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ABSTRACT 
Polygons can serve an important role in the analysis of geo-
referenced data as they provide a natural representation for 
particular types of spatial objects and in that they can be used as 
models for spatial clusters. This paper claims that polygon analysis 
is particularly useful for mining related, spatial datasets. A novel 
methodology for clustering polygons that have been extracted from 
different spatial datasets is proposed which consists of a meta 
clustering module that clusters polygons and a summary generation 
module that creates a final clustering from a polygonal meta 
clustering based on user preferences. Moreover, a density-based 
polygon clustering algorithm is introduced. Our methodology is 
evaluated in a real-world case study involving ozone pollution in 
Texas; it was able to reveal interesting relationships between 
different ozone hotspots and interesting associations between 
ozone hotspots and other meteorological variables. 
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1. INTRODUCTION 
Tools that visualize and analyze geo-referenced datasets have 
gained importance in the last decade, as can be witnessed by the 
increased popularity of products, such as Google Earth, Microsoft 
Virtual Earth and ArcGIS. Polygons play an important role in the 
analysis of geo-referenced data as they provide a natural 
representation of geographical objects, such as countries, and in that 
they can be used for the modeling of spatial events, such as air 
pollution. Moreover, polygons can serve as models for spatial 
clusters and can model nested and overlapping clusters. Finally, 
polygons have been studied thoroughly in geometry and they are 
therefore mathematically well understood; moreover, powerful 
software libraries are available to manipulate and to analyze and 
quantify relationships between polygons. Spatial extensions of 
popular database systems, such as ORACLE and Microsoft SQL 
Server 2008, support polygon search and polygon manipulation in 
extended versions of SQL. Surprisingly, past and current data 
mining research has mostly ignored the capabilities polygon 
analysis has to offer. 
 
In general, as we will argue in the remainder of the paper, polygon 
analysis is particularly useful to mine relationships between 
multiple, related datasets, as it provides a useful tool to analyze 
discrepancies, progression, change, and emergent events. This work 
centers on clustering polygons that have been extracted from 
multiple, related datasets. In particular, a new methodology to mine 
related, spatial datasets is introduced that consists of  a meta 
clustering module that clusters polygons and a user driven summary 
generation module that creates a final clustering and other 

summaries from a polygonal meta clustering.  The paper’s main 
contributions include: 

 A novel polygon-based methodology for analyzing related, 
spatial datasets is introduced. 

 In contrast to past research, our approach puts a lot of emphasis 
on the analysis of overlapping polygons that originate from 
different datasets. Novel distance functions to assess the 
similarity of overlapping polygons are introduced for this 
purpose. 

 A density-based polygonal meta-clustering algorithm is  
introduced.  

 Summary generation algorithms that create the final clustering 
from meta clusters are proposed. The algorithms rely on a 
plug-in fitness function to capture user preferences, which is 
maximized when generating the final cluster.  

 The proposed framework is evaluated in a challenging real-
world case study involving ozone pollution in the Houston 
Metropolitan area. 

 
The paper is organized as follows. Section 2 discusses related work. 
Section 3 introduces distance functions and clustering algorithms 
for polygons. Section 4 introduces algorithms that generate a final 
clustering from polygonal meta clusters. Finally, Section 5 
evaluates the proposed methodology using ozone pollution case 
studies and Section 6 summarizes our findings. 
 

2. RELATED WORK 
In [1], Joshi et al. propose a DBSCAN-style clustering algorithm 
for polygons; the algorithm works by replacing point objects in the 
original DBSCAN algorithm with the polygon objects. In [2], Joshi 
et al. introduce a dissimilarity function for clustering non-
overlapping polygons that considers both spatial and non-spatial 
attributes. Buchin et al. [12] propose a polygonal time algorithm to 
compute the Fréchet distance between two polygons. Several papers 
[21], [6] propose algorithms to compute the Hausdorff distance 
between polygons. Sander et al. [7] propose GDBSCAN, an 
algorithm generalizing DBSCAN in two directions: First, generic 
object neighborhoods are supported instead of distance-based 
neighborhoods. Second, it proposes other, more complicated 
measures to define the density of the neighborhood of an object 
instead of simply counting the number of objects within a given 
radius of a query point. 
 
