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ABSTRACT
With modern LiDAR technology the amount of topographic data,
in the form of massive point clouds, has increased dramatically.
One of the most fundamental GIS tasks is to construct a grid dig-
ital elevation model (DEM) from these 3D point clouds. In this
paper we present a simple yet very fast algorithm for construct-
ing a grid DEM from massive point clouds using natural neighbor
interpolation (NNI). We use a graphics processing unit (GPU) to
significantly speed up the computation. To handle the large data
sets and to deal with graphics hardware limitations clever blocking
schemes are used to partition the point cloud. For example, using
standard desktop computers and graphics hardware, we construct a
high-resolution grid with 150 million cells from two billion points
in less than thirty-seven minutes. This is about one-tenth of the
time required for the same computer to perform a standard linear
interpolation, which produces a much less smooth surface.

Categories and Subject Descriptors: D.2 [Software]: Software
Engineering; F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations; H.2.8 [Database Manage-
ment]: Database Applications—Data Mining, Image Databases,
Spatial Databases and GIS

General Terms: Performance, Algorithms

Keywords: LIDAR, Massive data, GIS, Natural Neighbor Interpo-
lation

1 Introduction
The revolution in sensing and mapping technologies is providing
an unprecedented opportunity to characterize and understand the
earth’s surface and dynamics. For instance, modern airborne Li-
DAR technology can map the earth’s surface at a 15-20cm hor-
izontal resolution, and the future generation of LiDAR scanners
are expected to generate high-resolution maps of other planets; see
Figure 1(a). It is essential for many applications to exploit the high-
resolution data sets that are available. An example of this can be
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seen in a simple flood mapping application. Figure 1(b,c) shows
the result of the flood risk mapping for the island of Mandø in the
Wadden-Sea off the west-coast of Denmark. The island has an ap-
proximately five meter tall perimeter dike which protects it from the
sea. Because of the small width of the perimeter dike, this feature
is not present in low- or mid-resolution grids. Thus, when flood
maps are constructed for a water level of 2 meters, it looks as if
most of the island will be underwater; see Figure 1(b) for an exam-
ple using a 90m grid (the SRTM grid available from NASA [12]).
The same computation performed on a 2m-resolution grid, shown
in Figure 1(c), correctly finds that the dikes, now present in the
terrain model, block the water from entering the lower-lying areas
inside the perimeter.

Capitalizing on opportunities made feasible by high resolution
data sets and transforming this massive amount of topographic data
into useful information for vastly different types of users requires
solving several challenging algorithmic problems. For example, in
order to fully explore topographic data, one must often first extract
a terrain from the scattered set of points generated by the LiDAR
equipment. Most GIS applications do not work directly on the point
cloud S gathered by a LiDAR scanner, but instead operate on a
digital elevation model (DEM) of the terrain surface. Thus one of
the most important of these problems is to generate a DEM from S.

Because of its simplicity and efficiency, the most widely used
DEM is a uniform two-dimensional grid in which an elevation value
is stored at each cell. However, point clouds are not acquired on a
uniform grid but can be seen as a set S of n (arbitrary) points in
R2 with an associated elevation function h : S → R. Thus, to
construct a grid DEM, h has to be extended via interpolation to a
uniform grid G ⊂ R2 at the desired resolution. Numerous interpo-
lation methods, ranging from sophisticated but computationally ex-
pensive methods to simpler and efficient methods, for grid DEMs
have been developed; see [19] for a review. Regularized splines
with tension (RST) is a well-known method, which is sophisticated
but computationally expensive due to its use of non-trivial polyno-
mials [1, 20]. RST and similar highly sophisticated interpolation
methods are especially good when the input data is sparse and lots
of interpolation has to be performed. On the other hand, construct-
ing a triangulation on input points and linearly interpolating the
elevation of grid points across the triangles is one of the simplest
interpolation methods. It, however, does not produce a smooth sur-
face, especially when the data is relatively sparse. The resulting
grid DEM can appear jagged both when viewed directly and also
in derived products, such as contour maps.

In this paper we use the well-known natural neighbor interpola-
tion strategy [25]. Based on the Voronoi diagram of S, it produces
a smooth surface. Although NNI is more efficient than RST and
other similar interpolation methods, its traditional implementations
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Figure 1. (a) Grid DEM constructed from LiDAR data over a region in Afghanistan (data source: Army Research Office), trees are clearly visible.
(b) A flood risk mapping of the island of Mandø in Denmark, using the 90m, and (c) the same using 2m grid; both figures are screenshots of a
custom map application built on Google Maps.

are significantly slower than linear interpolation and are therefore
not widely used for very large data sets.

