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ABSTRACT
An estimate of the error between the mean concentration of
a released pollutant simulated by an atmospheric dispersion
model and the values measured at the ground is obtained
using Dynamic Time Warping (DTW). The error measure
is relevant to the application with iterative source detec-
tion algorithms based on forward numerical transport and
dispersion simulations. The new proposed measure is com-
pared with two established error functions commonly used
in the literature.

A sensitivity study of the error measure to wind direction
was performed using real world data from the Prairie Grass
field experiment. Whereas both standard measures found
smallest error only with a few degrees of wind direction,
DTW found the smallest error with a much larger range of
wind directions, often as high as 20 degrees.

Categories and Subject Descriptors
H.2 [Database Management]: Database Applications—
Spatial databases and GIS, Data mining, Scientific databases

General Terms
Algorithms

Keywords
Dynamic Time Warping; Time Series Analysis; Source De-
tection, Error Functions

1. INTRODUCTION
Detecting the source of a pollutant release in the atmo-

sphere, and identifying its characteristics, is an important
problem due to the necessity to locate the source in order
to take action or to correctly assess the potential damages
caused by the release. The problem can be summarized as
follows. Given a few measurements of pollutant concentra-
tions and some basic meteorological information, the goal is
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to identify the characteristics of the release such as location,
emission mass rate, temporal evolution, in order to be able
to predict the fate of the contaminants [12, 5].

Source detection algorithms can be based on backward
or forward simulation techniques. Backward techniques use
reverse transport and dispersion simulations from the re-
ceptor to the source. Forward techniques use transport and
dispersion simulations from different candidate sources, and
compare the resulting concentrations to the available mea-
surements. The algorithms search the characteristics of the
source that minimizes the error between simulated and mea-
sured concentrations. An appealing characteristic of the for-
ward techniques is that they do not require modifications to
the dispersion model. Therefore, they can be used with any
available dispersion model, independent of the complexity of
the problem. We will apply a forward simulation technique.

Several forward iterative methods for source estimation
have been developed [9, 14, 17, 8, 5]. In particular, evo-
lutionary or genetic algorithms were employed to drive a
search process based on forward numerical simulations, and
it was shown that source characteristics were correctly iden-
tified for synthetic cases and for a controlled field experiment
[4, 6].

Different measures of the error between the simulated and
observed values were investigated to quantify the perfor-
mance of the new candidate solutions. The error function is
the only feedback that the algorithm receives on the quality
of the newly generated solutions. It is usually referred to as
error or fitness function, and its value is also called the skill
score.

The correct wind direction is paramount to source estima-
tion problems. It was observed that errors in wind direction
of only a few degrees drastically worsen the source estima-
tion. Even when the wind direction is carefully measured at
the time of the release, as for example in a field experiment,
the wind variability over the time of the release can be very
large leading to large uncertainty and noise in the data.

To address this problem, previous research investigated
two different approaches. The first method consisted in
choosing an error function that compares the simulated and
observed values without taking into account their spatial dis-
tribution. In general the method performed poorly because
the spatial location of the concentration plays a crucial role
in correctly identifying the characteristics of the source. A
second approach consisted in making the wind direction an
unknown in the source estimation problem. This method
generated good results, at the cost of increasing the com-
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plexity of the search process.
This paper introduces a third approach, namely the use of

Dynamic Time Warping (DTW) [18, 28] to compute the er-
ror between simulated and observed concentrations. DTW
is a distance measure that is commonly used in time series
databases and mining [19, 26, 27, 28, 29] and signal pro-
cessing communities [30, 32, 33, 31]. DTW uses dynamic
programming techniques to determine the best alignment
that minimizes the distance/cost/error between sequences.
Its ability to produce nonlinear alignment between sequences
makes it shift-invariant, and addresses the problem of errors
in wind direction.

Since its introduction by Bellman in 1959 [18], DTW has
been used extensively in the speech processing community
[30, 32, 33, 31]. In 1994, Berndt and Clifford introduced
DTW as a time series similarity measure to the database
community [19, 28]. Due to its ability to minimize the ef-
fects of shifting on the time axis, DTW has been widely used
in diverse fields. For example, Kuzmanic and Zanchi used
DTW for hand shape (sign language) classification [20]; Cor-
radini used DTW to recognize gestures and human activities
[21]; Keogh et al. adapted DTW for various time series data
mining tasks such as classification, clustering, and similar-
ity search, on various applications such as motion capture
matching and shape matching [34, 28, 29]; Niennattrakul
and Ratanamahatana adapted DTW for k-means clustering
for multimedia time series data [22]; Muller et al. proposed
a multiscale DTW for music synchronization [23]; Aach and
Church applied DTW on RNA and protein expression data
[24]; and Zhang et al. compared DTW to other similarity
measures for surveillance trajectory clustering [25]. While
DTW is a robust similarity measure that outperforms many
existing approaches, it is also computationally intensive. To
mitigate this issue, several techniques for indexing DTW
have been proposed [26, 27, 28]. In fact, Ratanamahatana
and Keogh show that with indexing, DTW can be achieved
in linear time when searching large databases [29].