Zeng et al. [3] propose a meta clustering approach to obtain better 
clustering results by comparing and selectively combining results of 
different clustering techniques. In [4] Gionis et al. present clustering 
aggregation algorithms which produce a single clustering that 
minimizes the total number of disagreements among input 
clusterings. The proposed algorithms apply the concept of 
correlation clustering [5]. Caruana et al. [6.] propose a mean to 
automatically create many diversity clusterings and then measures 



the distance between the generated clusterings. Next, the 
hierarchical meta clusters are created. Finally an interactive 
interface is provided to allow users to choose the most appropriate 
clustering from meta clusters based on their preferences.  In general, 
[3], [4], and [6] perform meta clustering on a single dataset, 
whereas our proposed methodology uses meta clustering to analyze 
relationship between polygons from multiple related datasets.   
 
Our work also relates to correspondence clustering, coupled 
clustering, and co-clustering which all mine related datasets. 
Coupled clustering [3] is introduced to discover relationships 
between two textual datasets by partitioning the datasets into 
corresponding clusters where each cluster in one dataset is matched 
with its counterpart in the other dataset. Co-clustering has been 
successfully used for applications in text mining [4], market-basket 
data analysis, and bioinformatics [5]. In general, co-clustering 
clusters two datasets with different schemas by rearranging the 
datasets. The objects in two datasets are represented as rows and 
columns of a dataset. Then co-clustering partitions rows and 
columns of the data matrix and creates clusters which are subsets of 
the original matrix. Correspondence clustering [9] is introduced by 
Rinsurongkawong et al. to cluster two or more spatial datasets by 
maximizing cluster interestingness and correspondence between 
clusters. Cluster interestingness and correspondence interestingness 
are captured in a plug-in fitness functions and prototype-based 
clustering algorithms are proposed that cluster multiple datasets in 
parallel. In conclusion, coupled clustering [3] and co-clustering [4], 
[5] are not designed for spatial data and they cluster point objects 
using traditional clustering algorithms. The techniques introduced in 
correspondence clustering [9] are applicable to point objects in the 
spatial space whereas this paper focuses on clustering spatial 
clusters that originate from different, related datasets that are 
approximated using polygons.   
 

3.  DISTANCE FUNCTIONS AND 
CLUSTERING ALGORITHM FOR 
POLYGONS 
This paper introduces a methodology that uses polygon analysis to 
mine related datasets, which consists of 3 steps:  

1. Collect/Generate polygonal clusters for multiple related 
datasets  

2. Meta cluster polygonal clusters  
3. Extract interesting patterns / create summaries from 

polygonal meta clusters 
 
As far as polygon generation is concerned, our work uses a 
contouring algorithm called DCONTOUR [14] to generate 
polygons  from continuous density functions or interpolation 
functions as described in [13], [14].  Moreover, if spatial cluster 
extensions are given instead, Characteristic shapes [15] and Alpha 
shapes [16] can be used to wrap polygons around objects that 
belong to a particular spatial cluster.  Both Characteristic shapes 
and Alpha shapes algorithms create the Delaunay triangulation of 
the point set and reduce it to a non-convex hull.  Polygon generation 
(Step 1) will not be discussed any further in this paper; this section 
focuses on Step 2. 
 

3.1  Distance Functions for Polygons  
One unique characteristic of our work is that we have to cope with 
overlapping polygons; past work on polygonal clustering usually 
assumes that polygons do not overlap and most uses the Hausdorff 
distance [11] to assess polygon similarity. However, we believe that 

considering polygon overlap is of critical importance for polygonal 
clustering of related datasets. Therefore, in addition to the 
Hausdorff distance, our work proposes two novel distance functions 
called overlay and hybrid distance functions.  
 
We define a polygon A as a sequence of points A= p1 ,…, pn, with 
point p1 being connected to the point pn to close the polygon. 
Moreover, we assume that boundary of the polygon does not cross 
itself and polygons can have holes inside. Throughout the paper we 
use the term polygon to refer to such polygons.  
 
3.1.1 Distance Functions for Polygons 

 

3.1.1.1 Hausdorff Distance 
The Hausdorff distance measures the distance between two point 
sets. It is the maximum distance of a point in any set to the nearest 
point in the other set. Using the same notation as [11], let A and B 
be two point sets, the Hausdorff distance DHausdorff(A,B) for the two 
sets is defined as: 

 
,ܣு௔௨௦ௗ௢௥௙௙ሺܦ      ሻܤ
ൌ maxሼ݉ܽݔ௔א஺݉݅݊௕א஻݀ሺܣ, ,ܣ஺݀ሺא஻݉݅݊௔א௕ݔܽ݉,ሻܤ  ሻሽܤ

 
where d(A,B) is the Euclidean distance between point A and  point 
B. 
 
