCL). However, these models do little to shield
developers from the difficult problems of parallelization,
data decomposition and machine-specific details. Most pro-
grammers are having a difficult time using these program-
ming models effectively. To provide a programming model
that addresses the productivity and performance require-
ments for the average programmer, we explore a domain-
specific approach to heterogeneous parallel programming.

We propose language virtualization as a new principle
that enables the construction of highly efficient parallel do-
main specific languages that are embedded in a common host
language. We define criteria for language virtualization and
present techniques to achieve them. We present two concrete
case studies of domain-specific languages that are imple-
mented using our virtualization approach.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming — Parallel program-
ming; D.3.4 [Programming Languages]: Processors — Code
generation, Optimization, Run-time environments

General Terms Languages, Performance

Keywords Parallel Programming, Domain Specific Lan-
guages, Dynamic Optimizations

1. Introduction

Until the early 2000s, advances in out-of-order (OOO) su-
perscalar processors provided applications with improved
performance by increasing the CPU core clock frequency
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and the number of instructions per clock cycle (IPC). With
each new generation of processors, software developers were
able to leverage this performance increase to create more
compelling applications without changing their program-
ming model. Furthermore, existing applications also bene-
fited from this performance increase with no extra effort.
The inability of processor vendors to deliver higher perfor-
mance from a single core without exceeding a reasonable
power envelope has brought this so called “free lunch” era
to an end [47].

Power efficiency is now the most dominant design driver
for microprocessors. Power efficient microprocessor design
favors chip-multiprocessors consisting of simpler cores [24,
32] and heterogeneous systems consisting of general pur-
pose processors, SIMD units and special purpose accelerator
devices such as graphics processing units (GPUs) [2,44] and
cryptographic units. Existing applications can no longer take
advantage of the additional compute power available in these
new and emerging systems without a significant parallel pro-
gramming and program specialization effort. However, writ-
ing parallel programs is not straightforward because in con-
trast to the familiar and standard von Neumann model for
sequential programming, a variety of incompatible parallel
programming models are required, each with their own set
of trade-offs. The situation is even worse for programming
heterogeneous systems where each accelerator vendor usu-
ally provides a distinct driver API and programming model
to interface with the device. Writing an application that di-
rectly targets the variety of existing systems, let alone emerg-
ing ones, becomes a very complicated affair.

While one can hope that a few parallel programming ex-
perts will be able to tackle the complexity of developing
parallel heterogeneous software, expecting the average pro-
grammer to deal with all this complexity is simply not realis-
tic. Moreover, exposing the programmer directly to the vari-
ous programming models supported by each compute device
will impact application portability as well as forward parallel
scalability; as new computer platforms emerge, applications
will constantly need to be rewritten to take advantage of any
new capabilities and increased parallelism. Furthermore, the
most efficient mapping of an application to a heterogeneous



parallel architecture occurs when the characteristics of the
application are matched to the different capabilities of the ar-
chitecture. This represents a significant disadvantage of this
approach: for each application and for each computing plat-
form a specialized mapping solution must be created by a
programmer that is an expert in the specific domain as well
as in the targeted parallel architecture. This creates an ex-
plosion and fragmentation of mapping solutions and makes
it difficult to reuse good mapping solutions created by ex-
perts.

1.1 The Need for DSLs

One way to capture application-specific knowledge for a
whole class of applications and simplify application devel-
opment at the same time is to use a domain specific language
(DSL). A DSL is a concise programming language with a
syntax that is designed to naturally express the semantics
of a narrow problem domain [49]. DSLs, sometimes called
“little languages™ [4] or “telescoping languages” [29], have
been in use for quite some time. In fact, it is likely that most
application developers have already used at least one DSL.
Examples of commonly used DSLs are TeX and LaTeX for
typesetting academic papers, Matlab for testing numerical
linear algebra algorithms, and SQL for querying relational
databases.

One can also view OpenGL as a DSL. By exposing an in-
terface for specifying polygons and the rules to shade them,
OpenGL created a high-level programming model for real-
time graphics decoupled from the hardware or software used
to render it, allowing for aggressive performance gains as
graphics hardware evolves. Even the Unix shell can be con-
sidered a DSL that provides a command-line interface to un-
derlying operating system functions such as file and process
management. The use of DSLs can provide significant gains
in the productivity and creativity of application developers,
the portability of applications, and application performance.

The key benefits of using a domain-specific approach for
enhancing application performance are using domain knowl-
edge for static and dynamic optimizations of a program writ-
ten using a DSL and the ability to reuse expert knowledge
for mapping applications efficiently to a specialized archi-
tecture. Most domain specific optimizations would not be
possible if the program was written in a general purpose lan-
guage. General-purpose languages are limited when it comes
to optimization for at least two reasons. First, they must pro-
duce correct code across a very wide range of applications.
This makes it difficult to apply aggressive optimizations—
compiler developers must err on the side of correctness. Sec-
ond, because of the general-purpose nature needed to sup-
port a wide range of applications (e.g. financial, gaming, im-
age processing, etc.), compilers can usually infer little about
the structure of the data or the nature of the algorithms the
code is using. In contrast, DSL compilers can use aggressive
optimization techniques using knowledge of the data struc-
tures and algorithms derived from the DSL. This makes it

possible to deliver good performance on heterogeneous ar-
chitectures using DSLs.

Using DSLs naturally divides the application develop-
ment process into two phases. First, a DSL developer designs
a DSL for a specific domain. Then, a much larger number of
domain experts make use of the DSL to develop applica-
tions. The ideal DSL developer would be a domain expert,
a parallelism expert, and a language and compiler expert.
Such developers are rare and so there is a need to simplify
the process of developing DSLs for parallelism.

Traditionally, DSLs have been developed from the ground-
up using custom compiler infrastructure. This is called the
“external DSL approach”. There are two problems with this
approach to DSLs. First, developing these new languages to
a sufficient degree of maturity is an enormous effort. This
investment would have to include not just language specifi-
cations and construction of their optimizing compilers and
libraries, but also all the other aspects of modern tooling
including IDEs, debuggers, profilers, build tools as well as
documentation and training. It is hard to see how such an
investment can be made repeatedly for each specialized do-
main. Second, DSLs do not exist in a vacuum but have to
interface to other parts of a system. For instance, a climate
simulation program could have a visualization component
that is based on a graphics DSL. It is not clear how multiple
separate DSLs would inter-operate without creating a new
DSL that integrates the desired combination of the others.

