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ABSTRACT

Bare Earth gridded digital elevation models (DEMs) are of-
ten used to extract hydrologic features such as rivers and
watersheds. DEMs must be conditioned by removing spu-
rious sinks (or depressions) which impede water flow in the
model, but are not true hydrologic barriers. This condi-
tioning process is designed to enforce proper drainage and
connect real hydrologic networks (rivers) that would other-
wise be disconnected in the unconditioned DEM. Primary
means of conditioning DEMs include filling sinks and cut-
ting barriers.

The availability of high resolution DEMs derived from li-
dar introduces new forms of false hydrologic barriers, pri-
marily bridges. While attempts are made to automatically
remove trees, buildings and bridges from bare Earth ter-
rains, in practice many bridges remain in the final “cleaned”
DEM. We present a supervised machine learning approach
for detecting bridges and other hydrologic barriers in DEMs.
Furthermore, we locally apply a simple cutting algorithm
to condition DEMs in areas tagged as barriers by the ma-
chine learning step. After cutting, we use a filling technique
to remove any remaining spurious depressions. Experimen-
tal results indicate that our approach accurately identifies
a variety of bridge and bridge-like features. Our final con-
ditioned DEM both modifies fewer grid cells and modifies
cells to a lesser extent than other traditional conditioning
approaches. The result is more realistic hydrologic models
on high resolution terrains.

Categories and Subject Descriptors: I.4.9 [Image Pro-
cessing and Computer Vision]: Applications

General Terms: Algorithms

Keywords: Supervised Learning, Terrain Modeling

1 Introduction

Digital elevation models (DEMs) are a common base layer
from which a wide variety of terrain analysis applications
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are derived. Examples include [26] flow modeling, water-
shed extraction, viewshed analysis, erosion modeling, flood
plain mapping, and landslide risk assessment. Many of these
applications begin by modeling the flow of water over the
terrain. Flow modeling can be defined for both grid DEMs
and triangulated irregular networks (TINs). We present an
overview of the flow modeling process for grid DEMs which
are the focus of this paper.

Flow modeling [10] consists of two primary phases: flow
routing and flow accumulation. In the flow routing phase,
we designate for each grid cell p one or more downslope
neighbor cells to receive flow from p. Though many flow
routing models exist, e.g., [5, 22, 11], the single flow direc-
tion (SFD) model is a common approach which directs all
of p’s flow toward the single steepest downslope neighbor
of p. In the flow accumulation phase, a uniform amount of
water is placed on each grid cell and the water from each
cell is distributed to the downslope neighbors according to
the flow routing mechanism. The flow accumulation (some-
times called the upslope contributing area) of a cell p is the
total contribution of water from all upslope neighbors con-
nected via a flow routing path to p. Intuitively, cells along
river channels have high flow accumulation values while cells
along ridges have low flow accumulation values. River net-
works are frequently extracted from a DEM by selecting lines
of high flow accumulation values. Watershed boundaries can
also be extracted using flow accumulation information [24,
3]. River networks and watershed boundaries are then used
for other GIS applications including erosion modeling and
floodplain mapping.

1.1 Drainage Enforcement

Because flow modeling algorithms route flow downhill, there
is no outgoing flow for local minima or sinks in the DEM. In
practice, local minima are classified as significant sinks or
spurious/insignificant sinks. Examples of significant sinks
include quarries, open pit mines, sinkholes or large natural
closed basins with no surface drainage outlet. Spurious sinks
are noise in the sampling or digitization of the input data, ar-
tifacts from vegetation or building removal, or small natural
features that flood easily. After raising the elevation of a few
cells within the terrain, flow can be routed out of spurious
sinks and towards the edge of the DEM or towards a signif-
icant sink. Because spurious sinks artificially disrupt flow
modeling and result in inaccurate disconnected hydrologic
networks, DEMs must be hydrologically conditioned before
flow modeling analysis begins.

Hydrologic conditioning modifies the elevation of a DEM



Figure 1: Examples of types of sinks and means of conditioning. For simplicity examples are shown only for one dimensional
data.

to remove spurious sinks. The two primary means for con-
ditioning DEMs are filling [10, 2] and cutting (also called
carving or breaching) [13, 21]. An example of these condi-
tioning methods is shown in Figure 1. Filling modifies the
terrain by raising the elevations of grid cells within a spuri-
ous sink until there is a path of monotonically non-increasing
height from the sink to a global outlet or a significant sink.
Cutting modifies the terrain by lowering the elevation of a
barrier on the boundary of the sink to create an outlet path.
Combinations of filling and cutting can also be used [20].
Ideally, filling should be used in spurious sinks where the er-
ror or noise in the DEM artificially lowered elevations, while
cutting should be used on artificially high cells. It is often
difficult to automatically distinguish between these filling
and cutting cases, or to even distinguish between significant
and spurious sinks. In practice, GIS tools apply one hydro-
logic conditioning method (filling or cutting) to all sinks in
the DEM regardless of type.