Over the last decade modern PCs have started to become equip-
ped with advanced and increasingly powerful graphics processing
units (GPUs). Although originally designed for rapidly transform-
ing 3D geometric scenes into pixels on the image plane (screen)
and extensively used in video games, they can be regarded as mas-
sively parallel vector processors suitable for general purpose com-
puting. Known as general purpose GPUs (GPGPUs), their tremen-
dous computational power and memory bandwidth make them at-
tractive for applications far beyond the original goal of rendering
complex 3D scenes, and they have been used for a wide range of
applications, e.g., geometric computing [3], robotic collision detec-
tion [13], database systems [14], fluid dynamics [18], and solving
sparse linear systems [8, 7]. As GPUs have become more flexible
and programmable (e.g. NVIDIA’s CUDA [22] library), their ap-
plicability has also increased tremendously; see [23] for a recent
survey. In the context of grid DEM construction, Fan et al. [11]
have described a GPU based algorithm for natural neighbor inter-
polation (NNI), which is considerably faster than a CPU based al-
gorithm.
Our results. In this paper we present a simple yet very fast GPU
based algorithm for constructing a grid DEM from large LiDAR
point clouds using a variant of the natural neighbor interpolation
method. LiDAR scanners provide dense (high resolution) point
cloud of elevation data at most locations, but there are gaps, usually
at large bodies of water or human-made objects that have been re-
moved from the point cloud in a preprocessing step. In such cases
we wish to label the corresponding “gap” cells in the grid DEM
with “nodata” instead of interpolating elevation based on points
that are far away. We introduce the notion of region of influence
for each input point, similar to the one used in α-shapes [10]. For a
grid point, we use only those points to compute its elevation whose
regions of influence contain the query point. See Section 4 for de-
tails. Although our algorithm is similar to that of Fan et al. [11],
there are three main differences:

(i) Our algorithms handles gaps differently, as described above.

(ii) Exploiting the fact that we are interpolating elevations at
grid points, it uses a clever “blocking” scheme to expedite
the computation considerably. In contrast to the algorithm
in [11], which performs NNI interpolation at≤ 32 points (or
≤ 128 points depending on hardware properties of the GPU

card) in one step, it can answer more than 106 NNI queries
at grid points in one step.

(iii) It exploits CUDA to substantially improve its efficiency by
performing the majority of the computation on the GPU, there-
by minimizing the communication between main and GPU
memory.

These techniques lead to an extremely fast algorithm for comput-
ing a grid DEM. For example, our algorithm computes a grid DEM
covering a 600km2 region at 2m resolution (i.e., ≈ 150 million
grid points) from two billion input points in less than thirty-seven
minutes on a 3GHz Intel Core 2 Duo processer with a NVIDIA
GeForce GTX 470 graphics card. Our CPU based linear-inter-
polation algorithm takes more than five and a half hours on the
same PC. Not only is this a significant speedup, NNI interpolation
also produces a smoother grid DEM than the linear-interpolation
method. The more sophisticated RST-based algorithm takes about
thirty-four hours on the same data set, even after throwing away a
fraction of the points for efficiency, and the output between NNI
and RST-based interpolations is nearly indistinguishable. Another
advantage of our algorithm over linear or RST interpolation is that
it can be trivially parallelized, so it could be implemented easily on
a GPU cluster.

The paper is organized as follows. Section 2 provides a brief
overview of the GPU model of computation, and Section 3 de-
scribes a GPU based algorithm for computing the Voronoi dia-
gram of a set of points. Section 4 describes a slight variant of the
Fan et al. [11] algorithm for computing natural neighbor interpola-
tion, and Section 5 describes the new algorithm for computing NNI
interpolation on a grid. Finally, Section 6 contains implementation
details and information about the speed and quality experiments we
have performed.

2 GPU Model of Computation
Primarily designed to achieve high performance for interactive grap-
hics applications, modern programmable GPUs consist of a large
number of processors (e.g., up to 480 for the newest NVIDIA Ge-
Force 4-series) with a high memory bandwidth (177.4 GB/sec for
NVIDIA’s GeForce GTX 480) and achieve higher floating-point
throughput than the CPUs. This high throughput has led to a tremen-
dous effort for developing GPU based numerical algorithms; see
the recent survey by Owens et al. [23] and the references therein.
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Figure 2. (a) Voronoi diagram Vor(S) of a set S of points. (b) Pixelized Voronoi diagram PVor(S). (c) Truncated pixelized Voronoi diagram
TPVor(S) of S with r = 5, k was set high enough for the k-gons to be indistinguishable from cones.

The graphics computation in all GPUs follows a similar pipeline,
called the graphics pipeline, which draws a three dimensional scene,
composed of many objects, onto a two dimensional image plane Π
of pixels as seen from a specified viewpoint o. Because of their
simplicity and flexibility, these objects are almost always triangles.
For each pixel π = (x, y) where x, y is a global coordinate, the
GPU finds all objects Ω = {ω1, ω2, . . . ωn} which ray ~oπ inter-
sects. To maintain high throughput, each stage of the computation
is implemented in hardware and computation on different parts of
Π is performed in parallel. See e.g. [17, 21] for details of NVIDIA’s
GeForce 6 series. Here we note that, a GPU contains several two
dimensional arrays of pixels called buffers (or texture memory).
We mention the two most basic ones, which we will use:

• The depth buffer D stores the distance to the nearest object
from o for each pixel π. Given that pj is the point of inter-
section for ray ~oπ and object ωj , the GPU calculates

D[π] = min
1≤j≤n

‖opj‖.

The modern GPUs provide the flexibility of performing var-
ious semigroup operations on opj’s instead of simply com-
puting the minimum and also of performing them in a condi-
tional manner. For example, D can be in the read-only mode.

• The color buffer C stores the color of the scene as viewed
from o. If for each object ωj ∈ Ω we have a color χj , we
define a blending function that computes the color at each
pixel:

C[π] =
X

1≤j≤n

αjχj ,

where αj ∈ [0, 1] is the blending parameter of ωj . Typically,
αj is based on depth buffer so that C stores the color of the
foremost object. Again, the modern GPUs provide several
other binary operations on the colors. We will like our blend-
ing function to compute the bitwise-OR of the colors. This
can be done by setting αj = 1 for 1 ≤ j ≤ n, as long as χj

are bitwise-disjoint.