1.2 Embedded DSLs and Language Virtualization

Embedded DSLs [23] overcome the problems with external
DSLs and make DSL development more tractable. An em-
bedded DSL lives inside of a host language. It is quite like
a framework or a library, consisting of a set of classes and
operations on objects of those types. There are several ad-
vantages to using embedded DSLs for application writers.
First, programmers do not have to learn a completely new
syntax. Second, multiple DSLs can be combined in the same
application. Third, the DSL infrastructure can be shared be-
tween different DSLs and DSL developers will all use the
same infrastructure for building their DSLs.

The main problem with embedded DSLs is that they can-
not exploit domain knowledge to efficiently map programs
to specialized architectures because they live inside a gen-
eral purpose language. There is no obvious solution to this
problem apart from replicating much of the effort of build-
ing a stand-alone DSL implementation. To overcome this
problem, we need embedding languages that are particularly
suited to the task of serving as a host language to DSL imple-
mentations. A language with this capability supports what
we call language virtualization. A language is virtualizable
if and only if it can provide an environment to embedded lan-
guages that makes them essentially identical to correspond-
ing stand-alone language implementations in terms of
(1) expressiveness — being able to express a DSL in a way
which is natural to domain specialists,
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Figure 1. An environment for domain-specific programming of heterogeneous parallel architectures using language virtual-

ization.

(2) performance — leveraging domain knowledge to pro-
duce optimal code, and

(3) safety — domain programs are guaranteed to have cer-
tain properties implied by the DSL,

(4) while at the same time requiring only modestly more
effort than implementing a simple embedding. A subset of
these features has been achieved before — most notably by
Lisp, as much as 50 years ago. However, we believe we are
the first to provide all of them. Section 6 provides a de-
tailed comparison with related work. We discuss the means
to achieve all of these features at once in more detail in Sec-
tion 2.

There is a close analogy between language virtualiza-
tion and hardware virtualization using virtual machines. In
data-centers, it is often desirable to have a range of differ-
ently configured machines at one’s disposal (for provision-
ing, fault-tolerance, and isolation), but usually it is not feasi-
ble or even desirable to operate a corresponding number of
physical machines. Hardware virtualization solves this prob-
lem by embedding a number of specific virtual machines
on a general-purpose host machine. A key aspect of virtual
hardware resources is that they are practically indistinguish-
able from their real counterparts. We believe the same should
be true for an embedded DSL, in the sense that it should ex-
hibit the same expressiveness, performance and safety as if a
specialized language tool chain had been tailor-made for the
particular DSL.

This paper describes key elements of an ongoing ef-
fort to virtualize the language Scala [1] and how language
virtualization can be used in a domain-specific program-
ming environment for heterogeneous parallel computers.
The components of this environment are shown in Fig. 1.
The environment is composed of four main components:
Applications composed of multiple DSLs, DSLs (e.g. Liszt

and OptiML) embedded in Scala using language virtualiza-
tion, a Scala-based compiler infrastructure that can perform
domain-specific optimizations and a framework and runtime
for DSL parallelization and mapping to heterogeneous ar-
chitectures.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the notion of language virtualization in more
detail and discusses key elements of virtualizing Scala. The
next two sections describe how language virtualization can
be used to develop two very different DSLs. Section 3 intro-
duces Liszt, a DSL for scientific simulation that statically
generates parallel code in C++. Section 4 introduces Op-
tiML, a DSL for machine learning and data analysis. Sec-
tion 5 describes Delite, a framework that simplifies DSL par-
allelization. Section 6 presents the related work for parallel
programming, DSLs and language virtualization. Section 7
concludes.

2. Language Virtualization

We propose the following definition of language virtualiza-
tion to capture necessary conditions for a general purpose
language to serve as a successful embedding environment
for DSLs:

Definition. A programming language is virtualizable with
respect to a class of embedded languages if and only if it can
provide an environment to these embedded languages that
makes the embedded implementations essentially identical
to corresponding stand-alone language implementations in
terms of expressiveness, performance and safety—with only
modestly more effort than implementing the simplest possi-
ble complete embeddings.



Expressiveness encompasses syntax, semantics and, in
the case of domain-specific languages, general ease of use
for domain experts. Just as virtual hardware resources are
not exactly identical to real ones, we do not require that an
embedded language can exactly model the syntax of a stand-
alone language but settle for a syntax that is essentially the
same, i.e. modulo syntactic sugar. The same consideration
applies to the other criteria as well.

Performance implies that programs in the embedded lan-
guage must be amenable to extensive static and dynamic
analysis, optimization, and code generation, just as programs
in a stand-alone implementation would be. For many em-
bedded languages, in particular those that are the focus of
this paper, this rules out any purely interpretation-based so-
lutions.

Safety means that the embedded implementation is not
allowed to loosen guarantees about program behavior. In
particular, host-language operations that are not part of the
embedded language’s specification must not be available to
embedded programs.

Modest effort is the only criterion that has no counter-
part in hardware virtualization. However, it serves an impor-
tant purpose since an embedded language implementation
that takes a DSL program as a string and feeds it into an ex-
ternal, specialized stand-alone compiler would trivially sat-
isfy criteria expressiveness, performance and safety. Build-
ing this implementation, however, would include the effort
of implementing the external compiler, which in turn would
negate any benefit of the embedding. In a strict sense, one
can argue that virtualizability is not a sufficient condition
for a particular language being a good embedding environ-
ment because the “simplest possible” embedding might still
be prohibitively expensive to realize.