1.2 New Challenges

Modern remote sensing techniques such as lidar present new
challenges for hydrologic conditioning. Grid DEMs are fre-
quently derived from millions or billions of lidar points. These
DEMs are many gigabytes in size and processing such large
terrains frequently strains computational resources. Fur-
thermore, at the high resolution of lidar DEMs (1–10 me-
ters, or 3–32 ft, resolution per cell is common), many small
features not captured at coarse resolutions are now visible.
Significant sinks such as quarries, excavation sites, and shal-
low depressions in karst dominated topography are much
more prevalent in high resolution terrains. Furthermore,
while some attempt is made to automatically remove vege-
tation and man-made features, including bridges, from raw
lidar data to create bare-earth models of the ground surface,
some building footprints, low lying vegetation, roadways,
and bridges remain in the DEM. Bridges and bridge-like
features, such as berms with drainage culverts and check
dams, are particularly problematic in lidar DEMs because
they create spurious sinks precisely along locations of water
flow. Removing the bridges from a DEM is a form of hy-

drologic conditioning which cuts through the bridge barrier
responsible for creating the spurious upstream sink.

Preprocessing a DEM for surface water flow analysis would
ideally classify each sink as one of three types: real sinks
such as quarries or closed basins, small spurious sinks due
to noise, and spurious sinks created by bridge-like barriers
crossing a waterway in the DEM. Real sinks should persist
in a hydrologically conditioned DEM. Small spurious sinks
can be removed using a filling approach with little impact.
Bridge-like barriers should be removed using a cutting ap-
proach. Since we are interested in processing large, high
resolution DEMs, an ideal hydrologic conditioning approach
should be scalable to large data sets.

1.3 Our approach

We present a method that moves towards an ideal hydro-
logic conditioning system by describing a supervised ma-
chine learning technique for classifying bridge-like features
in grid terrains and implementing a cutting method for re-
moving these features from the DEM. Our approach uses
only algorithms scalable to large data sets and considers only
small local windows around each grid cell. When compared
to other hydrologic correction tools, our method modifies
fewer grids cells and modifies cells to a lesser extent, while
still qualitatively providing improved hydrological models.

2 Related Work

Numerous techniques for hydrologic conditioning and mod-
eling water flow over grid DEMs have been proposed in
GIS, computer science, and hydrology literature. Single
flow models and filling techniques for conditioning [10] were
proposed first, but additional flow models [22, 11] and cut-
ting/hybrid conditioning models [13, 21, 20] have been well
studied. While our primary focus is on grid DEMs, hydro-
logical models for TINs have also been defined [6, 14].

Correcting DEMs using filling and computing flow accu-
mulation values uses a number of basic graph algorithms
that work well on small data sets, but are difficult to scale
to data sets larger than main memory. TerraFlow [2] and



TerraStream [5] are two software packages that implement
scalable algorithms for hydrologic conditioning and flow mod-
eling on very large, multi-gigabyte terrains. TerraStream
also has the advantage of working on both grids and TINs.

Most hydrologic conditioning algorithms apply condition-
ing to all sinks in the terrain, resulting in a conditioned
DEM with no sinks, except for cells on the grid boundary.
As noted in the introduction, some sinks in the terrain cor-
respond to real features. Based on the concepts of topolog-
ical persistence and the Morse-Smale complex [8, 7], Terra-
Stream assigns a persistence score to each local minima such
that smaller sinks which require less filling have low scores,
while larger sinks corresponding to quarries and other real
sinks have higher scores. The score is closely related to the
height difference between the minimum height cell in the
sink and the lowest height cell on the boundary of the sink.
TerraStream can selectively condition only sinks with a score
below a user provided threshold. While this selective con-
ditioning could be very useful, sinks created by tall bridges
blocking a river channel are assigned a high score in this
topological persistence model. In Figure 1, the quarry and
bridge in the original terrains have similar large scores, while
the sinks in the original terrain with noise are small and have
small scores. Since TerraStream only conditions using a fill-
ing approach, the inability to distinguish between bridges
and quarries limits the effectiveness of selective condition-
ing. Removing bridges using cutting and then computing
the scores of remaining sinks would allow the quarry to be
preserved by filling with a low score threshold.

To effectively and efficiently classify bridges, we leverage
the Adaptive Boosting machine learning algorithm proposed
by Freund and Schapire [9]. AdaBoost adaptively combines
a number of weak classifiers that may perform only slightly
better than random guessing to boost the overall accuracy
of a final strong classifier. We were motivated to select this
machine learning approach due to its speed and its success
in applications similar to ours such as real time face detec-
tion in digital images [25] and the identification of trees in
aerial imagery [27]. We describe AdaBoost in more detail in
Section 3.1.