During graphical computations, the color and depth buffers re-
side in memory on the graphics card. Objects can be drawn onto
these buffers with specific APIs such as OpenGL[24] or Microsoft
DirectX [6]. However, in some cases we will want to use the val-
ues in these buffers for computation on the CPU. For this, we have

to read the buffer back to the computer’s main memory. Unfortu-
nately, since this involves transferring large amounts of data over
the relatively slow bus systems, read backs are very slow.

For using the GPUs parallel processing capabilities, the pop-
ular graphics card manufacturer NVIDIA has created the CUDA
parallel computing architecture. CUDA makes it easy to divide a
task into many threads, where threads can work in parallel but also
when necessary share memory and work together on procedures
that aren’t trivially parallelizable. Additionally advantageous is that
CUDA operations are performed directly on the graphics card and
can efficiently access buffers, which reside in nearby GPU memory.
As an example, CUDA can split into one thread for each pixel of a
buffer and read from each pixel simultaneously without reading the
buffer back to main memory. Inversely, modern GPUs allow multi-
ple threads to write to the same memory with atomic functions that
provide thread synchronization and serialization.

3 Pixelized Voronoi Diagram

Let S = {p1, . . . pn} be a set of n points in R2. For each point
p ∈ S, its Voronoi cell, denoted by VorS(p), is defined as

VorS(p) = {x ∈ R2 | ‖xp‖ ≤ ‖xq‖∀q ∈ S} ,

where ‖ · ‖ is the Euclidean distance, i.e., a point x ∈ VorS(p) if p
is the point in S closest to x. The Voronoi diagram of S, Vor(S),
is the planar subdivision induced by the Voronoi cells of points in
S. See Figure 2 (a).

Hoff et al.[16] have described a GPU based algorithm for com-
puting the Voronoi diagram of a set of points. Since we use a
slightly different algorithm, we describe the algorithm for the sake
of clarity and completeness. An image plane Π consisting of N×N
pixels can be regarded as the square [0, N − 1]× [0, N − 1] in R2.
Any square R ⊆ R2 can be mapped to Π using an affine trans-
formation. Given the set S and a square R, we are interested in
computing a pixelized (discretized) Voronoi diagram of S within
R, which we define below. We assume that R is mapped to the
image plane Π. Each pixel of Π corresponds to a (tiny) square of
area ρ2 = Area(R)/N2. We refer to ρ as the resolution of Π. For
a pixel π ∈ Π, let ϕ(π, S) be the point in S whose Voronoi cell
contains π. Since π is a (tiny) square region, it may intersect mul-
tiple Voronoi cells, in which case ϕ(π, S) is assigned to one of the
points using standard methods. For a point p ∈ S, we define the



Figure 3. Voronoi diagram as the lower envelope of a set of cones.
The outer cells of a Voronoi diagram are infinite, but in this figure
their sizes are limited because the cones are truncated.

pixelized Voronoi cell of p to be

PVorS(p) = {π | ϕ(π, S) = p},

i.e., the set of pixels that lie in VorS(p); see Figure 2 (b). The
quantity ρ2|PVorS(p)| approximates the area of VorS(p) within
R. The approximation error depends on ρ. For a fixed R, the error
decreases as we increase N , namely,

lim
N→∞

ρ2|PVorS(p)| = Area(VorS(p)).

For our purpose, we assume that PVor(s) is stored as follows.
If ϕ(π, S) = pi, then the color buffer C[π] = i, i.e., we view
each cell of the color buffer as a single word (concatenation of R,
G, B, A components) that stores the index of the point; D[π] stores
the value of ‖πϕ(π, S)‖, the distance from the center of π to its
nearest neighbor in S.

The problem of computing PVor(S) can be formulated as that
of rendering a 3D scene. For a point pi ∈ S, let fi : R2 → R be
defined as fi(x) = ‖xpi‖. The lower envelope f of {f1, . . . , fn}
is defined to be

f(x) = min
1≤i≤n

fi(x) ,

which is the distance from x to its nearest neighbor. Vor(S) is the
projection of the graph of f on the xy-plane. Let C be the circular
cone C : z =

p
x2 + y2 in R3. Then the graph of each fi is a

circular cone Ci = C + pi, with pi as its apex. See Figure 3. Let
C = {C1, . . . , Cn}. A point x ∈ VorS(pi) if f(x) is realized by
the function fi at x, i.e., the line oriented in the +z direction hits
Ci first. In other words, ϕ(π, S) = pi if Ci is the cone seen at
pixel π when the set C is viewed from z = −∞. If we set the
color of Ci to i, then the color and depth buffers store the desired
information.

It is not easy to render a circular cone using a GPU, so we ap-
proximate a circular disk by a regular k-gon and approximate the
circular cone by using this k-gon as its base (see Figure 4). The
resulting polygonal cone C3 is composed of k triangles. We re-
place Ci by C3

i = C3 + pi. The error in tessellation induced by
this approximation can be controlled by choosing the value of k
appropriately.

Figure 4. Approximating disk by a k-gon, and the corresponding
polyhedralcone.

Finally, we note that we want to limit the region of influence for
the points. We do this by using a truncated Voronoi diagram. We
define the radius of influence r of each point in S and the notion of
a truncated pixelized Voronoi cell:

TPVorS(p) = {π | ϕ(π) = p ∧ ‖pπ‖ < r} .