2.1 Achieving Virtualization

What does it take to make a language virtualizable in prac-
tice? Various ways of fulfilling subsets of the requirements
exist, but we are unaware of any existing language that ful-
fills all of them. The “pure embedding” approach [23] of im-
plementing embedded languages as pure libraries in a mod-
ern host language can likely satisfy expressiveness, safety
and effort if the host language provides a strong static type
system and syntactic malleability (e.g. custom infix opera-
tors). Achieving performance in addition, however, seems
almost impossible without switching to a completely differ-
ent approach.

Expressiveness We can maintain expressiveness by over-
loading all relevant host language constructs. In Scala, for
example, a for-loop such as

for (x <- elems if x % 2 == 0) p(x)
is defined in terms of its expansion

elems.withFilter(x => x % 2 == 0)
.foreach(x => p(x))

Here, withFilter and foreach are higher-order methods that
need to be defined on the type of elems. By providing suit-
able implementations for these methods, a domain-specific
language designer can control how loops over domain col-
lections should be represented and executed.

To achieve full virtualization, analogous techniques need
to be applied to all other relevant constructs of the host
language. For instance, a conditional control construct such
as

if (cond) something else somethingElse

would be defined to expand into the method call

__ifThenElse(cond, something, somethingElse)

where __ifThenElse is a method with two call-by-name pa-
rameters:

def __ifThenElse[T]
(cond: Boolean, thenp: => T, elsep: => T)

Domain languages can then control the meaning of con-
ditionals by providing overloaded variants of this method
which are specialized to domain types.

In the same vein, all other relevant constructs of the host
language need to map into constructs that are extensible by
domain embeddings, typically through overloading method
definitions.

Performance As we have argued above, achieving perfor-
mance requires the ability to apply extensive (and possi-
bly domain-specific) optimizations and code generation to
embedded programs. This implies that embedded programs
must be available at least at some point using a lifted, AST-
like intermediate representation. Pure embeddings, even if
combined with (hypothetical) powerful partial evaluation as
suggested in [23], would not be sufficient if the target archi-
tecture happens to be different from the host language target.
What is needed is essentially a variant of staged metapro-
gramming, where the embedded “object” program can be
analyzed and manipulated by a “meta” program that is part
of the embedding infrastructure. However, any DSL will also
contain generic parts, some of which will be host language
constructs such as function definitions, conditionals or loops.
These must be lifted into the AST representation as well.

This ability to selectively make constructs ‘liftable’ (in-
cluding their compilation) such that they can be part of
(compiled) DSL programs while maintaining expressive-
ness, safety and effort is an essential characteristic of vir-
tualizable languages.

Modest Effort However, having to implement the lifting
for each new DSL that uses a slightly different AST rep-
resentation would still violate the effort criterion. Using an
existing multi-stage language such as MetaOCaml [20, 48]
would also likely violate this criterion, since the staged
representation cannot be analyzed (for safety reasons we
will consider shortly) and any domain-specific optimizations
would require effort comparable to a stand-alone compiler.



Likewise, compile-time metaprogramming approaches such
as C++ templates [50] or Template Haskell [43] would not
achieve the goal, since they are tied to the same target archi-
tecture as the host language and their static nature precludes
dynamic optimizations (i.e. recompilation). What is needed
here is a dynamic multi-stage approach with an extensible
common intermediate representation (IR) architecture. In
the context of Scala, we can make extensive use of traits
and mixin-composition to provide building blocks of com-
mon DSL functionality (API, IR, optimizations, code gener-
ation), including making parts of Scala’s semantics available
as traits. This approach, which we call lightweight modular
staging [39], is described below and allows us to maintain
the effort criterion. A key element is to provide facilities to
compile a limited range of Scala constructs to architectures
different from the JVM, Scala’s primary target.

Safety There are two obstacles to maintaining safety. The
first is to embed a typed object language into a typed meta
language. This could be solved using a sufficiently powerful
type system that supports an equivalent of GADTs [34, 42]
or dependent types [33]. The second problem is that with a
plain AST-like representation, DSL programs can get access
to parts of their own structure. This is unsafe in general and
also potentially renders optimizations unsound. Fortunately,
there is a technique known as finally tagless [8] or polymor-
phic embedding [22] that is able to solve both problems at
once by abstracting over the actual representation used.

The combination of lightweight modular staging and
polymorphic embedding provides a path to virtualize Scala
and actually maintains all four of the criteria listed in the
definition of language virtualization.

2.2 Virtualization in Practice

We illustrate our approach of virtualization through lightweight

modular staging and polymorphic embedding by means of
the following very simple linear algebra example.

trait TestMatrix { this: MatrixArith =>
//requires mixing-in a MatrixArith implementation
//when instantiating TestMatrix
def example(a: Matrix, b: Matrix,
c: Matrix, d: Matrix) = {
val x = axb + axc
val v = a*c + axd
println(x+y)
}
}

The embedded DSL program consists of the example method
in the trait TestMatrix. It makes use of a type Matrix which
needs to be defined in trait MatrixArith. The clause

this: MatrixArith =>

in the first line of the example is a self-type annotation [31];
it declares the type of this to be of type MatrixArith, in-
stead of just TestMatrix, which it would be if no annota-
tion was given. The annotation has two consequences: First,

all MatrixArith definitions are available in the type of the
environment containing the example method, so this effec-
tively constitutes an embedding of the DSL program given
in example into the definitions provided by MatrixArith. Sec-
ond, any concrete instantiation of TestMatrix needs to mix-
in a concrete subclass of the MatrixArith trait, but it is not
specified which subclass. This means that concrete DSL pro-
grams can be combined with arbitrary embeddings by choos-
ing the right mix-in.

Using lightweight staging we can reason about the high-
level matrix operations in this example and reduce the num-
ber of matrix multiplications from four to a single multipli-
cation. Optimizing matrix operations is one of the classic ex-
amples of the use of C++ expression templates [50,51] and
is used by many systems such as Blitz++ [52], A++ [36,37],
and others. We do not have to change the program at all, but
just the way of defining Matrix.