Feature extraction from GIS data including lidar DEMs
continues to be a well studied topic. Morphological ap-
proaches [19, 18, 4] are commonly used to extract features
with well defined edges. Regarding the related problem of
road extraction, a survey by Mena [15] summarizes a wide
variety of techniques for detecting roads in GIS. However,
methods for the detection of bridges and bridge-like features
for the purpose of hydrologic conditioning seem lacking. In
practice, data providers perform a simple intersection of
road and river vector features to identify likely bridge candi-
dates and then “burn” the river lines into the DEM by low-
ering the elevation of the DEM along these bridge intersec-
tions. This approach suffers from potential alignment issues
particularly in high resolution terrains. Furthermore, since
many small streams are not vectorized and several raised
surfaces with drainage pipes are not along roads and clas-
sified as bridges, a simple vector intersection does not solve
the problem.

The USGS Center for Lidar Information Coordination and
Knowledge (CLICK) [23] has lidar DEMs of watershed scale
areas in North Carolina, Ohio, and Pennsylvania that have
numerous bridges and bridge-like features across small and
large stream channels. These DEMs must undergo signifi-

cant hydrologic correction before they are suitable for hydro-
logic analysis. The abundance of bridges in these data sets
and the lack of tools designed explicitly for their removal mo-
tivates our efforts to improve hydrologic conditioning for im-
proved drainage enforcement on high resolution grid DEMs.

3 Methods

We aim to improve the conditioning of DEMs using a two
phase approach. First, we identify likely bridge locations
given a small training set of hand selected bridge and non-
bridge locations. We accomplish this task by using Ada-
Boost to construct a classifier which assigns a numerical
score to each cell in a DEM such that cells with higher scores
are more likely to be bridges. Once our classification phase
is complete, we hydrologically condition the DEM by apply-
ing a morphological operator that cuts through only those
cells identified as likely bridges in the previous phase. Be-
low we describe these phases in more detail, starting with a
quick overview of AdaBoost.

3.1 Bridge Classification Using Adaptive
Boosting

We wish to train a classifier h(x) which takes as input a set
of features describing a single cell x in a terrain and outputs
a score which indicates the likelihood of x having a partic-
ular property. We want to design a classifier which assigns
high scores to likely bridges and low scores to non-bridge
cells. AdaBoost [9, 25] is a machine learning algorithm that
systematically combines sets of weak classifiers, each which
may individually have a high error in classification, to form
a strong classifier with low overall error.

The first step in training such a classifier is to hand-tag
a small number of positive and negative training samples,
xi, 1 ≤ i ≤ k, each with a classification yi ∈ {+1,−1}. For
AdaBoost to be effective, these samples must be selected to
adequately cover the search domain. Each training sample
has an associated weight, wi, and a feature vector describ-
ing the local characteristics around the selected point (see
Section 3.2). The weights of all samples are initially equal.

AdaBoost proceeds in a series of T rounds, for some user
specified value T . In each round t, the algorithm selects a
weak classifier, ht(x) which best distinguishes the weighted
positive and negative training samples. In each round, we
use as our weak classifier a linear threshold θt on the fea-
ture ft that best minimizes the classification error. More
formally, we have

ht(x) =

{
1 if ptft(x) < ptθt

−1 otherwise
(1)

where pt ∈ {+,−} is used to change the direction of inequal-
ity, if needed.

We compute the error εt of a classifier by summing the
weights of the incorrectly classified training samples. Based
on the error of the best weak classifier, we calculate a clas-
sifier weight αt of ht(x) in round t:

αt =
1

2
ln

1− εt
εt

(2)



We then use classifier weight to recompute the sample
weights wi of each training sample xi, which reflects how
well the algorithm has categorized the training sample so
far. The weight of the sample in round t + 1, wi(t + 1) is
given by:

wi(t+ 1) =
wi(t)e

−αtyiht(xi)

Zt
, (3)

where Zt is a normalization constant such that the sum
of all weights in each round is unity.

After selecting a weak classifier and reweighting training
samples for T rounds, the weak classifiers are combined to
produce a strong classifier, H(x). After training a strong
classifier, we use it to evaluate new terrain data. For each
cell x that we wish to evaluate, we extract only the fea-
tures used in the strong classifier. The strong classifier then
evaluates the cell at x, assigning it a confidence score:

H(x) =

T∑
t=1

αtht(x) (4)

Finally, we normalize this score into the range (0,1) using
the following sigmoid function:

Hnorm(x) =
1

1 + e−H(x)
(5)

We can view the normalized score as a probability, with
higher confidence that we have found a bridge as the score
approaches one.

3.2 Feature Extraction

In addition to choosing representative training samples, Ada-
Boost relies on the features we extract from the elevation
data to achieve robust categorization. Better context pro-
vided by the features translates to better categorization. All
features described below require a small window inside of
which local characteristics of a given map are taken into
account.