In order to use the Hausdorff distance for polygons, we firstly have 
to determine how to associate a point set with a polygon. One 
straight forward choice is to define this point set as the points that 
lie on the boundary of a polygon. However, computing the distance 
between point sets that consist of unlimited number of points is 
considerably expensive. An algorithm that solves this problem for 
trajectories has been proposed by [20] and the same technique can 
be applied to polygons. 

 
3.1.1.2 Overlay Distance 
The overlay distance measures the distance between two polygons 
based on their degree of overlap. The overlay distance 
DOverlay(A,B) between polygons A and B is defined as:  

 

,ܣை௩௘௥௟௔௬ሺܦ ሻܤ ൌ 1 െ ௔௥௘௔൫ூ௡௧௘௥௦௘௖௧௜௢௡
ሺ஺,஻ሻ൯

௔௥௘௔൫௎௡௜௢௡ሺ஺,஻ሻ൯
 

 
where the function area(X) returns the area a polygon X covers. 
Basically, the overlay distance is the quotient of the size of the 
intersection of the two polygons over the size of the union of the 
two polygons. The overlay distance is 1 for pairs of polygons that 
do not overlap at all. 
 
3.1.1.3 Hybrid Distance 
The hybrid distance function uses a linear combination of the 
Hausdorff distance and the overlay distance. Because the overlay 
distance between two disjoint polygons is always 1, regardless of 
the actual location in space, additionally using the Hausdorff 
distance provides more precise approximations of the distance 
between polygons. The hybrid distance function is defined as: 

 

,ܣு௬௕௥௜ௗሺܦ ሻܤ ൌ ቀݓ ൈ ,ܣை௩௘௥௟௔௬ሺܦ ሻቁܤ

൅ ቀሺ1 െ ሻݓ ൈ ,ܣு௔௨௦ௗ௢௥௙௙ሺܦ  ሻቁܤ

 



where w is the weight associated with each distance function 
(1 ൒ ݓ ൒ 0ሻ. Due to the fact that our goal is spatial clustering and 
we are interested in obtaining meta clusters whose polygons 
overlap a lot, typically much more weight will be associated with 
the overlay distance function. 
 

3.2  The POLY_SNN Algorithm 
The SNN (Shared Nearest Neighbors) algorithm [8] is a density-
based clustering algorithm which assesses the similarity between 
two points using the number of nearest neighbors that they share. 
SNN clusters data as DBSCAN does, except that the number of 
shared neighbors is used to access the similarity instead of 
Euclidean distance.  
 
Similar to DBSCAN, SNN is able to find clusters of different sizes 
and shapes, and can cope with noise in the dataset. However, SNN 
copes better with high dimensional data and responds better to 
datasets with varying densities. 
 
In SNN, similarity between two points p1 and p2 is the number of 
points they share among their K nearest neighbors as follows: 

 
,1݌ሺݕݐ݅ݎ݈ܽ݅݉݅ݏ 2ሻ݌ ൌ 1ሻ݌ሺܰܰሺ ݂݋ ݁ݖ݅ݏ ת ܰܰሺ2݌ሻሻ 

 
where NN(pi) is the K nearest neighbors of point pi.  
 
SNN density of a point p is defined as the sum of the similarities 
between point p and its K nearest neighbors as follows: 

 

ሻ݌ሺݕݐ݅ݏ݊݁݀ ൌ෍ݕݐ݅ݎ݈ܽ݅݉݅ݏ ሺ݌, ሻ݅݌

௞

௜ୀଵ

 

 
where pi  is point p’s ith nearest neighbor. 
 
After assessing the SNN density of each point, SNN algorithm 
finds the core points (points with high SNN density) and forms the 
clusters around the core points like DBSCAN. If two core points 
are similar to each other, then they are placed in the same cluster. 
All non-core points which are not similar to any core point are 
identified as noise points. All non-noise and non-core points are 
assigned to the cluster of the nearest core point. 
 