Here is the definition of matrix operations in MatrixArith:

trait MatrixArith {
type Rep[T]
type InternalMatrix
type Matrix = Rep[InternalMatrix]

// allows infix(+,*) notation for Matrix
implicit def matArith(x: Matrix) = new {
def +(y: Matrix) = plus(x,y)
def *(y: Matrix) = times(x,y)
}
def plus(x: Matrix, y: Matrix): Matrix
def times(x: Matrix, y: Matrix): Matrix

}

There is nothing in the definition of MatrixArith apart
from the bare interface. The definition Rep[T] postulates
the existence of a type constructor Rep, which we take
to range over possible representations of DSL expres-
sions. In the staged interpretation, an expression of type
Rep[T] represents a way to compute a value of type T.
The definition of InternalMatrix postulates the existence
of some internal matrix implementation, and the definition
Matrix = Rep[InternalMatrix] denotes that Matrix is the
staged representation of this not further characterized in-
ternal matrix type. The remaining statements define what
operations are available on expressions of type Matrix.

Since we have not defined a concrete representation, we
say that the example code, as well as the definitions of ma-
trix arithmetic operations, are polymorphic in the chosen
representation, and hence, we have polymorphically embed-
ded [22] the language of matrix arithmetic operations into
the host language Scala. We also note that the embedding is
tagless [8], i.e. resolution of overloaded operations is based
on static types and does not require dispatch on runtime val-
ues. If the representation is abstract, in what way does that
help? The answer is that we gain considerable freedom in
picking a concrete representation and, perhaps more impor-
tantly, that the chosen representation is hidden from the DSL
program.



To implement the desired optimizations, we will use ex-
pression trees (more exactly, graphs with a tree-like inter-
face), which form the basis of our common intermediate rep-
resentation that we can use for most DSLs:

trait Expressions {
// constants/symbols (atomic)
abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Sym[T](n: Int) extends Exp[T]

// operations (composite, defined in subtraits)
abstract class Op[T]

// additional members for managing

// encountered definitions

def findOrCreateDefinition[T](op: Op[T]): Sym[T]

implicit def toExp[T](d: Op[T]): Exp[T] =

findOrCreateDefinition(d)

object Def { // pattern-match on definitions
def unapply[T](e: Exp[T]): Option[Op[T]] = ...

}

}

This expression representation will do a number of useful
bookkeeping tasks for us, among them automatic elimina-
tion of common sub-expressions and, more generally, pre-
venting any expression from being generated twice (e.g.
we would only need to compute axc once in our exam-
ple). The implementation of this bookkeeping is in method
findOrCreateDefinition, which can be overridden by the
DSL designer to further customize the building of the AST.
Now we pick Rep[T] = Exp[T] and introduce suitable case
classes to represent the different node types in our expres-
sion tree. We also have to provide a dummy implementation
of InternalMatrix:

trait MatrixArithRepExp extends MatrixArith
with Expressions {
//selecting expression tree nodes representation
type Rep[T] = Exp[T]
trait InternalMatrix

//tree node classes
case class Plus(x: Matrix, y: Matrix)
extends Op[InternalMatrix]
case class Times(x: Matrix, y: Matrix)
extends Op[InternalMatrix]
def plus(x: Matrix, y: Matrix) = Plus(x, V)
def times(x: Matrix, y: Matrix) = Tiems(x, V)

}

While we are able to eliminate redundant computation and
thus optimize the example, the true power of using domain
specific language is our ability to use domain knowledge to
perform optimizations. In this case, we can use our knowl-
edge of matrix operations to rewrite some of our expressions
into more efficient forms. Implementing these rewritings is
very simple using the framework we have developed so far.
All we have to do is override the corresponding operations
in one of the traits:

trait MatrixArithRepExpOpt
extends MatrixArithRepExp {
override def plus(x: Matrix, y: Matrix) =
(x, y) match {
// (AB + AD) == A = (B + D)
case (Def(Times(a, b)), Def(Times(c, d)))
if (a == c¢) => Times(a, Plus(b,d))
case _ => super.plus(x, V)
// calls default plus() if no match
}
}

Instantiating our example with

object MyMatrixApp extends TestMatrix
with MatrixArithRepExpOpt

constructs an object that generates an optimized version of
our example code. It automatically rewrites the sum of mul-
tiplications into a single multiplication of a sum of matrices:

a*(b+c+c+d

We assume the println operation to be overloaded such that
it will compile and execute its argument if it is invoked with
a staged expression.

The use of domain knowledge in this case yields a
tremendous amount of reduction in required computation.
This was achieved only using a library with the power
of polymorphic embedding and staging, without having to
change or create a custom compiler. Note that while we have
only shown a simple mechanism for defining optimizations
through transformation on operators, much more sophisti-
cated analyses and optimizations are possible by iterating
through the entire AST of the program as opposed to one
node at time. Liszt, a DSL for mesh-based partial differen-
tial equations (PDEs), uses this full-program optimization
approach to enable large-scale parallel execution.

3. Physical Simulation with Liszt

Simulation underlies much of scientific computing. The goal
of Liszt is to express simulations at a high-level, independent
of the machine platform. Liszt is inspired by the pioneering
work of others to develop libraries, frameworks and DSLs
for scientific computing, including the SIERRA Framework
[46], Overture [6], POOMA [38], Sundance/Trilinos [21],
and many others.

A major goal of the Stanford University PSAAP Center
is to develop a predictive simulation of a hypersonic vehi-
cle. More specifically, the goal of the Stanford Center is to
characterize the operability limits of a hypersonic propulsion
system using predictive computations, with a primary focus
on the unstart phenomena triggered by thermal choking in a
hydrogen-fueled scramjet.

To perform these simulations, the center is developing
software, called Joe, to solve for the air-flow through the
scramjet in the presence of shock waves. Joe solves a RANS
(Reynolds-Averaged Navier Stokes) problem on unstruc-
tured meshes in the steady and non-steady state using the



finite-volume method. Joe has been ported to several clus-
ters and shows scalable performance to 1,000s of processors.
The scalable version is based on MPI, and has evolved from
the code used to simulate a jet engine.