We have empirically determined that the following five
maps enable useful feature extraction. The first is the orig-
inal DEM itself, followed by four derived maps. Our second
map results from applying a 3× 3 Sobel operator, typically
used in edge detection, to each cell in the elevation data.
This produces a map that differentiates areas of high and
low gradient.

We calculate discrete Tangential and Profile curvatures
from the DEM using a 3×3 window for our third and fourth
maps. Tangential curvature is measured along the direction
of contour lines for a given cell. Profile curvature is measured
along the direction of the gradient. Tangential curvature
helps identify the typical smoothness of bridge edges while
profile curvature identifies the steep slopes in the transition
from the top of the bridge to the ground below.

For our final map, we use TerraStream [5] to efficiently
compute a Fill map. To create this map, we begin by hy-
drologically conditioning the entire DEM using filling. We
take this corrected map and subtract from each cell the orig-
inal elevation value. The result is a Fill map that reflects
only areas of extensive filling. Since uncut bridges “block”
large volumes of water, we see very large Fill values locally
upstream of bridges (See Figure 4a.)

(a) Vertical
feature.

(b) Horizon-
tal line fea-
ture.

(c) Checkered
feature.

Figure 2: Some Haar-like features. To calculate the scalar
result, we sum values of a given map corresponding to each
zone and then subtract white from gray areas.

During the training process, the algorithm visits each train-
ing sample in turn and extracts a large set of features based
on local variations in each map. Extracting the features
uses a window around the point of interest to provide local
context. We calculate the minimum, maximum, average,
and variance within these windows. Additionally, we make
extensive use of Haar-like features [12], shown in Figure 2.
These features are simple and efficient to compute as well
as scalable to a variety of window sizes. They focus on pat-
terns that arise locally in the derived maps. For each of
the Haar-like features, we also use a top hat filter [17] over
the feature, which serves to smooth some of the variance in
the DEM and derived maps. With these maps and features,
we can effectively distinguish bridges from other terrain fea-
tures.

3.3 Cleaning Classified Map

Applying the strong classifier to a testing region results in
a map in which each cell is annotated with a bridge con-
fidence score. This resulting map is somewhat noisy (an
example is shown in Figure 5a in Section 5), so we use a
morphological open operator to clean the map and reduce
noise. The open operator consists of an erosion operator
followed by a dilation operator. The erosion and dilation
operators set the center point in a small window of cells
to the minimum or maximum value in the window, respec-
tively. When we apply the erosion operator the small noisy
classified regions are eliminated while larger, more robust
classified regions are reduced. The following dilation en-
hances the robust regions back to their original size while
reducing or eliminating noise. The noise reduction serves
to remove spurious spikes of high classification scores while
keeping the true bridge classifications intact. For high reso-
lution DEMs, bridges extend over several cells. We enhance
high confidence areas using further dilations to ensure high
confidence scores extend over the entire width of the bridge
instead of highlighting only an edge or center of a bridge.

3.4 Hydrologic Conditioning

Once we have successfully identified bridges in a region, we
adjust the local terrain to improve water flow analysis accu-
racy. Over likely bridge locations (cells with high classified
scores), we apply an erosion operator to the original eleva-
tion map. This operator is applied in a small local window
so that the elevation around bridge regions is lowered to
the lowest elevation in a local window, cutting through the
barriers that had been impeding water flow. Thus, after
our algorithm has been trained to recognize bridges and we



Figure 3: A section of the Neuse river basin. The training
area (west) and testing area (east) are outlined.

have classified a region, we can act on the information to cor-
rect the elevation such that flow analysis results in correct
drainage enforcement.

4 Experiments

To validate our approach, we implemented our algorithms in
C++ and tested them on a large DEM covering the Neuse
River watershed in North Carolina, USA. The parameters
used for tagging training samples, extracting features, and
conditioning terrains are described below. All experiments
were run on a 2.8 GHz Quad-Core AMD Opteron processor
with 8 GB of memory.

4.1 Training

Our initial tests used a grid DEM sampled at 40 foot reso-
lution1. The training area contains 5.8 million cells. A por-
tion of the terrain is show in Figure 3 along with outlined
training and testing regions. Within this area, we hand-
tagged 200 positive and 400 negative training examples. To
accurately represent our search space, we needed negative
samples from rivers, valleys, plateaus, significant hydrologic
sinks, and other non-bridge locations. Since there are nu-
merous types of non bridge features, we tagged more nega-
tive examples than positive.

At each sampled location, we extracted features from Ele-
vation, Sobel, Profile, Tangential, and Fill maps. We use the
minimum, maximum, average, and variance features along
with 15 Haar-like features and 15 top-hat features. Each
of the minimum, maximum, average, and variance was ex-
tracted at three window sizes ranging from 3 × 3 to 9 × 9.
The other 30 features vary more widely, but cover sizes from
1× 3 to 29× 25. Since each of these 34 features is extracted
over three different window sizes we have 102 features per
map. In total, 510 features describe each training sample,
102 from each of five maps.