See Figure 2 (c). Thus, a pixel π that is farther than r away from
all points of S does not belong to the Voronoi cell of any point. Let
Dr denote the disk of radius r centered at origin. We can assume
that S ⊂ R + Dr , as no point outside this region will contain any
pixel of Π in its Voronoi cell. This truncation is realized by limiting
the height of the cones C3

i ; with a slight abuse of notation we use
C3

i to denote the truncated cone as well. For each pi ∈ S, we set
the color of each triangle of C3

i to i and pass them to the graphics
pipeline with z = −∞ as the viewpoint. C and D together contain
TPVor(S). We refer to this algorithm as GPUVORONOI (S). As
mentioned above, there might be pixels that are not touched by
GPUVORONOI (S). We assume that C is initialized with a value
that allows us to distinguish these pixels from the pixels that are
part of the truncated diagram, e.g., we set their color to 0.

4 Natural Neighbor Interpolation
In this section we first formally define natural neighbor interpo-
lation (NNI), then describe a GPU algorithm for answering NNI
queries, which is a small variant of the algorithm by Fan et al. [11].
A height function h : S → R can be extended to entire R2 using
natural neighbor interpolation. In particular, for a point x ∈ R2,

h(x) =
X
p∈S

wp(x)h(p),

where wp(x) is the fractional area of VorS∪{x}(x) that belongs to
VorS(p) (Figure 5), i.e.,

wp(x) =
Area(VorS(p) ∩VorS∪{x}(x))

Area(VorS∪{x}(x))
.

Since we use truncated pixelized Voronoi diagrams, we redefine
the height function as

h(x) =
X
p∈S

wp(x) · h(p) (1)

q

Figure 5. Natural neighbor interpolation. Shaded cell is
VorS∪{q}(q), and each color denotes the area stolen from each cell
of Vor(S).
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Figure 6. (a) Vor(S) of a set S. (b) Vor(S ∪ {q1}) and Vor(S ∪ {q2}) for two query points q1 and q2. (c) PVor(S ∪ {q1}) and PVor(S ∪ q2)
The colors correspond to the bitwise-OR colors of the query point. Query point q1 and q2 have colors 01 and 10 respectively, the pixels in
PVorS∪{q1}(q1) ∩ PVorS∪q2 (q2) thus get the color 01 ∨ 10 = 11, where ∨ is bitwise or.

Algorithm 1 BUFFERANALYSIS(C1, C2)

for all π ∈ C2 do
if C2[π] 6= 0 and C1[π] 6= 0 then

Nq ← Nq + C1[π]
Dq ← Dq + 1

return Nq/Dq

where

wp(x) =
|TPVorS(p) ∩ TPVorS∪{x}(x)|

|TPVorS∪{x}(x)| . (2)

Answering an NNI query. For a point x ∈ R2, let Dr(x) =
Dr + x denote the disk of radius r centered at x. Let q be a query
point such that Dr(q) ⊆ R. The algorithm for computing h(q)
works in two phases. The first phase calls GPUVORONOI (S) with
the following twist: the color of each triangle of the cone C3

i is set
to h(pi) (instead of i). After the first phase C[π] stores h(pi) for
all pixels π ∈ TPVorS(pi). We read back the color buffer; let C1

denote the resulting two-dimensional array. We then clear the color
buffer. The depth buffer D is is not touched, i.e., D[π] continues
to store ‖πϕ(π, S)‖, the distance from the center of π to ϕ(π, S).
In the second phase, we set D to read-only mode so that it is not
overwritten and draw a polygonal cone qC3 = C3 + q with q as
the apex. Adding qC3 is the same as computing TPVorS∪{q}(q).
However, the color buffer was cleared before the second phase and
thus has non-zero entries1 (corresponding to the color of qC3) only
for TPVorS∪{q}(q). Let C2 denote the color buffer contents after
the second phase, and C2 the array resulting from reading back C2

into memory. The value of h(q) can be computed by adding the
values of C1[π] for all π for which C2[π] 6= 0 and finally divid-
ing the sum by the number of non-zero values in C2 (this is the
denominator of (2)). We refer to this final step of the algorithm as
BUFFERANALYSIS; Algorithm 1 gives the pseudo code.

There are four main sources of difference between our method
and the traditional natural neighbor interpolation:

(i) The tessellation error caused by using k-gons instead of cones.

(ii) The discretization error.
1We assume without loss of generality that all points of S have a positive
height.

(iii) The limited precision of the depth buffer D (which can cause
problems at the boundaries between two Voronoi cells).

(iv) The radius of influence r.

Batching the queries. The above algorithm is very inefficient if we
want to compute heights at many points, especially since reading
back a buffer is a slow step. Fan et al. [11] have shown that by ex-
ploiting the power of modern GPUs, many queries can be batched
and answered in one pass. More precisely, if each pixel of the color
buffer C has w bits, then m ≤ w queries can be batched in one pass
by encoding the colors cleverly in C: One bit of C[π] is assigned
for each query point. Let q1, q2, . . . , qm be the m query points, and
let qC3

i = C3 + qi be the cone corresponding to the query point
qi. The color of all triangles in qC3

i is set to 2i. This ensures that
colors of the m query points are bitwise-disjoint.