Working with the developers of Joe, we have designed
Liszt to abstract the machine-dependent parts of the pro-
gram, allowing us to target Liszt to many architectures. Here
is a fragment of Liszt code performing a simple scalar con-
vection operation.

val Flux = new Field[Cell,Float]

val Phi = new Field[Cell,Float]

val cell_volume = new Field[Cell,Float]
val deltat = .001

while(<not converged>) {
for(f <- interior_faces) {
val flux = calc_flux(f)
Flux(inside(f)) -= flux
Flux(outside(f)) += flux
}
for(f <- inlet_faces) {
Flux(outside(f)) += calc_boundary_flux(f)
}
for(c <- cells(mesh)) {
Phi(c) += deltat * Flux(c) /
cell_volume(c)
}
for(f <- faces(mesh))
Flux(f) = 0.f
}

Liszt is designed to abstract the low-level details of mesh-
based codes while leaving the application writer enough
freedom to implement whatever simulation scheme they
need. The language itself contains most of the features of
a C-like subset of Scala with three additional domain spe-
cific constructs: a built-in mesh interface, the ability to store
data on the mesh through fields or sparse matrices, and a
for-comprehension over sets of mesh topology that maps
computation over the mesh.

The mesh interface abstracts the details of an unstruc-
tured mesh that can contain elements of arbitrary types. Liszt
meshes are 3D manifolds in 3D space, and hence contain
vertices, edges, faces, and cells (the volume enclosed by
faces). Liszt provides a complete interface to the mesh topol-
ogy. For example, a user can obtain sets of mesh elements
such as faces(mesh), the set of all faces in the mesh, or for a
particular face f, edges(£), the set of edges around the face.
User-defined sets of mesh topology are also available. In the
example, interior_faces and inlet_faces are user-defined
sets representing the interior of the mesh and a particular
boundary condition, respectively.

Codes in the domain often need to represent continuous
functions over space. Liszt provides fields to represent these
continuous functions given by basis functions associated
with values defined on cells, faces, edges and vertices of
the mesh. Fields are also abstracted and accessed through
methods so that their internal representation is not exposed.

Accessing a field with a vertex returns the value of the field
basis coefficient at that vertex; accessing a field with a set
of vertices returns a set of values. Sparse matrices are also
provided to support implicit methods. Like fields, sparse
matrices are indexed by pairs of topological elements, not
integers. Various solvers such as HYPRE [11] and PETSC
[3] are built-in to the system.

Finally, a for-comprehension maps computation to each
member of a particular topological set. The statement

for(f <- cells(mesh)) <block>

will execute <block> for each cell in cells(mesh). The lan-
guage definition stipulates that the individual <block>s may
be executed independently. These semantics give Liszt the
freedom to parallelize for-comprehensions and schedule
them arbitrarily.

In addition to these special features, Liszt also imposes a
set of domain assumptions. Liszt expects that the body of a
for-comprehension operates locally on the mesh, accessing
a limited neighborhood around the top-level element. Fur-
thermore, Liszt requires that the topology of the mesh re-
main constant for the duration of the program. These domain
assumptions allow the DSL implementor to make aggres-
sive optimizations that would otherwise not be possible, and
since these assumptions generally fit they way people write
codes in this domain, they do not hamper the expressibility
of the language.

This code appeals to the computational scientists because
it is written in a form they understand; it also appeals to
the computer scientists because it hides the details of the
machine and exposes opportunities for parallel execution.

Liszt takes advantage of the language virtualization fea-
tures that Scala provides to enable aggressive domain-
specific optimizations. Using the technique of polymorphic
embedding presented previously, Liszt code is lifted into
an internal representation, where a series of program anal-
yses and aggressive domain-specific optimizations are per-
formed. The result is a native C++ program that can run
efficiently on an MPI-based cluster. A different set of trans-
formations is being developed that allows us to target Liszt
to a GPU.

While it would be possible to write a version of Liszt in
Scala without any embedding, a simple library-based im-
plementation of Liszt could not achieve good scalable per-
formance. Consider the first for-comprehension in the ex-
ample. The body of the for-comprehension adds the value
of flux to the field entries for the two cells on the sides of
face f. Since each cell is surrounded by many faces, multi-
ple instances of the statement body end up writing data to
flux value of the same cell. To avoid race conditions in this
situation, an implementation of Liszt must introduce some
form of synchronization. A naive solution might use locking
or atomic primitives to update the values of the Flux field.
While this would perform correctly, it introduces high over-
heads to these frequently occurring operations, and would



not work for distributed memory systems. Instead, the com-
monly used approach in the field is to decompose the do-
main by partitioning the mesh into many pieces and assign-
ing each piece to a single thread. Now synchronization only
needs to occur on the borders between partitions. This syn-
chronization is normally accomplished using “ghost” cells.
If a particular thread needs to write to a value outside of
its partition, it will create a duplicate entry, a “ghost”, that
will hold the partial values that the thread produces for that
value, and these temporaries will be sent to the owner of
the value only after the end of the for-comprehension. This
strategy decreases communication overhead by batching the
messages to other threads. It has been used successfully by
Joe to show scalable performance to 1,000s of processors.

However, efficient approaches like the one described
above traditionally need to be explicitly managed by the end-
user. Code to partition the mesh into many sections, manage
the ghost-cells, set up communication between threads, and
perform batched messages would need to be inserted to en-
sure the program would scale. For Joe, this boilerplate code
and the libraries needed to support it account for nearly 80%
of the code. Furthermore, if a different parallelization strat-
egy were to be applied, the client code would need to be
significantly modified to support it.

Liszt uses language virtualization to avoid these issues.
The client code does not specify a strategy for paralleliza-
tion. Instead, Liszt first creates an intermediate representa-
tion of a client program. It then uses domain knowledge to
map the intermediate representation to heterogeneous paral-
lel computers. We have identified several situations where
this domain knowledge enables aggressive code transforma-
tions, allowing for automatic parallelization.

e Automatically perform domain decomposition. In
Liszt, all mesh accesses are performed through a stan-
dard mesh interface. The Liszt compiler analyzes the
pattern of access to neighbors and provides input to
the domain decomposition software. In particular, Joe
uses ParMETIS [28] to perform domain decomposition.
ParMETIS reads a graph of vertices and edges. The ver-
tices of the graph are mesh cells and the edges are neigh-
boring mesh elements accessed during the computation.
Liszt can create this graph automatically for ParMETIS,
which is then able to decompose the mesh into optimal
domains. All this is done automatically by the system.