When using SNN to cluster polygons, we first calculate the 
distances between all pairs of polygons using the distance 
functions discussed in section 2. Next, we identify the K nearest 
neighbors for each polygon. SNN calculates the SNN density of 
each polygon using the K nearest neighbors list and clusters the 
polygons around core polygons using the DBSCAN like algorithm 
described above.  

 
4.  CREATING FINAL CLUSTERINGS 
FROM POLYGONAL META CLUSTERS 
Several forms of summaries can be generated from polygonal meta 
clusters: 

1. Signatures for meta clusters that summarize what 
characteristics objects in the same meta clusters share. 

2. Discrepancy mining can be used to create knowledge of 
how the clusters in a particular meta cluster differ from the 
clusters in another meta cluster. 

3. Final clusterings can be created from a meta clustering. 
 

Section 5 gives some examples of summaries with respect to 
characteristics and discrepancies of ozone hotspot polygons. The 
remainder of this section will discuss how to create a “good” final 
clustering from a set of meta clusters.  
 
Although clustering has been studied for more than 40 years, its 
objectives and how to evaluate different clustering results is still 
subject to a lot of controversy; moreover, current research, 
particularly most ensemble clustering research is still relying on 
the misconception that a universal, optimal clustering of a dataset 
exists.  However, in general, domain experts seek for clusters 
based on their domain-driven notion of “interestingness” which 
usually differs from generic characteristics used by clustering 
algorithms; moreover, for a given dataset there usually are many 
plausible clusterings whose value really has to be determined by 
the domain expert. Finally, even for the same domain expert 
multiple clusterings, e.g. clusterings at different levels of 
granularity, are of value. A key idea of this work is to collect a 
large number of frequently overlapping clusters which are 
organized in form of meta-clusters; a final clustering is then 
created from those meta clusters based on a user’s notion of 
interestingness. 
 
To reflect what was discussed in the previous paragraph, we 
assume that our final cluster generation algorithms provide plug-in 
fitness functions that capture a domain expert’s notion of 
interestingness which are maximized when generating the final 
clustering. Meta clustering provides an alternative approach to the 
traditional ensemble clustering approach by creating a more 
structured input for generating a final clustering, also reducing 
algorithm complexity by restricting choices. In this section, we 
propose algorithms that create a final clustering by selecting at 
most one cluster from each meta cluster. Moreover, due to the fact 
that polygons originating from different datasets typically overlap 
a lot, we provide an option for the user to restrict cluster overlap in 
the final clustering. More formally, we develop algorithms that 
create a final clustering from a meta clustering by solving the 
following optimization problem:  
 
Inputs: 

1. A meta clustering M={X1, …, Xk} —at most one object 
will be selected from each meta cluster Xi  (i=1,...k).  

2. The user provides her own individual cluster reward 
function RewardU whose values are in [0,). 

3. A reward threshold U—low reward clusters are not 
included in the final clustering.  

4. A cluster distance threshold d which expresses how much 
cluster overlap/coverage she likes to tolerate. 

5. A cluster distance function dist.  
 
Find ZX1…Xk that maximizes: 

 

ሺܼሻݍ ൌ  ෍ ௎ሺܿሻ݀ݎܽݓ݁ݎ
௖ఢ௓

 

 
subject to: 

1.  xZ x’Z   (xx’  Dist(x,x’)>d) 
2.  xZ (RewardU(x)>U) 
3.  xZ x’Z  ((x Xi  x’ Xk  xx’ )  ik) 

 
The goal is to maximize the sum of the rewards of clusters that 
have been selected from meta clusters. Constraint 1 prevents that 
two clusters that are too close to each other are both included in the 
final clustering. Constraint 3 makes sure that at most one cluster 
from each meta cluster is selected. 



 
Assuming that we have n meta clusters each containing an average 
of m clusters, there are roughly (m+1)n final clusterings; for each 
meta cluster we can either select one of its clusters for inclusion or 
we might decide not to take any cluster of the meta cluster due to 
violations of constraints 1 and 2. Constraint 2 is easy to handle by 
removing clusters below threshold from the meta clusters prior to 
running the final cluster generation algorithm.  
 
Many different algorithms can be developed to solve this 
optimization problem, three of which we are currently 
investigating: 

 A greedy algorithm: A greedy algorithm that always selects the 
cluster with the highest reward from the unprocessed meta 
clusters whose inclusion in the final clustering does not violate 
constraints 1 and 2. If there are no such clusters left, no more 
clusters will be added from the remaining meta clusters to the 
final clustering. 