The first phase of the algorithm is the same as before. Let C1

be the same as above. In the second phase, we again set the depth
buffer to the read-only mode. We draw qC3

1 , qC3
2 , . . . , qC3

m but
the color buffer now operates as follows. Suppose the graphics
pipeline is rendering a triangle t of color χt. If the depth of t at a
pixel π is larger than D[π], then nothing happens. Otherwise C[π]
is set to C[π] ← C[π] ∨ χt, where ∨ is the bitwise OR operation.
Recall that D[π] is not updated, as it is in the read-only mode and
D[π] stores ‖πϕ(π)‖. After the second phase, the i’th bit of C[π]
is 1 if π ∈ TPVorS∪{qi}(qi) see Figure 6(c).

We read back the color buffer; let C2 denote the contents of the
buffer after the second phase. We compute h(qi) by summing the
values of C1[π] for all pixels π for which the ith bit of C2[π] is
1 and then dividing the sum by the number of such pixels. Algo-
rithm 2 gives the pseudo code for doing this step efficiently; Nq

and Dq are arrays of length m; for a bit-vector v, vi denotes its i’th
bit; and H is an array of length m, where H[i] = h(qi).

5 NNI on Grids
We now describe a faster algorithm for answering NNI queries
when the query points lie on an M ×M grid Q. The algorithm
can easily be extended to handle rectangular grids. For conve-
nience we will use Q[i, j] to denote the (i, j)’th query point of Q
for 0 ≤ i, j < M . Let sρ denote the size of each grid cell in Q, for
some positive integer s. We refer to s as the scaling parameter, and
for simplicity we assume that s is odd and that ρ(s − 1)/2 < 2r.



Algorithm 2 BUFFERANALYSIS(C1, C2,m)
for i← 1 to m do

Nq[i]← 0
Dq[i]← 0

for all π ∈ C2 do
if C2[π] 6= 0 ∧ C1[π] 6= 0 then

v = C2[π]
for i← 1 to m do

if vi = 1 then {π ∈ TPVorS∪{qi}}
Nq[i]← Nq[i] + C1[π]
Dq[i]← Dq[i] + 1

for i← 1 to m do
H[i]← Nq[i]/Dq[i]

return H

Q can be mapped to the image plane Π so that each grid point
of Q lies at the center of an s × s array of pixels of Π. Since
the radius of influence is r, we can assume that all points of S
lie within distance 2r from Q; see below for an explanation. Let
σ = [−2r, +2r]2 and Q = Q + σ, so S ⊂ Q. For now we as-
sume that N ≥ sM + 4r/ρ, i.e., M ≤ (N − 4r/ρ)/s. Later
we will describe how to handle larger query grids. Our assumption
ensures that Q can be mapped to Π with ρ being the resolution of
each pixel. Let α = (s − 1)/2 + 2r/ρ. We map the bottom left
corner of Q to that of Π, so the query point Q[i, j] maps to the pixel
(s · i + α, s · j + α); see Figure 7.

Let B = b
√

wc, where w, as above, is the number of bits in the
color buffer. For simplicity, we assume that B is a divisor of M .
We partition Q into (M/B)2 query blocks, each of size B × B,
with the (i, j)th block, for 0 ≤ i, j < M/B, being

Qi,j = Q[iB, (i + 1)B − 1][jB, (j + 1)B − 1].

See Figure 8 (a). A query point q ∈ Q can be represented by a pair
(a, t), where a ∈ [0, M/B − 1]2 is the index of the query block
that contains q, t ∈ [0, B − 1]2 is the offset of q within that query
block.

We process all B2 ≤ w NNI queries in each block in one pass,
using the algorithm described in Section 4. Processing all queries
in Q thus requires (M/B)2 passes, each involving the expensive
operation of reading back the GPU memory to the main memory.
One-pass algorithm. By exploiting the grid structure of query
points and the fact that a query q is affected by only those points p
for which Dr(p) and Dr(q) intersect (i.e., ‖pq‖ ≤ 2r), we show
that we can answer all queries in one pass provided that

(A1) M ≤ (N − 4r/ρ)/s, and

(A2) r ≤ sρB/2.

Π

2r ρs

2r

Figure 7. Embedding Q on Π; s = 3 and r = 2ρ.

The second assumption is reasonable for high resolution LiDAR
data sets because the height of a point can be interpolated from the
nearby sampled points. For a graphics card with w = 32 and with
s = 5 we will assume that r < 5 meter for an output grid with a
resolution of sρ = 2 meter. In other words, the result of a query
is not affected by an input point that is more than 20 meters away.
With high-resolution LiDAR data sets this is not a bad assumption.
Such gaps usually appear when buildings and other features are
removed using a classification algorithm, or at lakes and similar
features.

Here is the key idea that enables us to answer all queries in
one pass assuming that (A1) and (A2) hold. We call two points
p, q ∈ S independent if TPVorS(p) and TPVorS(q) are dis-
joint. If ‖pq‖ > 2r, then, by definition of TPVor(S), p and q
are independent. Let q1, . . . , qu be a set of query points such that
‖qiqj‖ > 2r for any pair i 6= j. Then qC3

i and qC3
j are dis-

joint. We can potentially use the same color for all of these query
points because no pixel will be rendered by two such cones in the
second pass of the NNI query-answering algorithm. The difficulty
with using the same color for all qi’s is that the color of qC3

i no
longer encodes the value of i, so the algorithm does not know which
query point colored a given pixel. However, qi’s being independent
implies that there is at most one query point for each pixel π that
could color π, namely, the query point closest to π and it lies within
distance r from π.