Automatic determination and maintenance of ghost
cells. The same neighborhood analysis used to partition
the domain can be used to determine which neighboring
mesh elements are shared across a boundary. Liszt auto-
matically finds the neighbors of a domain, and handles all
communication and synchronization across the bound-
aries of the domain. This very domain-specific knowl-
edge is crucial for minimizing communication in Liszt
programs on distributed memory clusters.

¢ Selection of mesh representation. Again, because the
mesh topology is accessed through standard APIs, Liszt
can analyze those API calls to determine what neighbor-
hood relationships are used by the program. Liszt can
build a table of what neighborhood relationships are be-
ing used, and choose the best mesh representation for
the application. In effect, Liszt chooses the optimal mesh
data structure.

e Optimize layout of field variables. A major design
choice is how to represent fields. Fields are associated
with mesh elements. In general, there will be a set of
fields stored on cells, on vertices, etc. There are two ways
to represent these fields. The most natural is as an array of
structures. That is, the cell contains a structure that stores
all the fields associated with the cell. Another choice is
as a structure of arrays. That is, each field is stored in a
separate array. Which representation to use depends on
how and when the fields are used, and on the machine
architecture. Liszt can analyze the program for co-usage
of fields and then optimally map to a given architecture.

All of these examples depend on domain-knowledge. In
this case, knowledge about meshes and fields. No general-
purpose compiler could possibly do these types of optimiza-
tions. After these transformations are applied, Liszt can gen-
erate code for a specific runtime. Currently a MPI-based
cluster runtime exists with a CUDA-based GPU runtime in
progress. We eventually plan to unite the two runtimes, al-
lowing Liszt to target a heterogeneous system consisting of
some traditional cluster nodes each accelerated with GPUs.

While it would be possible to write Liszt as a stand-alone
language, embedding it as a virtual language inside Scala has
several important advantages. Since it uses the same syntax
and typing rules as standard Scala, it is easy for someone
who knows Scala to understand and create Liszt code. IDE
and tool support for Scala also works on Liszt code, making
it easier to use than a stand-alone language. Furthermore,
Liszt can also benefit from the staged computation that a
virtualized language provides. In many scientific codes, the
programmer can make a tradeoff between using a low-order
(e.g linear) basis function to get a fast reconstruction of a
field, or a higher-order basis function to get a more accu-
rate reconstruction at the cost of additional computation and
memory access. Often a solution may contain bases of mixed
orders, with higher-order bases chosen for important parts of
the mesh. This determination of the basis functions normally
occurs during program initialization, but is constant after it
has been chosen. Since the order of basis functions can de-
termine the way the fields are accessed and the sparsity pat-
terns of the matrices, it is beneficial to know this information
before choosing field or matrix layouts. Using staged com-
putation, Liszt can first generate code to compute the order
of basis functions and then use the resulting values as in-
put into the next stage of compilation, specializing the code



to the particular assignment of basis functions that the first
stage produced.

Through language virtualization, Liszt is able to perform
the strong optimizations of a stand-alone domain-specific
language without the need for a new language and compiler
infrastructure. In the future this approach offers the ability
to interoperate with other DSLs as well as share a common
infrastructure for program analysis and code generation for
heterogeneous architectures.

4. Data Analysis and Machine Learning with
OptiML

The second example of the use of language virtualization is
for the implementation of OptiML, a DSL for machine learn-
ing. Machine Learning (ML) algorithms are becoming in-
creasingly prevalent in a variety of fields, including robotics,
data analytics, and bioinformatics. Machine learning appli-
cations are often used to process and find structure within
very large datasets or from real-time data sources. These
workloads often require great computational resources, even
with efficient algorithms. To meet these computational needs
effectively, much painstaking effort has been focused on
taking advantage of modern multi-core and heterogeneous
hardware [12,19]. However, these solutions are usually com-
plex, platform-dependent, and require significant initial in-
vestment to understand and deploy. As a result, ML re-
searchers and developers spend a disproportionate amount
of their time hand-tuning kernels for performance, a process
that has to be repeated for every kernel and every platform.
An ML DSL, on the other hand, could leverage the under-
lying abstractions that are common across many ML algo-
rithms to simplify the way that paralle]l ML applications are
developed. To take advantage of these and speed up the de-
velopment of parallel ML applications, we are developing
the OptiML DSL.

The primary design goal of OptiML is the development
of implementation-independent abstractions that capture the
essential operations in machine learning. Using machine-
independent representations, machine learning developers
can focus on algorithmic quality (i.e. improving accuracy)
and correctness while allowing the runtime system to man-
age performance and scaling. OptiML is implicitly parallel,
so users are not required to do any explicit decomposition or
parallelization.

The following code snippet from k-means clustering is
an example of what an OptiML program looks like prior to
compilation:

TestSet(inputFile)
BestEffortVector[Int](m)

val x
val c

// number of clusters

val k = 10

// number of data points

val m = x.numRows

// k randomly initialized cluster centroids

val mu : Vector[Double] = initializeClusters(x)

c.setPolicy(ConvergingBestEffortPolicy(m))

until converged(mu) {
// best effort update c --
// calculate distances to current centroids
for (i <- 0 until x.length) {
c(i) = findNearestCluster(x(i), mu)

3

// update mu -- move each cluster centroid
// to mean of the points assigned to it
for (j <- 0 until k){
var (weightedpoints, points) = sum(0,m) { i =>
if (c(i) == j) (x(i), 1) else (0,0)
}
mu(j) = weightedpoints/points

The OptiML surface syntax is regular Scala code with
high-level, domain specific abstractions introduced to make
implementing ML algorithms easier. Underneath, how-
ever, OptiML is polymorphically embedded in Scala. The
user program implicitly operates on abstract representations
whose implementations can be chosen at stage time with-
out modifying the application code. Like Liszt, virtualiza-
tion allows OptiML to lift user applications into an internal
representation. During staging, OptiML performs domain-
specific analyses and transformations on this internal repre-
sentation. At run-time, OptiML further attempts to optimize
program execution using domain-specific optimizations that
could not be applied statically. Before describing these op-
timizations, we first note the domain-specific characteristics
that OptiML tries to exploit.