We also experimented with the training and testing area
sampled at 20 foot resolution. Here the training area is four
times denser, containing 23.4 million grid cells. Since our
feature extraction windows operate on cells, we increased
the window sizes of all features fourfold to cover the same
total area as the trials run at 40 foot resolution. Unless

1This grid DEM was constructed from original lidar points using
a regularized spline with tension [16, 1].

otherwise specified, experiment details are reported on the
40 foot resolution. Results for 20ft data were very similar.

Once we extract the feature vector from each training sam-
ple, we use it as input to the AdaBoost algorithm. AdaBoost
runs for a specified number of rounds, selecting the one weak
classifier in each round that best classifies the weighted pos-
itive and negative samples (see Section 3.1). Using cross-
validation (see Section 5.3) we empirically determined that
our strong classifier was most effective using 20 weak classi-
fiers (20 rounds) at 40 foot resolution and 40 classifiers at 20
foot resolution. The feature extraction of training data and
strong classifier construction takes less than five seconds.

4.2 Improved Drainage Enforcement

We tested the strong classifier on a 440,000 cell region north-
east of the training region. For each cell, only the features
required by the strong classifier were extracted from each
map as described above. After extraction, each cell is as-
signed a confidence score by the strong classifier (see Section
3.1). The extraction process takes less than five minutes,
while the classification assignment takes about one minute
including reading the large input files from disk.

After identifying the bridges – cells with a classification
score above 0.5 – in the testing region, we use the erosion
operator to remove them as described in Section 3.4. We em-
pirically determined that, at 40 foot resolution, five consec-
utive erosion operators flattens enough terrain to effectively
remove hydrologic barriers and allow for accurate flow mod-
eling without modifying more than a small local area around
the bridge. Each erosion operator is applied using a 9 × 9
window centered on the cell being eroded. These parame-
ters are adjustable based on terrain resolution. Modification
of bridge cells in the testing region takes less than two sec-
onds. After modifying the terrain using erosion operators,
some spurious sinks may still remain. We remove these sinks
by running TerraStream on the eroded terrain. TerraStream
uses a filling approach to remove remaining sinks.

One way to judge the effectiveness of our modifications is
to calculate the flow accumulation and extract the river net-
works using TerraStream. By comparing flow routing using
our approach against the traditional TerraStream approach
of filling all sinks with no bridge detection, the river net-
work extraction process provides a qualitative measure of
our ability to correctly alter the terrain. In Figure 8 we
show the river networks with and without cutting.

5 Results

In this section we describe both quantitative and qualitative
results of our experiments. We report on cross-validation re-
sults over the training area to quantitatively evaluate how
well our system adapts to unseen data. We also detail the ac-
curacy of our automatic classification of cells using a careful
but slow hand classification of a small testing area. Regard-
ing classification, we examine which types of DEM derived
maps were selected most often for distinguishing bridges
from non-bridges and describe the relative weighting of maps
used for feature extraction. We finish with a summary of the
improved hydrologic models we can construct with our ap-
proach and describe some minor limitations of our solution.

Unless otherwise stated, the results in this section are de-
rived from 40 foot resolution data. Classification maps and



the resulting river networks look nearly identical on higher
resolution data. We use the 20 foot resolution dataset to
show how our algorithm adapts to changes in scale.

5.1 Overview

Before describing our results in detail, we start with a quick
overview that highlights the capabilities of our method. The
most immediate result of removing hydrologic barriers is the
reduced need to remove sinks using filling. Recall that our
initial Fill map is computed by removing all sinks using the
filling approach implemented in TerraStream and then sub-
tracting the original terrain. This Fill map is only used for
classification purposes and is not used for our final hydro-
logic conditioning. To compute our final conditioned map,
we first remove or reduce barriers classified as bridges us-
ing a morphological erosion operator. We then remove any
remaining sinks using TerraStream’s fill algorithm. We can
compute a new difference map which is the subtraction of
the original DEM from our final conditioned DEM. Figure 4a
shows a section of testing area in which we compare fill val-
ues generated using only TerraStream. Only significant Fill
values (above one foot or 30cm) are shown. Uncut bridges
can be qualitatively identified by large Fill values upstream.
Figure 4b shows that same area when we cut bridges before
filling. Markedly less fill is necessary since we have correctly
identified bridges and modified the terrain in a more appro-
priate way. The underlying terrain no longer needs to be
artificially raised in as many places to allow water to flow
over barriers. In this figure it is possible to see small blocks
around the bridge locations that have had their original el-
evations lowered by the erosion operator to correctly route
flow.