In our case, the query points lie on a grid Q and we assume that
r < sρB/2. Therefore for any two query blocks Qa and Qb and an
offset t, the query points (a, t) and (b, t) are independent, as the
distance between query points with the same offset in two adjacent
blocks is sρB. In other words, for any t ∈ [0, B − 1]2, all points
in

Q|t = {(a, t) | a ∈ [0, M/B − 1]2},

the set of all query points with offset t, are independent; see Fig-
ure 8 (b). We can therefore assign the same color, say, χ, to all
points in Q|t. If a pixel π is colored χ, we can determine in O(1)
time which point in Q|t colored π. Hence, we proceed as follows.

For t = (t1, t2) ∈ [0, B − 1]2, we set χ(t) = 2t1B+t2 and
assign the color χ(q) to all triangles of the query cone C3 + q for
q ∈ Q|t. Let

C = {qC3
ij = C3 + Q[i, j] | 0 ≤ i, j < M}

be the set of all query cones.
The first pass of the algorithm is the same as in Section 4, i.e.,

we compute TPVor(S). In the second pass, we render all cones
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Figure 8. (a) Splitting Q into query blocks of size B = 4 query points.
(b) All the Q|[1,1] query points are independent since their areas of
influence (depicted by circles in the figure) are disjoint.



Algorithm 3 BUFFERANALYSIS(C1, C2,Q)
for i← 0 to M − 1 do

for j ← 0 to M − 1 do
Nq[i, j]← 0, Dq[i, j]← 0

for all π ∈ C2 do
if C2[π] 6= 0 and C1[π] 6= 0 then

v = C2[π]
for `← 0 to w − 1 do

if v` = 1 then
(i, j) = NN(π, `)
Nq[i, j]← Nq[i, j] + C1[π]
Dq[i, j]← Dq[i, j] + 1

for i← 0 to M − 1 do
for j ← 0 to M − 1 do

H[i, j]← Nq[i, j]/Dq[i, j]
return H

in C one by one while keeping the depth buffer in the read-only
mode. Next, we read the color buffer back to main memory, and let
C2 denote its content. We process each pixel π as follows: If the
`th bit of π is 1, i.e., it has been rendered by a query point with the
offset l = (b`/Bc, ` mod B), then we compute in O(1) time the
query point Q[i, j] that rendered π, i.e., the nearest point to π in the
set Ql. Let NN(π, `) denote this procedure. We update the height
of Q[i, j] appropriately. Algorithm 3 gives the pseudo-code of this
step.
Handling larger grids. The preceding algorithm assumed that Q
was small enough that the entire Q could be mapped to Π. This is
not always realistic since the value of N is limited by the graphics
hardware. For example, N ≤ 214 = 16384 on modern graph-
ics cards such as the NVIDIA GeForce GTX 470. With a scaling
parameter s = 5, M ≤ b214/5c = 3276, implying that we can
process 32762 ≈ 107 grid query points in a single pass. Recall
that each pass consists of two rendering phases and the subsequent
buffer analysis. For sρ = 2 meter, this corresponds to computing a
grid DEM for a region of roughly 70 × 70 km2 in area. However,
we often want to generate grid DEMs that are considerably larger,
in which case we proceed as follows.

Let µ = (N − 4r/ρ)/s, the largest grid of query points we can
handle in one pass is µ × µ. Thus, if M > µ we partition Q
into µ × µ sub-grids; see Figure 9(a) and process these sub-grids
individually. Let m = M/µ, then m2 is the number of sub-grids.
We define

Qi,j =
[

(l,k)∈[0,µ−1]2

Q[l + iµ, k + jµ]

to be the (i, j)’th sub-grid, for i, j < m. For sub-grid Ql we let
Ql = Ql + σ. We interpolate each Ql on the GPU independently,
using the algorithm described above. Thus we need to find the set
Sl = Ql ∩ S of input points relevant for the queries in Ql. Note
that the Sl’s are not disjoint; see Figure 9(b). Let M and B be
the amount of points that fit in main memory and in a disk block
respectively. For simplicity we assumes that B divides M.

If |S| < M, then extracting the set Sl is not hard — we can con-
struct a two-dimensional table to store S and extract Sl efficiently
for each sub-grid Ql. This is, however, more challenging and ex-
pensive when, as is typically the case, S is too large to fit in the
main memory. For example, the Denmark data set we have con-
sists of 25 billion points. In this case, we preprocess S as follows.

We can keep up to M/B streams of points by storing a block
of B elements for each stream in memory, and the rest on disk. If

µ n
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Figure 9. (a) When Q is too big to handle in one pass, we split it
up into sub-grids of size µ. To filter the points of S to the right place
we may need several passes where the grids are split into M/B
partitions of size n by n. (b) This figure shows Q1,1 = Q1,1 + σ
(contained in the dotted square) and P1,1 = P1,1 + σ (contained in
the dashed square).

m2 ≤ M/B, then we construct a stream for each bin Ql. We then
distribute each point p ∈ S to the bins for the sub-grids {Ql|p ∈
Ql}. If m2 > M/B we cannot hold enough streams in memory
and instead use a recursive procedure. We partition the m2 sub-
grids into M/B square partitions of dimension n = m/

p
M/B.

Pi,j =
[

(l,m)∈[0,n−1]2

Ql+in,k+jn ,

for 0 ≤ i, j <
p

M/B (see Figure 9(b)). Since there are M/B

partitions, we can construct a stream for each of them. We then
distribute each point p ∈ S into the stream representing partition
Px if p ∈ Px = Px + σ, where σ = [−2r, +2r]2. Following
this distribution step we recurse on each partition individually. The
depth of the recursion is O(log√

M/B
m) = O(logM/B M/µ).