Most ML algorithms perform basic operations on vectors
and matrices. Fundamental operations include summation,
maximization and minimization, especially in the context of
convex optimization. Many of the algorithms expose paral-
lelism at multiple levels of granularity; most have coarse-
grained data parallelism (e.g. k-means) while others have
only a small amount of work per data sample (e.g. linear re-
gression). Several algorithms (logistic regression (LR), sup-
port vector machines (SVM), reinforcement learning) per-
form gradient descent on some objective function, iterating
until they converge. This usually results in running the same
kernel repeatedly on the same dataset many times. Many ML
datasets (training sets) are very large, bound only by the ex-
ecution time required for training; usually algorithm perfor-
mance is limited by the available memory bandwidth due to
low arithmetic intensity. The datasets typically have some
exploitable structure; the most common are audio, image,
or video data. Furthermore, these datasets may contain large
amounts of redundancy (e.g., network traffic) that can be ex-
ploited to reduce total computation [9]. Finally, many ML
algorithms are probabilistic in nature and are robust to ran-
dom errors such as dropped or incorrect computations.



These observations lead to the following proposed domain-
specific optimizations for OptiML programs. We group them
by whether they are applied during staging-time (statically)
or run-time (dynamically).

Optimizations done at staging-time include:

¢ Transparent compression: We plan to explore the pos-
sibility of opportunistically compressing OptiML data
structures before transferring to or from heterogeneous
computing devices. While there is significant overhead
to compression, several aspects of ML discussed previ-
ously make this a candidate for a winning trade-off: large
datasets, low arithmetic intensity, and compressible data
types (images, audio, video). In practice, most ML al-
gorithms are bound by memory bandwidth, so on-the-fly
compression could significantly decrease the total execu-
tion time when using heterogeneous devices. Stage-time
analysis can generate code paths with explicit compres-
sion and decompression for large inputs.

¢ Device locality: OptiML will use stage-time information
about object lifetime and arithmetic intensity to deter-
mine the target device for individual kernels. Further-
more, when a dataset is iterated over multiple times for
different operands, clever scheduling can interleave the
memory accesses to improve cache utilization.

e Choice of data representation: OptiML will generate
code for multiple input-dependent data implementations
(e.g. sparse and dense matrices), allowing the developer
to use simple high-level representations (e.g. Matrix) that
have identical semantics without worrying about the per-
formance impact. OptiML will also use program analysis
to choose the best representation for particular kernels,
and can insert conversions from one implementation to
another when it is likely to be beneficial to do so.

Optimizations done at run-time include:

¢ Best-effort computing: for some datasets or algorithms,
many operations are not strictly required, and can be
executed with “best-effort” semantics. This allows the
OptiML programmer to signal to the runtime that it can
drop certain data inputs or operations that are especially
expensive if it is already under heavy load.

¢ Relaxed dependencies: it is sometimes possible to trade-
off a small degree of accuracy for a large gain in effi-
ciency, especially when dealing with large datasets. This
implies that some dependencies, such as parameter up-
dates (especially across loop iterations), can be relaxed
to varying degrees. By defining the strictness of a depen-
dency, the OptiML user can choose the trade-off between
exposing additional parallelism and increasing accuracy.
The runtime will then dynamically decide to drop depen-
dencies if it is advantageous to do so under the current
workload.

In addition to the optimizations described here, OptiML
must eventually generate parallel code targeted at heteroge-
neous machines. This is enabled by Delite, the framework
and runtime that OptiML is being built on top of. We intro-
duce Delite in the next section.

5. DSL Parallelization with Delite

In the Liszt example, Liszt explicitly maps programs to
heterogeneous platforms by directly generating code written
in lower level programming models such as CUDA and MPI.
This allows Liszt to have maximal control over each stage
of its compilation and runtime. This flexibility comes at the
cost of implementation complexity; even within a virtualized
host language, handling all aspects of the parallelization of
DSL programs places a heavy burden on DSL developers.
Since many components of a parallel DSL are potentially
reusable (e.g. scheduling), we believe that it is important
to develop frameworks and runtimes that aid in the task of
parallelizing DSLs.

Delite is a framework for simplifying DSL parallelization
and development. It first provides a set of predefined AST
nodes for the common parts of domain-specific languages.
Essentially, this is equivalent to embedding the Scala lan-
guage itself. This allows the DSL developer to start with the
base Scala AST and then add domain-specific nodes and se-
mantics to the language. Since the embeddings are modu-
larized into a variety of traits, the DSL developer is free to
choose the subset of functionality to include in his virtual
language.

Delite also provides a set of special case classes that
can be inherited from when defining the node types of the
language’s AST (recall MatrixArithRep in Section 2). In
addition to a case class that represents a sequential task,
Delite provides case classes for a variety of parallel exe-
cution patterns (e.g. Map, Reduce, ZipWith, Scan). Each of
these case classes constrains what information the DSL de-
veloper needs to provide so that Delite can automatically
generate parallel code. For example, in OptiML, the scalar
multiplication AST node inherits from Map. The DSL devel-
oper would then only have to specify the mapping function;
Delite handles generating the parallel code for that operation
on a variety of targets such as the CPU and GPU.

A Delite program goes through multiple compilation
stages before execution. The first compilation stage, writ-
ten by the DSL developer, uses virtualization to lift the user
program into an internal representation and performs ap-
plicable domain-specific optimizations (e.g. the stage-time
OptiML transformations). However, instead of generating
explicitly parallel code, the DSL generates an AST where
DSL operations are represented as Delite nodes (e.g. a Map
node).

The AST is then compiled in subsequent stages by Delite.
Delite expands the nodes generated by the DSL developer
to handle Delite-specific implementation details (e.g. data



chunking) and perform generic optimizations (e.g. operation
fusing). Delite also generates a static schedule for straight-
line subgraphs in the user program, which reduces the time
required to make dynamic scheduling decisions during ac-
tual execution. In the last compilation stage, Delite maps
each domain-specific operation to different hardware targets.
The final result of compilation is an optimized execution
graph along with the generated kernels. The Delite runtime
executes the graph in parallel using the available hardware
resources.