This paper is structured as following: Section 2 discusses
the methodology, including the different error measures used
and the numerical simulation performed; Section 3 describes
the experiments performed and their results; Section 4 dis-
cusses the findings and suggests applications for the pro-
posed method.

2. METHODOLOGY

2.1 Transport and Dispersion Simulations
The dispersion simulations are performed using a Gaus-

sian reflected dispersion model, which determines the pre-
dicted mean concentration cs at a location x, y and z of an
atmospheric tracer released from a source located at xs, ys,
and zs:

cs =
Qgygz

2πU [(σ2
s + σ2

y)(σ2
s + σ2

z)]1/2
(1)
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where Q is the source mass emission rate, U is the wind
speed, σy(x, xs;ψ) and σz(x, xs;ψ) are the crosswind and

vertical dispersion coefficients (i.e. the plume spreads) where
ψ describes the atmospheric stability class (i.e., ψ = A to
ψ = F ), and σ2

s = σ2
y(xs, xs, ψ) = σ2

z(xs, xs, ψ) is a measure
of the area of the source. The result of the simulation is
the concentration field generated by the release along an
arbitrary wind direction θ. The dispersion coefficients are
computed from the tabulated curves of Briggs [2].

2.2 Prairie Grass Experiment
The methodology was tested on data from the Prairie

Grass field experiment [3]. The experiment consisted of 68
consecutive releases of trace gas SO2 of 10 minutes each from
a single source. The mean concentration was measured at
sensors positioned along arcs radially located at distances of
50 m, 100 m, 200 m, 400 m and 800 m from the source. In-
formation on the atmospheric conditions at the time of each
release is available, and each experiment could be classified
according to Pasquill’s atmospheric stability classes [15, 10].

2.3 Synthetic Dataset
To test the methodology, in addition of the observed Prairie

Grass measurements, we have created a synthetic dataset
simulating each of the 68 releases using the model described
in Equation (1) along with the meteorological and release
characteristics of the original Prairie Grass experiment. The
simulated concentrations are recorded at the corresponding
sensor locations for the original experiments. For each of
the 68 releases, a study on the effect of the wind direction
was performed by varying the wind angle from -20 to +20
degrees, in a 1 degree increment. Consequently, for each
of the original Prairie Grass release there are 41 synthetic
releases. One case simulates the Prairie Grass experiments
using exactly the parameters observed at the time of the ex-
periments, while the other 40 vary the wind direction, and
keep all other parameters constant.

This synthetic dataset allows to perform sensitivity stud-
ies to wind direction, determining for each experiment what
is the wind direction that generates smaller error between
the simulated and observed concentration. Even in a con-
trolled experiment, like Prairie Grass, there are discrepan-
cies between the observed wind direction and the angle that
generates smallest error. This is because there can be er-
rors in measuring wind at the time of the experiment, and
because wind direction is usually not constant. The value
reported in the official experiment summary is the average
of the wind direction during the entire time of the release,
and might contain errors.

2.4 Error Functions
The quantitative comparison of observed and synthetic

concentrations is performed by applying several statistical
measures of error which reflect different aspects of the spatial
distribution of concentration. We considered two functions:
the normalized root mean square error NRMSE [11, 7], and
AHY2 [13, 1, 5].

NRMSE =

s
(co − cs)2

co cs
(4)

AHY2 =

s
[log10(co + 1)− log10(cs + 1)]2

[log10(co + 1)]2
(5)

where co and cs are the observed and simulated concentra-
tion at the sensors, respectively.
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(b) One-to-one error mapping
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Figure 1: Example computing error between the
synthetic and observed data using one-to-one and
DTW mapping for Prairie Grass experiment 23.
The synthetic data is shifted by eight degrees with
respect to the observed parameters.

NRMSE is expressed in terms of variances, reflecting both
systematic bias and relative random errors, which are esti-
mated on a linear scale. NRMSE is strongly affected by in-
frequently occurring large overprediction or large observed
outliers. AHY2, defined in [13] and [1] as metrics for the
cost function of a genetic algorithm for source detection,
computes the error on a logarithmic scale.