6 Implementation and Experimentation
Here we describe implementation details that contribute to the ef-
ficiency and quality of our algorithm. We subsequently offer em-
pirical results for tests of the algorithm’s speed and quality on real-
world terrains.
Platform. We ran our experiments on an Intel Core2 Duo CPU
E6850 at 3.00GHz with 4GB of internal memory. We used Ubuntu
10.4 and two 1TB SATA disk drives in a RAID0 configuration.
Additionally, the machine contained a NVIDIA GeForce GTX 470
graphics card running CUDA 3.0. This card has 1.2 gigabytes of
memory, 448 CUDA cores, and 14 multiprocessors.

The algorithm was implemented in C++ using OpenGL to inter-
act with the graphics card. The C1, C2, and D buffers were im-
plemented using OpenGL’s frame-buffer and render-buffer objects.
Additionally, we used a display list to render the cones C3. As
described, our algorithm uses the same radius of influence r for all
C3, however, for flexibility our implementation supports using one
radius for input points rs and another one for queries rq . Adjusting
these values separately allows us to optimize rq based on hardware
bounds imposed by w, while adjusting rs based on properties of
our data sets.

6.1 Reducing communication complexity
The computational efficiency is one of two important factors in the
real-world performance of our algorithm. We have taken great care
to minimize the other major component, communication cost, as



Afghanistan DKPART Fort Leonard Wood
Size of input (106) 186 1038 2180
Size of output (106) 9.5 213 151
NNI with CUDA 163 1238 2190

Binning Time 67 558 1030
Interpolation Time 96 680 1160

NNI without CUDA 1252 14323 11164
Binning Time 91 569 1036
Interpolation Time 1161 13754 10128

Linear 962 7377 20307
RST 5698 66729 122305

Table 1. Time comparison of competing interpolation algorithms (times in seconds)

well. As mentioned in the introduction, the cost of transferring
buffers between GPU and main memory is substantial, but the cost
of transferring data between the hard drive and the main memory is
also substantial, especially for large data sets that do not fit in main
memory.
GPU to CPU communication. As described in Section 4, the col-
ors buffers C1, C2 are read back into memory resulting in C1 and
C2. They are then used by the BUFFERANALYSIS algoritm, the
final step in the interpolation. However, each of these buffers con-
tains an s × s square of pixels for each query point of Q, which
means that each buffer is a factor of s2 larger than Q. Thus, we are
transferring far more data between GPU and CPU memory than
would be required if we could just transfer the final interpolated
values (i.e. the buffer H from BUFFERANALYSIS).

Therefore, we have used CUDA to implement BUFFERANALY-
SIS directly on the graphics card. As discussed previously, CUDA
can directly access the color buffers from GPU memory and like-
wise can keep two dimensional arrays of its own for Nq , Dq , and
H . In performing this final summation step in CUDA, each pixel
in the color buffer is accessed in parallel, and for each bit that is
set to one, the appropriate values in Nq and Dq are incremented.
Because this may cause the same memory location to be written to
by multiple threads simultaneously, we use a CUDA function for
atomic addition, providing serialization and synchronization of the
many threads. Thus, we only perform one read from GPU memory
to main memory, with only one 32-bit word being transferred for
each query point. This has a drastic effect on running times of our
algorithm, which will be demonstrated in our experiments.
Reducing disk-transfers. As described in Section 5 we preprocess
S by binning the data into sub-grids of size µ × µ, before feeding
them to the GPU one by one. We have used the efficient disk-based
stream abstractions provided by the Templated Portable I/O Envi-
ronment (TPIE) [5] library to implement the recursive algorithm
that performs this binning.

Additionally, the final output from the interpolation routine is a
stream of points (i, j, h(i, j)) which typically need to be converted
into a row-major raster grid sorted on i and j. For this we use the
external-memory sorting algorithm [4] from TPIE, which is asymp-
totically optimal with respect to disk-memory transfers. The time
taken by the final step is not included in the results presented in this
section since this step is the same for all of the algorithms presented
and it is not the bottleneck in the running time.

6.2 Performance
In analyzing our algorithm, we compared our results against results
from applying a regularized spline with tension (RST) and linear in-
terpolation based on the global Delaunay triangulation of the data.

The RST implementation is from Danner et al.’s previous work on
TerraSTREAM[9]. We also tested our NNI implementation against
the linear interpolation, in which we compute the Delaunay trian-
gulation of the entire data set, as presented in [2], followed by in-
terpolating the value of each query point. Both of these algorithms
are sequential.
Data sets. For our tests, we ran our different interpolation schemes
on three main data sets. The first was LiDAR data that covers most
of Denmark supplied by COWI A/S. The entire point cloud is 1.5
terabytes in size with 26 billion data points. For a number of our
experiments we used a portion of this data set, which we will refer
to as DKPART. DKPART contains 1 billion data points over a 10
kilometer by 90 kilometer region and is 27 gigabytes on disk. This
gives a point density of 0.9 points per square meter on average.

Because Denmark is relatively flat, we also ran tests for both
speed and quality on a point cloud of a mountainous region in the
Paktika province of Afghanistan (data courtesy of ARO). This data
set is 3.5 gigabytes on disk and contains 186 million data points
over an approximately 4000 m2 region. This is approximately 6.5
points/m2 on average. Because the Afghanistan data set comes
from a mountainous region, the data is useful for comparing how
different algorithms handle steep slopes and ridges.