6. Related Work

There is a long history of research into parallel and con-
current programming. Parallel programming is now standard
practice for scientific computations and in specialized appli-
cation areas such as weather or climate forecasting.

Parallel programming codes are usually procedural/im-
perative with explicit segmentation between processors.
Communication is done by specialized libraries such as MPI
or, in shared-memory environments, parallelism is made ex-
plicit via compiler directives such as in OpenMP. Interest-
ing alternatives such as SISAL [15], SaC [41] or NESL [5]
have been tried but were either ahead of their time or too
specialized to be adopted by a large community. The same
holds for data-parallel Haskell [26], which is built around
nested array parallelism similar to NESL. The explicit mes-
sage passing paradigm of MPI is not without critique; some
argue that a model based on send and receive primitives is
too low-level and that communication should be represented
in a more structured manner, e.g. using collective opera-
tions [18]. Google’s MapReduce framework is essentially
such a model [13].

Recently, the high-performance programming language
designs Chapel [10], X10 [40] and Fortress [27] have
emerged from a DARPA initiative. These languages combine
sophisticated type systems with explicit control of location
and concurrency. They are targeted primarily at scientific
applications for supercomputers. It remains to be seen to
what degree they can be applied to general programming on
a variety of heterogeneous hardware. We believe that some
of the innovations of these languages (regions, configuration
variables) can be generalized and made more powerful in
the staged compilation setting that we propose.

When performance is paramount and the sheer number
of possible combinations makes manual specialization in-
tractable, program generation is an approach that is often
used. Instead of building a multitude of specialized imple-
mentations, a program generator is built that, given the de-
sired parameters as input, outputs the corresponding special-
ized program. A number of high-performance programming
libraries are built in such a way, for example ATLAS [54]
(linear algebra), FFTW [17] (discrete fourier transform), and
Spiral [35] (general linear transformations). However, good
program generators still take a huge effort to built and of-

ten, the resulting generator implementation will no longer
resemble the original algorithm.

The ideas underlying language virtualization are both
very old and quite new. Recent related work includes the
notion of universal languages [53] and relating hardware
virtualization criteria with partial evaluation [16]. Several
important aspects of language virtualization have been with
us since the invention of Lisp [45] more than 50 years ago.
The Lisp model of “code as data”, supported by macros,
makes it very easy to define and process embedded domain-
specific languages. A common viewpoint is that Lisp is
not so much a programming language, but rather a way to
express language abstractions. In the words of Alan Kay:
“Lisp isn’t a language, it’s a building material”.

On the other hand, language embeddings in Lisp can
be foo seamless in that they do not distinguish between
the embedded DSL and the hosting framework. Embedded
DSL programs can observe the way their embeddings work
and can access fairly arbitrary parts of the host environ-
ment. These limitations can be overcome in principle, given
enough effort. A hosting environment could statically ana-
lyze embedded domain-specific code for safety violations.
However, such analyses are non-trivial tasks, as they basi-
cally subsume implementations of static type checkers.

A common approach to DSL embedding is to assemble
an abstract syntax tree (AST) representation of embedded
programs. However, even in statically typed settings such
as LINQ [7] or earlier work on compiling embedded lan-
guages [14,30] the type of the AST is publicly available. An
embedded language might use this fact to manipulate its own
representation, thus undermining its virtualization.

Tighter encapsulation is provided by staging (or multi-
stage programming). Staging shares with language virtual-
ization the idea that DSL programs are assembled and run as
part of the host program execution. But it provides no control
on the choice of representation of the language embeddings.
The usual approach, taken e.g. by MetaOCaml [20], is to use
different kinds of syntactic brackets to delineate staged ex-
pressions in a DSL, i.e., those that will be part of the gener-
ated program from the host program. Staged expressions can
have holes, also marked by special syntax, into which the re-
sult of evaluating the contained generator stage expression
will be placed. Finally, staged expressions can be run, which
will cause them to be assembled as program source code,
run through the compiler, with the resulting object code be-
ing dynamically loaded and executed. In essence, staging
as implemented in MetaOCaml is similar to macros using
quote/unquote/eval in Lisp, but with a static type system that
ensures well-formedness and type safety for the generated
code at the time the multi-stage program is compiled

A closely related approach to code generation is tem-
plate expansion, as implemented in C++ [50] or Template
Haskell [43]. The main difference to multi-staged program-
ming is that all template expansion is done at compile-time.



In contrast to staging, some template expansion mechanisms
have a concept of user-definable rewriting rules which en-
able a limited form of domain-specific optimizations. How-
ever, the target of the compilation of embedded languages is
always the same as the host language’s.

A generalized approach to language embedding which is
referred to as finally tagless or polymorphic embedding was
introduced by Carette et al. [8] and taken up by Hofer et al.
[22]. The former focus on the basic mechanism of removing
interpretive overhead while the latter stress modularity and
the ability to abstract over and compose semantic aspects.
We show in this paper how to use polymorphic embeddings
and lightweight modular staging [39] to optimize parallel
domain specific languages.

7. Conclusion

Enabling mainstream programming to take advantage of het-
erogeneous parallel hardware is difficult. In fact it has been
identified as a grand challenge problem (PPP: “Popular Par-
allel Programming”) by the computer architecture commu-
nity [25]. In this paper we have proposed an embedded do-
main specific approach based on language virtualization to
address this challenge.

Our approach is not a “silver bullet” that will magically
parallelize arbitrary programs. But language virtualization
provides a path to get there. As new application domains
come up, one can put effort into designing good parallel em-
bedded languages for these domains and use a virtualization
framework to map them to parallel execution environments.
Likewise, as future parallel hardware evolves one can extend
the framework to accommodate new architectures. This cre-
ates a realistic prospect that heterogeneous parallel execu-
tion environments can be harnessed in an increasing number
of domains without requiring unreasonable effort.
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