To correctly classify bridges in the DEM, we discussed the
use of morphological operators in Section 3.3. If we look at
the initial classification results in Figure 5a we see too many
highlighted regions classified as bridges as a result of noise
in the classification. To reduce the set of false positives we
apply the 9 × 9 open operator to each cell. After a single
open operation, we see a dramatic reduction in classified ar-
eas (Figure 5b). Since the erosion operator eliminates small
spikes of noise, the subsequent dilation enhances only points
of high confidence. With only one dilation, modifications to
the underlying terrain to adjust for water flow have some ef-
fect, but additional dilations improve the classification map.
In Figure 5c we see that most bridges are completely covered
by high classification scores after three more dilations. Note
that these images were taken from terrain sampled at 40 foot
resolution, but classification of the higher resolution dataset
looks identical. The highlighted regions cover enough of the
area near bridges so that erosions of the underlying terrain
allow for correct flow routing.

Over the larger testing area of 440,000 cells, of which the
previous maps are a subset, we can quantitatively look at
the classified maps. We consider a cell to be a bridge when
the classification score is above 0.5 out of a possible 1. In
the initial, noisy classification, 1.39% of cells in the map are
classified as bridges. Applying an open operator reduced
that number of bridge candidates fourfold to 0.35%. Subse-
quent dilations caused the classification cover to increase to
1.87% of the testing area. Since we only cut the terrain in
areas classified as bridges, reducing noise and false positives
reduces unnecessary modifications to the terrain.

(a) Test area with Fill values overlaid.

(b) Result after hydrologic conditioning and sub-
sequent flooding. Fill values overlaid.

Figure 4: Test area before and after hydrologic conditioning.

Despite the growth in coverage, the distribution of clas-
sified data tightened noticeably. The standard deviation of
classification scores for cells labeled as bridges was initially
0.159, but was reduced to 0.129 after the open operator.
The value increased slightly to 0.132 after three more di-
lations. Furthermore, the average classification score of all
cells in the testing area fell from 0.031 in the original map
to 0.014 after the open operator and rose slightly to 0.018
after further dilations. Classification scores close to zero in-
dicate a cell is likely not a bridge. The low average score
for the entire terrain indicates once again that only a small
percentage of cells are marked as potential bridges. The
morphological operators allow us to correctly narrow down
the search for hydrologic barriers. They enable us to focus
on the most important bridge locations, isolating them for
later modification.

5.2 Validating Testing Area

To quantify how effectively we detected bridges, we manu-
ally inspected the entire testing area to check the classifi-
cation against the ground truth. We let any region with a
confidence score above 0.5 qualify as a positive classification.
In all, we identified 40 bridges by hand in the testing region.
Our algorithm correctly detected 31 of these bridges, miss-
ing the other 9. There were no false positives. Thus the
recall was 0.78 and the precision was 1. It is encouraging
that all the correct classifications were major bridges in the
area while all false negatives were much more minor barriers.



(a) A noisy initial classification. (b) After a single morphological ero-
sion and dilation.

(c) After a single morphological ero-
sion and four dilations.

Figure 5: Test area as we refine the classification using morphological operators shown at 40ft resolution. 20ft resolution
results look identical.

5.3 Cross-Validation

Given our set of 600 hand tagged training samples of bridges
and non-bridges, we applied cross-validation to evaluate the
performance of our AdaBoost implementation. We used 10-
fold cross-validation in which we partitioned our training
samples into ten disjoint sets and repeatedly trained Ada-
Boost on nine of these sets and tested the resulting classifier
on the excluded set of training data. By varying the number
of weak classifiers used to build our final strong classifier and
measuring the cross-validation error, we empirically deter-
mined that, at 40 foot resolution, 20 weak classifiers provides
the best classifying power without overfitting. As we see in
Figure 6a, error generally decreases until about 20 classifiers
before leveling off. At the twentieth classifier, the error is
5.78 percent. After this threshold (marked by the vertical
line) the slope indicates that the weak classifiers are begin-
ning to overfit the search space. Precision and recall stay
generally constant over the cross-validation process, hover-
ing around 90 percent.

We also cross-validated the training region on 20 foot reso-
lution data. In Figure 6b we show the cross-validation error,
which decreases steadily until about 40 classifiers. We see
the slope diminish and plateau as the classifiers overfit. Be-
cause of the higher resolution dataset, the variance of data
values within a given window is typically higher. This in-
creased variance makes the distribution of terrain features
slightly noisier and makes classification a bit harder. Fur-
thermore, our cross-validation evaluates classification scores
only at an individual cell and compares them against our
hand-tagged samples. Because it is more difficult to repre-
sent a bridge by a single grid cell at high resolution, false
positives and false negatives are artificially higher than a
comparison with the ground truth would suggest (see Sec-
tion 5.1). Still, we are able to reduce error to 6.60 percent
after 40 classifiers. Precision and recall vary slightly more
at this higher resolution, finishing at 92 and 88 percent, re-
spectively.