 An anytime backtracking algorithm: An anytime backtracking 
algorithm that explores the choices in descending order of 
cluster rewards; every time a new final clustering is obtained, 
the best solution found so far is potentially updated. If runtime 
expires, the algorithm reports the best solution found so far. 

 An evolutionary computing algorithm that relies integer 
chromosomal representations; e.g. (1,2,3,0) represents a 
solution where cluster 1 is selected from meta clustering 1, 
cluster 2 from meta cluster 2,…, and no cluster is selected from 
meta cluster 4. Traditional mutation and crossover operators 
are used to create new solutions, and a simple repair approach  
is used to deal with violations of constraint 1. 

 
The greedy algorithm is very fast (O(m×n)) but far from optimal, 
the backtracking algorithms explore the complete search space 
(O(mn)) and—if not stopped earlier—finds the optimal solution if n 
and m are not very large; however, the anytime approach can be 
used for large values of m and n. Finally, the evolutionary 
computing algorithm covers a middle ground, providing acceptable 
solutions that are found in medium runtime. 
 

5.  EXPERIMENTAL EVALUATION 

5. 1  The Ozone Dataset 
Recently, it has been reported by the American Lung Association 
[24] that Houston Metropolitan area is the 7th worst ozone zone in 
the US. The Texas Commission on Environmental Quality (TCEQ) 
is a state agency responsible for environmental issues including the 
monitoring of environmental pollution in the Texas. TCEQ collects 
hourly ozone concentration data for metropolitan areas across the 
state and publishes the data on its website [22]. TCEQ uses a 
network of 44 ozone-monitoring stations in the Houston-Galveston 
area. The area covers the geographical region within [-95.8070, -
94.7870] longitude and [29.0108, 30.7440] latitude. We 
downloaded the hourly ozone concentration data from TCEQ’s 
website between the timeframe of April 1, 2009 at 0:00 to 
November 30, 2009 at 23:00. In addition to the ozone 
concentrations, we also downloaded the meteorology data 
including average wind speed, average solar radiation, and average 
outdoor temperature for the same time slots as the ozone 
measurements.   
 
Basically, we create polygons that capture ozone hotspots for 
particular time slot; for each time slot we obtain a set of polygons. 

In particular the polygons were generated as follows: First, we 
download the ozone concentration monitored by 44 monitoring 
sites from TCEQ’s website. Next, a standard Kriging interpolation 
method [25] is used to compute the ozone concentrations on 20×27 
grids that cover the Houston metropolitan area. Finally, we feed 
the interpolation function into the DCONTOUR algorithm with a 
defined threshold to create sets of polygons, describing polygon 
hotspots—areas in the spatial dataset whose ozone concentration is 
above the input threshold. Two polygon datasets are created by 
using two different density thresholds as inputs for DCONTOUR 
algorithm. The use of the density threshold 180 creates 255 
polygons. These polygons represent areas where the average one 
hour ozone concentration is above 80 ppb (parts per billion). The 
density threshold 200 generates 162 polygons that have one hour 
ozone concentration more than 90 ppb. The current EAP ozone 
standard is based on an eight-hour average measurement. In order 
to meet the standard, the eight-hour average ozone concentration 
has to be less than 0.08ppm (80 ppb). Therefore, we can consider 
the polygons that we created are areas where the ozone level 
exceeds the EPA standard in that hour. Our experiments were 
conducted using the polygon dataset generated by DCONTOUR 
with threshold equal to 200. 
 
We evaluate our methodology in two case studies. The goal of the 
first case study is to verify that our new polygon distance functions 
and clustering algorithms for geospatial polygons can effectively 
cluster overlapped spatial polygons originated from different 
related datasets. By analyzing additional meteorological attributes 
such as outdoor temperature, solar radiation, wind speed and time 
of day associated with polygons, we can characterize each cluster 
and identify interesting patterns associated with these hotspots. To 
accomplish this goal we cluster all polygons at all time slots for 
certain threshold as a single pool of clusters.  
 
In the second case study, we are interested to generate final clusters 
that capture a domain expert’s notation of interestingness by 
plugging in different reward functions, e.g., possible maximum 
range of ozone pollution represented by area of polygons. In order 
to summarize final clusters generated by our model, we also 
compute the statistical results of ozone pollution control variables.  
 