2.5 Dynamic Time Warping (DTW)
The error functions (4) and (5) are efficient to compute.

However, both are sensitive to slight spatial distortions. To
illustrate this, consider the dataset shown in Figure 1a. The
observed Prairie Grass measurements and the synthetic se-
quence generated for the same experiment look similar in
shape; however, the change in the wind direction has caused
the simulated data to shift slightly to the right. This slight
shifting on the x-axis will result in large errors being com-
puted by NRMSE and AHY2, since both error functions
require one-to-one mapping of data points in space. To mit-
igate this problem, we propose to use DTW, a well-known
distance measure for signal and time series data, as our er-
ror function. Given the two sequences X = x1, x2, ..., xn and

Y = y1, y2, ..., ym, DTW aligns the sequences by construct-
ing a n×m matrix M , where each entry M(i, j) represents
the distance d(xi, yj) between points xi and yj . The entry
M(i, j) also corresponds to an alignment between xi and
yj [28]. To determine the best alignment between two se-
quences, DTW finds a path, W = w1, w2, ..., wk, through
the matrix that minimizes the warping cost, and satisfies
the following constraints [18, 28]:

1. boundary conditions: w1 = (1, 1), wk = (m,n). This
requires that the warping path starts and finishes in
the first and the last points, respectively, of the se-
quences.

2. continuity: Let wi = (a, b) then wi−1 = (a′, b′) where
a− a′ ≤ 1 and b− b′ ≤ 1. This confines the allowable
steps in the warping path to neighboring points.

3. monotonicity: Let wi = (a, b) then wi−1 = (a′, b′)
where a−a′ ≥ 0 and b− b′ ≥ 0. This requires that the
points in the warping path be monotonically ordered
with respect to time.

The warping cost can be computed using dynamic program-
ming with the following recurrence [28]:

f(i, j) = d(xi, yj) +min

8
<
:

f(i− 1, j − 1)
f(i− 1, j)
f(i, j − 1)

(6)

In other words, the cumulative distance f(i, j) is the sum
of the distance between current points (xi, yi) and the min-
imum of the cumulative distance in the neighboring points
[18].

Figures 1b and c show two different alignments for the
dataset shown in Figure 1a. In Figure 1b, the sequences are
aligned using an error function such as NRMSE that requires
one-to-one mapping, i.e. no warping allowed. As the figures
illustrate, the peaks are not aligned properly, thus resulting
in a large error. In contrast, in Figure 1c, the sequences
are aligned using DTW. The non-linear mapping allows the
peaks to match, thus minimizing the error and the effect of
wind direction.

Note that the concentration series that we analyze are
not true time series, since the releases are continuous and
the concentration field is stationary. Instead, the series de-
scribes the evolution of the concentration in space (not in
time). The shift which is identified by DTW is the displace-
ment of the simulated concentration field with respect to the
observed values. Essentially, we are replacing the variable
‘time’ with the variable ‘space’, and instead of analyzing
time-series, we are analyzing ‘space-series’. (In this case the
technique could be more correctly referred to as ‘Dynamic
Space Warping’).

Figure 2 shows the DTW distance matrix for input se-
quences X and Y . Each cell (i, j) represents the distance
between Xi and Yj . The white curve along the diagonal
denotes the best warping path, i.e. one that minimizes the
cumulative distance.

Some global constraint on the warping path is typically
specified to restrict the warping paths. The advantages of
using a global constraint are two-folds: (1) it produces more
intuitive alignment, and (2) it speeds up the computation
by narrowing the search space. A large warping window
causes the search to become prohibitively expensive, as well
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Figure 2: DTW distance matrix for input sequences X and Y . Each cell (i, j) represents the distance between
Xi and Yj. The white curve along the diagonal denotes the best warping path, i.e. one that minimizes the
cumulative distance.

as possibly allowing meaningless matching between points
that are far apart. On the other hand, a small window
might prevent us from finding the best solution. It has been
shown by Ratanamahatana and Keogh [29] that by learning
the best size and shape of the global constraint for different
datasets, higher accuracy can be achieved. In our work, we
use the Sakoe-Chiba Band [30], with 10% of the series length
as the warping window length.

3. RESULTS
The proposed method was tested by performing a sensitiv-

ity analysis of the wind angle, computing the error between
the observed and simulated concentrations. Experiments
were performed for all 68 Prairie Grass experiments, and re-
peated for each of the three methods, DTW, NRMSE and
AHY2. The hypothesis is that the DTW method, because
of its ability to detect shifts in time-series, is less prone to
errors in wind angle. In the Prairie Grass experiments the
sensors are positioned along five concentric arcs, located at
50 m, 100 m, 200 m, 400 m and 800 m from the source. The
measurements are transformed into a time-series by sorting
each arc counterclockwise, from the inner arc to the outer
arc. The footprint of each experiment changes due to the
atmospheric class, the wind characteristics and the amount
of release. Therefore each release is measured by a varying
number of sensors, leading to time-series that vary in length,
from tenths to hundreds of observations.