The third dataset covers an approximately 600km2 region around
Fort Leonard Wood in Missouri with a dense point cloud consisting
of about 2.2 billion points (data courtesy of ARO) and takes up 57
gigabytes on disk. That is about 3.6 points /m2 on average.

The Afghanistan point cloud has not been substantially filtered
and contains many non-ground points (such as points on vegeta-
tion). For the quality tests we used a subset of the points without
many of the non-ground points2. This data set, which we refer to as
Afghanistan-1, has a point density of 0.26 points per square meter.
To test the significance of the density of the points, we removed a
portion of the points, keeping only one out of sixteen data points
at random. This produces a point density of 0.016 points/m2. We
denote this data set as Afghanistan-2.
Parameter choices. Within our algorithm there are numerous pa-
rameters that can be adjusted to shift speed and quality trade-offs.
The algorithm’s precision can be modified through its scaling pa-
rameter s, the number of faces k of the C3’s, and the cone radii rs

and rq . For our tests we set k = 6 and rs = 20 meters. We set rq

based on ρ and w, such that rq = sρB/2. In our tests the word size
w of the color buffers was set to 32 bits (though this can easily be
increased to 128 bits on modern graphics cards), and thus B = 5.
For the scaling parameter, we tested the algorithm with varying val-
ues, but in experiments below we used s = 5. These parameters
were chosen to offer a sufficiently high quality of output without
unnecessarily slowing the implementation.
2This was done by only using the “last return”-points for each pulse.



Without CUDA With CUDA
Grid Resolution (m.) 0.8 2 0.8 2
GPUVORONOI (S) 411 73 76 74

Read C1 814 116 N/A N/A
Draw Query Cones 51 5.84 39 6.96

Read C2 875 135 N/A N/A
BUFFERANALYSIS 102 9.57 183 0.46

Write points 4.01 0.92 4.2 0.8
Total running time 2289 371 337 105

Table 2. CUDA’s effect on NNI algorithm timing, running on the
Afghanistan data set (times in seconds)

Efficiency. We ran the various interpolation algorithms on our
Afghanistan, Fort Leonard Wood and DKPART data sets. For these
general tests, we used a grid resolution of 2 meters. As shown in
Table 1, our NNI implementations run significantly faster than the
linear interpolation and the RST based interpolation. The NNI al-
gorithm takes only 17% of the time of the linear interpolation for
both the Afghanistan and DKPART data sets, and only 11% of the
time on the Fort Leonard Wood data set. In comparison with the
RST algorithm, the NNI implementation takes only 2.8% of the
time on the Afghanistan data set and approximately 1.8% of the
time on both the DKPART and Fort Leonard Wood data sets.

Worth noting is the breakdown of the time spent binning the
data and the time spent performing the interpolation. On all three
data sets when running the CUDA-based implementation, the bin-
ning takes a little under half of the running time of the algorithm.
While necessary in some cases, many data sets are already stored
in tiles such that binning could be skipped. In contrast, the RST
method spends most of the time on interpolation, while the linear-
interpolation algorithm spends most of the time on constructing the
TIN.

The time results also show the significant advantage provided by
CUDA, with the CUDA based implementation taking 10%-20% of
the time of the non-CUDA based implementation.

It it worthwhile to compare the bottlenecks in the two different
NNI implementations. The experiments were again done on the
Afghanistan data set. As shown in Table 2, without using CUDA
the bottleneck in the implementation is reading C to main memory.
At both grid resolutions, reading C takes approximately 70% of the
total running time of the interpolation. And, since a smaller grid
resolution requires more tiles, there are more read backs on the
0.8 meter resolution and thus the time of the algorithm increases
significantly.

With our CUDA implementation, we remove the high cost of
GPU memory reads since we are reading back a fraction of the
data, but the BUFFERANALYSIS step is highly dependent on the
grid resolution. With a 2 meter resolution, the bottleneck is clearly
merely drawing the cones for the Voronoi diagrams, and BUFFER-
ANALYSIS takes negligible time. With a higher grid resolution of
0.8 meters, the expensive atomic add operation is performed many
more times in the BUFFERANALYSIS step and thus it takes far more
time. However, even with the bottleneck shifting to the CUDA step,
the algorithm is still much faster with CUDA than without it.
Quality of output. It is, of course, necessary to compare not
just the speed but also the quality of these different interpolation
schemes. To do this we compared the smoothness of the contour
maps from the NNI and linear interpolation over the Afghanistan
data set. The entire Afghanistan data set is very dense, with 6.5
points per square meter. Even at a 0.8 meter grid resolution, very
few differences in contour maps were seen between the two inter-

polation methods. This was also obstructed by the many trees in
the region which cause frequent changes in elevation in the grid.
Therefore, to perform these quality tests we used the Afghanistan-
1 and Afghanistan-2 data sets.

We ran both the linear interpolation and NNI on the data, with a
scaling parameter of 5 and a grid resolution of 2 meters. Finally,
we use the GRASS GIS system [15] to compute the contour lines
from the interpolated data with a 1 meter increment between con-
tour levels.

We present in Figure 10 sample images from each pair of con-
tour maps. Comparing the maps, it can be clearly seen that at
certain points, especially around curves, the linear interpolation
from the triangulation produces jagged results while the NNI main-
tains its smoothness. It is clear that as the input data becomes
sparser in Afghanistan-2, the linear interpolation becomes increas-
ingly jagged, while the NNI output remains smooth.
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