5.2  Case Study 1: Anaylizing Meta Clusters of 
Ozone Hotspots 
An ozone polygon is a hotspot area that has ozone concentration 
above a certain threshold. In the first case study, we apply the 
POLY_SNN clustering algorithm to cluster all the polygons in the 
ozone dataset in order to find clusters of hotspots.  
 
Figure 1 displays the meta-clustering result of 30 clusters found by 
POLY_SNN using the hybrid distance function and the number of 
nearest neighbors k set to 5. The X and Y coordinates are the 
latitude and longitude of each polygon. The dataset consists of 162 
polygons created by DCONTOUR using density threshold equal to 
200 (90 ppb). Out of 162 polygons, 30% of polygons in the dataset 
are considered outliers by POLY_SNN. Polygons marked by the 
same color belong to the same cluster.  
 
Ozone formation is a complicated chemical reaction. There are 
several control factors involved: 

1. Sunlight measured by solar radiation is needed to produce 
ozone.  

2. High outdoor temperatures cause the ozone formation 
reaction to speed up.  

3. Wind transports ozone pollution from the source point.  



4. Time of Day:  ozone levels can continue to rise all day 
long on a clear day, and then decrease after sunset. 

 
In general, by analyzing the meteorological characteristics of 
polygons domain experts may find some interesting phenomena that 
could lead to further scientific investigation. Therefore, we also 
compute some statistics of 4 meteorological variables involved in 
ozone formation. Table 1 lists the statistical results of four control 
factors discussed above associated with the meta clustering in 
Figure 1. As expected, meta clustering shown in Figure 1 
representing one hour ozone concentration higher than 90 ppd is 
characterized by high outdoor temperature (average of 90.6 and 
standard deviation of 5.3) and strong solar radiation(average of 0.80 
and standard deviation of 0.36), which usually happens between 1 
pm to 4 pm each day. The wind speed affects the range of ozone 
pollution represented by the size of polygons. Since the standard 
deviation of the wind speed (1.90) compared with the average wind 
speed (6.05) is nontrivial, the variation of the size of the polygons is 
significant in Figure 1.     
 

 
Figure 1.  Meta clustering generated by POLY_SNN using the 

Hybrid distance function. 

Table 1. The statistical results of meteorological variables for 
meta clustering shown in Figure 1 

 Mean Std Max Min 

Temperature 90.6 5.3 102.8 78.6 

Solar Radiation 0.8 0.36 1.4 0.03 

Wind Speed 6.1 1.9 15.7 0.3 

Time of Day 2:30 pm 1.8 10 am 8 pm 

 
 
It is hard to visualize clustering results as polygons overlap a lot as 
can be seen in Figure 1.  Figure 2 and Figure 3 give a picture of 
eight polygonal meta clusters from Figure 1. As expected, the 
hybrid distance function that employs both overlay distance 
function and   Hausdorff distance function creates clusters of 
polygons that are similar in shape, size and location. Particularly, 
since we give more weights to the overlay distance function, the 
clusters in Figure 2 and Figure 3 are highly overlapped. The 
clustering results prove that our POLY_SNN clustering algorithm 
in conjunction with the hybrid distance function can effectively find 
clusters of overlapping polygons similar in size, shape and location. 

 
Figure 2.  Visualization of 4 meta clusters (ID: 11, 12, 16, and 

29) discovered by POLY-SNN in Figure 1. 

 
Figure 3.  Visualization of 4 meta clusters (ID: 2, 4, 10, and 27) 

discovered by POLY_SNN in Figure 1. 

Table 2 and Table 3 list the mean and standard deviation of outdoor 
temperature, solar radiation, wind speed and time of day associated 
with eight meta clusters in Figure 2 and Figure 3. The solar 
radiation information related to cluster 2 and 4 are not available 
from TCEQ’s website. Certainly, ozone formation is far more 
complicated than only considering those four control factors. Our 
polygon-based methodology has the capability of handling more 
non-spatial attributes.  
 