5.4 Feature Selection

To train the detection algorithm, each training sample was
associated with 510 possible features extracted from the
DEM or maps derived from the original DEM. Each weak
classifier selected by AdaBoost in a particular round repre-
sents the best, most discriminating of those features in that
round. It is interesting to look at which features were chosen

(a) 40 foot resolution.

(b) 20 foot resolution.

Figure 6: 10-fold cross-validation error as weak classifiers
are added to strong classifier. The vertical line highlights
the cutoff classifier.

and with what regularity. In Figure 7 we show the normal-
ized weights and the percent of time each type of the five
maps was chosen. Figures 7a and 7b show the distribution
at 40 foot and 20 foot, respectively.

We see that the distributions of weights and percents
change as we test on 20 foot and 40 foot resolution. On
the 40 foot sample, the Fill map dominates the other fea-
ture groups, being chosen nearly forty percent of the time
with an average weight of 0.34, clearly making it the most



(a) 40 foot resolution. 20 classifiers were used.

(b) 20 foot resolution. 40 classifiers were used.

Figure 7: Weights and percentages of feature groups used
by AdaBoost. Weights and percentages are normalized to
the range [0,1].

useful map at that scale. On the 20 foot sample, the Fill
map is chosen almost twenty percent of the time with an
average weight of 0.18. In higher resolution DEMs, bridges
span more cells, and high Fill values are likely to be fur-
ther from the center of the bridge. This property and the
higher variance of features in high-resolution data somewhat
de-emphasizes the ability of Fill data to distinguish posi-
tive from negative samples. However, the higher resolution
data allows us to better capture sharp changes in the ter-
rain and better model parameters such as gradient and pro-
file/tangential curvature. The ability to adaptively change
the weights as the scale changes is one benefit of the machine
learning approach.

If we eliminate features derived from the Fill map for
training and testing at 40 foot resolution, the cross-validation
error rises to 7.42 percent, or about two percent higher than
the error computed using the map. Since Fill is difficult to
calculate, the ability of TerraStream to efficiently compute
Fill values for large maps is essential.

In both the 40 foot and 20 foot resolution maps, some
popular specific features emerged. The maximum profile
curvature was prominent, being selected in 5.50 percent of
the weak classifiers during our cross-validation experiments
on 40 foot resolution and 3.75 percent on the 20 foot reso-
lution. Since the Profile map has high values along bridges,
it is encouraging to see this feature being selected often.

(a) Region 1: Large river
rerouting before correction.

(b) Region 1: Accurate
river network after correc-
tion.

(c) Region 2: Poor routing
around bridges before cor-
rection.

(d) Region 2: Improved
network after correction.

Figure 8: River networks extracted from sections of the test-
ing area before and after hydrologic correction. Bridge icons
are overlaid.

Another popular feature was the horizontal line Haar-like
feature from the Fill map, shown in Figure 2b. If a bridge
is centered along the gray area, large fill values will appear
upstream, at the edge of the feature, but will be close to
zero near the center. This feature was chosen 5 percent of
the time on 40 foot resolution and 1.42 percent on the 20
foot resolution.

5.5 Extracting River Networks

After conditioning the DEM by first removing bridges using
cutting, we fill any remaining sinks using TerraStream’s fill
algorithm. We then use TerraStream to calculate the flow
accumulation and extract the river networks on the con-
ditioned DEM. Figure 8 shows the river networks of two
regions without and with bridge cutting. With no bridge
modifications, the routing of flow is inaccurate due to hy-
drological barriers. In Figure 8a the flow path should cross
under the bridge. But, when only filling is used, the flow
lines instead reroute in a large arc around the bridges. Fig-
ure 8c shows the river network routed parallel to a bridge
until a suitable low point of the bridge is found. In both
cases, the networks derived from terrain in which no bridge
removal is applied are inaccurate. With cutting of bridges,
we see much more accurate river networks. Figure 8b shows
the water flowing though the bridge instead of around it.
A large and incorrect network line has been eliminated and
replaced with a more direct and accurate one. In Figure 8d,
the network no longer runs along the road. It is again less
artificial and more accurate. After identifying bridges and
altering the terrain appropriately, the river networks much
more accurately reflect the ground truth. We can derive
better models using the new modified terrain.



(a) Uncorrected quarry. (b) Corrected quarry.

Figure 9: We incorrectly detect a quarry as a hydrologic
barrier and thus condition inappropriately. Even so, river
network lines still better reflect ground truth after condi-
tioning.

5.6 Impact of Incorrect Classifications

When modifying the underlying terrain based on the clas-
sification map, we need to be concerned about incorrectly
classifying an area. False positives pose a potential problem
because our program alters terrain that should be left in
its original state. As we have seen, the initial classification
map is cleaned using morphological operators to enhance
strong classifications and reduce weaker noise. Still, some
non-bridge features remain in the final classification map.
The changes that result from these false positives are gener-
ally small and are corrected when we condition the terrain
using TerraStream to fill remaining sinks.