Figure 3 shows the results for Prairie Grass experiment 23
(left) and 29 (right). The top figures show an interpolation of
the release as measured at the time of the experiment. The
sensor location are indicated with black dots, and the source

of the release is at 0,0. The center panels show the results
of the wind angle sensitivity analysis for each of the three
methods performed. The graphs show the error between
the simulated and observed concentrations as the simulated
wind angle changed from −20 to +20 degrees with respect to
the wind direction recorded at the time of the experiment.
In both cases DTW obtained smaller error for a wide range
of wind angles, whereas both NRMSE and AHY2 obtained
best results for a very small range of values. For case 23,
the best results are found when the wind angle change is
close to 0, meaning that the observed concentrations are
consistent with the observed wind angle. For case 29, there
is a variation between 6 and 9 degrees between the observed
concentrations are consistent with the observed wind angle,
indicating some noise in the observed data. The bottom
panels illustrate the Cross-wind profiles of concentration for
the releases, plotted as functions of the sensor number. The
top graph shows the observed data and the synthetic data
generated using the observed wind angle. The bottom graph
shows the observed data and the synthetic data generated
using an adjusted wind angle. It is evident that for case 29, a
wind angle of -10 degrees with respect to the observed wind
direction better approximates the observed values. This is
an indication of noise in the observed data, most likely to be
attributed to fluctuations in wind direction during the time
of the experiment.

Table 1 summarizes the results for all the 68 Prairie Grass
experiments sorted by atmospheric type. The original ex-
periment identifier (PG ID) ia also reported in the table.
NRMSE and AHY2 behave similarly, finding best results
with a very small (usually 1 or 2) degrees of wind angle,
DTW is able to find best results with a much higher num-
ber of wind angles.
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Figure 3: Results for Prairie Grass release 23 (left) and 29 (right). The graphs show a-TOP) the original
releases, interpolated from the measurements made at the receptors (black circles); b-MIDDLE) the error
found by AHY2, NRMSE and DTW as a function of wind angle; and c-BOTTOM) the observed and simulated
concentrations using the observed wind angle, and the wind angle found by AHY2.
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ψ PG ID DTW NRMSE AHY2
A 15 25 5 4
A 16 14 3 3
A 25 1 4 5
A 47 15 3 3
A 52 4 4 4
B 1 7 1 4
B 2 1 1 1
B 7 12 2 3
B 10 15 2 4
B 48S 3 2 3
C 5 19 2 3
C 8 29 2 2
C 9 23 1 3
C 19 25 2 3
C 27 27 3 3
C 43 21 3 4
C 44 13 3 4
C 49 23 2 3
C 50 23 2 2
C 62 27 2 1
D 6 29 2 2
D 11 21 1 1
D 12 27 2 2
D 17 13 3 2
D 20 29 2 3
D 21 21 2 1
D 22 17 2 2
D 23 19 1 2
D 24 23 2 1
D 26 17 3 4
D 29 25 2 3
D 30 19 2 3
D 31 21 3 3
D 33 28 2 2
D 34 25 1 2
D 35S 17 2 1
D 37 17 2 1
D 38 17 2 1
D 42 17 2 2
D 45 25 3 2
D 46 23 1 2
D 48 23 2 2
D 51 21 2 3
D 54 13 2 1
D 55 21 1 2
D 56 17 1 1
D 57 29 2 3
D 60 19 2 2
D 61 17 2 3
D 65 17 4 1
D 67 17 2 1
E 18 2 2 1
E 28 1 1 2
E 41 1 3 1
E 66 1 2 1
E 68 1 2 1
F 3 28 3 3
F 4 11 3 4
F 13 21 2 4
F 14 7 2 2
F 32 1 2 1
F 35 1 7 1
F 36 1 2 2
F 39 1 1 1
F 40 33 2 2
F 53 2 2 1
F 58 1 2 1
F 59 1 2 2

Table 1: Wind angle range in degrees for which
best results were obtained using DTW, NRMSE and
AHY2. The results are shown for each of the Prairie
Grass experiments, identified by PG ID, and are
sorted by atmospheric class

4. CONCLUSIONS
This preliminary study shows that DTW can be effectively

used as the error function driving algorithms for source de-
tection. A current shortcoming of the available error func-
tions is that they have difficulties recognizing simple spatial
shifts in the simulated distribution of concentration. This
results in the error functions reporting large errors even
though the simulated cloud is in fact very close to the mea-
sured one in terms of extension, shape, and magnitude, but
not in the alignment. The results of the sensitivity study
support the hypotheses that using DTW to compute the er-
ror between observations with simulations is less sensitive to
wind direction changes. Furthermore, because some of the
Prairie Grass experiments contained errors in the observed
wind direction, the DTW method also works well in the
presence of noise. The advantage of DTW over NRMSE and
AHY2 is largest for atmospheric class A (unstable) through
D (neutral). For stable atmosphere (E and F) DTW also
finds best results for a rather small number of wind angles.
This is most likely due to the more limited data available
(smaller time-series) caused by a smaller footprint of the
release, thus measured by fewer sensors.
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