Based on Table 2, we can see that ozone polygons in clusters 11 
and 12 are characterized by very high outdoor temperature (98.83 
and 99.10) compared with entire meta clustering (90.6) and strong 
solar radiation (0.90 and 0.86) compared with entire meta clustering 
(0.8). The wind speed of cluster 11 and cluster 12 (5.16 and 4.86)  
are slow compared with entire meta clustering (6.1) so that the 
average size of the polygons in cluster 11 and cluster 12 are 
relatively small compared with all other polygons shown in Figure 
1. Also, Clusters 11 and 12 are captured around 2 pm.  The 
statistical results associated with Cluster 16 are very close to the 
entire meta clustering in Table 1.   
 

29 29.2 29.4 29.6 29.8 30 30.2 30.4

-95.8

-95.6

-95.4

-95.2

-95

-94.8



Table 2. The statistical results of meteorological variables for 4 
meta clusters shown in Figure 2 

Meta Cluster Id 11 12 16 29 

Temperature 
mean 98.83 99.10 90.94 85.48 

std 1.05 2.89 4.26 1.04 

Solar 

Radiation 

mean 0.90 0.86 0.70 0.69 

std 0.34 0.0.28 0.28 0.46 

Wind Speed 
mean 5.16 4.86 5.84 8.34 

std 0.46 0.97 0.93 2.58 

Time of Day 
mean 2 pm 2 pm 3 pm 12 pm 

std 0.88 1.62 1.63 1.92 

 

Table 3. The Statistical results of meteorological variables for 4 
meta clusters shown in Figure 3 

Meta Cluster Id 2 4 10 27 

Outdoor 

Temperature 

Mean 83.41 88.51 85.95 92.3 

Std 3.81 1.61 2.06 2.86 

Solar 

Radiation 

Mean N/a n/a 0.65 0.6155 

Std N/a n/a 0 0.27 

Wind Speed 
Mean 6.84 6.15 4.8 6.51 

Std 1.04 0.52 0.79 0.51 

Time of Day 
Mean 2 pm 1 pm 4 pm 3 pm 

Std 1.70 0.86 0.81 0.83 

 
Based on Table 3, cluster 10 has lower outdoor temperature (85.95) 
compared with entire meta clustering (90.6), lower solar radiation 
(0.65) compared with entire meta clustering (0.80) and lower wind 
speed (4.8) compared with entire meta clustering (6.05). The 
average time of day for cluster 4 is about 4 pm. All those 4 lower 
meteorological values contribute to smaller polygon sizes inside 
cluster 4 shown in Figure 3.    

 

5.3  Case Study 2: Final Cluster Generation  
The greedy algorithm introduced in section 4 is used to generate 
the final cluster from polygonal meta clusters shown in Figure 1. 
We use several reward functions to capture different notations of 
interestingness of domain experts. The final cluster generated by 
our model can be used to summarize what characteristics ozone 
polygons in the same meta clusters share.  
 
The domain experts are usually interested in recognizing the 
possible maximal range of ozone pollution. The range of ozone 
pollution represented by polygon area in our model is selected as 
the first cluster reward function RewardU. By selecting different 
reward threshold and distance threshold, different final clusters 
could be generated. Figure 4 shows one final cluster using reward 
threshold 0.04 and Hybrid distance threshold 0.5. There are 5 
polygons in the final cluster. A small polygon inside the big dark 
green polygon is a hole inside the polygon. Our framework allows 
for polygons with holes inside. Those 5 polygons in Figure 4 
clearly capture the dominant ozone hotspots in Houston-Galveston 

area found in Figure 1. Table 4 shows statistical results of 
meteorological variables of final cluster showed in Figure 4. Since 
the standard deviations of these four variables are relatively small 
for each polygon, we did not discuss the standard deviation in this 
section. Based on Table 4, Polygon 21, 80 and 150 covers larger 
area with higher outdoor temperature, high wind speed and strong 
solar radiation compared with polygon 12 and 125. Polygon 150 is 
interesting because it has a hole inside. Further analysis could be 
done to help understand the formation of hole inside polygons. 
 

 
Figure 4.  Final cluster for area of polygon reward threshold 

0.04 and Hybrid distance threshold 0.5. 