False negatives may also be problematic, as we miss real
bridges that block water flow. The cleaning process occa-
sionally erodes small but correct classified regions in the
original map, removing them entirely from the final classifi-
cation. In these cases, we have empirically determined that
the barriers we miss are small and can be filled at a low
threshold without significant impact to the river networks.

In Figure 9 we show the river networks around a quarry
outside of the testing region. With cutting of bridges (Figure
9a), the river networks incorrectly flow through the quarry.
The significance score assigned by TerraStream to the quarry
is high, but the significance scores of sinks formed by tall
downstream bridges are also high. To remove the sinks cre-
ated by bridges when using only filling to modify the terrain,
we must set the threshold for insignificant sinks to infinity,
since there is no way to effectively distinguish between hy-
drologic barriers and quarries using just the threshold. With
cutting applied before filling remaining insignificant sinks
(Figure 9b), we can use a significance threshold of twenty
feet before recomputing the river networks. Thus the quarry
is not completely flooded and, despite our incorrect adjust-
ments, river networks more correctly reflect ground truth.
Note that the more reasonable threshold is made possible
by our correction algorithm. Since most bridge-like barriers
are removed, we are able to lower the threshold for insignif-
icant sinks.

Figure 10 details the misclassification and subsequent con-
ditioning of a stream without any bridges or hydrologic bar-
riers. Figure 10a shows the original terrain with the river
network overlaid. Two regions have high enough scores in
the final classified map to qualify for hydrologic condition-
ing. The modified terrain is shown in Figure 10b. Com-

(a) No cutting applied. (b) Cutting applied.

Figure 10: An example of two non-bridge areas incorrectly
classified. The river network lines are affected only slightly.
In both the uncut and cut images, filling is applied as a final
step to remove any spurious sinks.

paring these two maps, we see that no barrier exists where
the terrain was altered. It is clear, however, that the river
network is largely unaffected by these changes. When we
incorrectly classify terrain, the local changes that result are
small enough so as not to disturb the river networks. As we
have seen, though, correct identification of hydrologic barri-
ers leads to markedly improved networks. Thus, the benefits
of cutting through true bridges using morphological erosion
operators far outweigh the minor artifacts that result from
modifying false positives.

6 Discussion

Overall, our trained strong classifier computed using Ada-
Boost performs well in identifying a wide variety of bridge-
like features in grid DEMs given only a small training set.
The areas of the terrain classified as bridges allow us to dis-
tinguish between sinks created as the result of barriers and
sinks created as the result of sampling noise.

Our simple morphological operator cuts through bridge-
like features and dramatically reduces the extent of DEM
modification when compared to a conditioning approach that
uses filling for all sinks. Conditioning using filling can be
computationally intensive, particularly in the case of nested
sinks, and requires sophisticated techniques [2, 5] to scale
to large data sets. Our morphological approach is scalable
because it only examines a small local window around a bar-
rier to effectively modify the DEM and remove bridge-like
features. Because the computation within each window is in-
dependent of other classified regions, classification of DEM
cells and modification of the DEM are excellent candidates
for parallelization to further improve performance.

Occasionally, our erosion operator can make DEM modi-
fications beyond the extent of the actual barrier, or eroding
a false positive as shown in Figure 10. This has the side ef-
fect of creating small but visible artifacts in the conditioned
DEM. However, these artifacts do not significantly alter the
hydrologic networks. In contrast, filling large sinks blocked
by tall bridges often creates large “lake” artifacts in the con-
ditioned DEM. The Fill map overlay in Figure 4a shows
the extent of these lake artifacts. The “lakes” are large flat
areas of constant elevation which erase the original terrain
and require additional algorithms to route flow on flat sur-
faces. Most of these algorithms are based on methods that
are geometric and computationally efficient. The resulting
hydrologic networks in these flat areas look very unnatural
and do not reflect the original DEM topography. Computed



rivers in flat areas tend to turn at forty-five or ninety degree
angles and have multiple parallel flow lines the travel in a
constant direction for extended distances (see the left side
of Figure 8a and Figure 8c for examples of these unnatural
river lines).

While our morphological erosion operator better condi-
tions sinks blocked by barriers when compared to filling,
there is still potential for improving our conditioning tech-
nique. One possible fix is to identify the upstream and down-
stream sides of a barrier tagged by our classifier and cut only
a thin path through the barrier that connects these two sides.
Since the number of regions identified as bridge-like features
is small compared to the entire DEM, and since each feature
has a limited extent, we can develop more sophisticated and
computationally intensive techniques to apply to these small
areas. Still, we find that our current approach represents a
significant improvement over current hydrologic condition-
ing techniques for modern high-resolution DEMs and are
confident the conditioning can be further improved by mak-
ing some slight modifications.
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