 
Table 4. The mean of meteorological variables for final cluster 

shown in Figure 4 

Polygon  ID 13 21 80 125 150 

Outdoor 

Temperature 
79.0 86.35 89.10 84.10 88.87 

Solar 

Radiation 
N/A 1.33 1.17 0.13 1.10 

Wind Speed 4.50 6.10 6.20 4.90 5.39 

Time of Day 6 pm 1 pm 2 pm 2 pm 12 pm 

 

The reciprocal of the area of each polygon is used as the second 
reward function for smaller granularity which may be useful to 
identify the ozone pollution point source and enable the domain 
experts to analyze patterns at different levels of granularity. By 
decreasing either the reward threshold or the distance threshold, we 
are able to get different final clusters. Figure 5 shows the final 
clusters with reward threshold set to 10 and distance threshold set 
to 0.45. Table 5 lists statistical results of four meteorological 
variables of all polygons in the final cluster shown in Figure 5. 
Some of the values are not available in the original ozone pollution 
datasets downloaded from TCEQ website [22]. All of those 
polygons with relative smaller size shown in Figure 5 occur either 
before 1 pm or after 4 pm. According to Table 1, the average time 
of entire meta clustering shown in Figure 1 is 2:30 pm with a 
standard deviation of 1.8. The time slot from 1 pm to 4 pm 
everyday is definitely a hotspot for ozone formation which could 
change the range and the concentration density of ozone pollution 



significantly. More analysis should be done specially for this time 
slot.  
 

 
Figure 5.  Final cluster for the reciprocal of area reward 

threshold 10  and Hybrid distance threshold 0.45. 

Table 5. The mean of meteorological variables for final cluster 
shown in Figure 4 

Polygon 
ID 

Outdoor 
temperature 

Solar 
radiation 

Wind 
speed 

Time 
of day 

11 81.4 N/A 6.3 4 pm 
17 88.2 N/A 6.0 3 pm 
18 N/A N/A N/A 4 pm 
35 86.3 N/A 6.2 5 pm 
42 N/A N/A N/A 1 pm 
44 N/A N/A N/A 3 pm 
74 N/A N/A N/A 4 pm 
83 N/A N/A 5.9 10 am 
106 93.5 0.18 5.9 4 pm 
107 94.4 1.21 4.6 11 am 
114 94.6 0.63 5.8 4 pm 
128 86.4 0.13 5.4 5 pm 
129 86.2 1.09 8.8 10 am 
148 N/a N/A N/A N/A 

 
 

 
The outdoor temperatures, wind speed and solar radiation also play 
a very important role in ozone pollution. We use average outdoor 
temperature associated with each polygon as the third reward 
function in our model. Figure 6 shows one final cluster with 
average outdoor temperature threshold set to 90 and distance 
threshold set to 0.55. The statistics results of meteorological 
variables are summarized in Table 6. Obviously, all the polygons 
with high temperatures occur during 2 pm to 4 pm. The lower the 
wind speed, the smaller the area of the polygon. For example, 
polygon 67 has the lowest wind speed of 4.1 compared with all the 
other four polygons in Figure 6.   

 
Figure 6.  Final cluster for polygon average temperature 
reward threshold 90 and Hybrid distance threshold 0.55. 

Table 6. The mean of meteorological variables of final cluster 
shown in Figure 5 

Polygon ID 54 67 89 101 105 

Outdoor 

Temperature 
100.3 102.8 92.4 99.4 94.5 

Solar 

Radiation 
N/A 0.96 0.91 0.70 0.72 

Wind Speed 6.0 4.1 8.533 8.2 6.04 

Time of day 2 pm 3 pm 3 pm 4 pm 3 pm 

 
 

6. CONCLUSION 
This paper claims that polygon analysis is particularly useful for 
mining multiple, related spatial datasets. In particular, a novel 
methodology for clustering polygons that have been extracted from 
multiple, spatial datasets is proposed which consists of a meta-
clustering module that clusters the obtained polygons and a 
summary generation module that extracts patterns and creates 
summaries from a polygonal meta clustering.  In general, this work 
has the capability to cluster overlapping polygons and use novel 
distance functions to assess the similarity between polygons which 
have been proposed for this purpose.  Moreover, a density-based 
polygonal clustering algorithm called POLY_SNN is proposed by 
extending SSN. Finally, three algorithms for generating a final 
clustering from a given meta clustering based on user preferences 
were discussed. To the best of our knowledge, this is the first paper 
that proposes a comprehensive methodology that relies on polygon 
analysis to mine related spatial datasets.  
 
Our methodology is evaluated in a real-world case study involving 
ozone pollution in the Houston Metropolitan area. It is able to 
reveal interesting relationships between different ozone hotspots 
and interesting associations between ozone hotspots and other 
variables. 
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