skip to main content
research-article

Perception-motivated interpolation of image sequences

Published:02 February 2011Publication History
Skip Abstract Section

Abstract

We present a method for image interpolation that is able to create high-quality, perceptually convincing transitions between recorded images. By implementing concepts derived from human vision, the problem of a physically correct image interpolation is relaxed to that of image interpolation which is perceived as visually correct by human observers. We find that it suffices to focus on exact edge correspondences, homogeneous regions and coherent motion to compute convincing results. A user study confirms the visual quality of the proposed image interpolation approach. We show how each aspect of our approach increases perceived quality of the result. We compare the results to other methods and assess achievable quality for different types of scenes.

References

  1. Adelson, E. and Bergen, J. 1991. The plenoptic function and the elements of early vision. In Computational Models of Visual Processing, M. Landy and J. Movshon Eds., MIT Press, Cambridge, MA, 3--20.Google ScholarGoogle Scholar
  2. Baker, S. and Matthews, I. 2004. Lucas-Kanade 20 years on: A unifying framework. Int. J. Comput. Vision 56, 3, 221--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baker, S., Scharstein, D., Lewis, J., th, S. R., Black, M., and Szeliski, R. 2007. A database and evaluation methodology for optical flow. In Proceedings of the International Conference on Computer Vision (ICCV '07). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle Scholar
  4. Barron, J., Fleet, D., and Beauchemin, S. 1994. Performance of optical flow techniques. Int. J. Comput. Vision 12, 1, 43--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Beier, T. and Neely, S. 1992. Feature-based image metamorphosis. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). ACM, New York, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Belongie, S., Malik, J., and Puzicha, J. 2001. Matching shapes. In Proceedings of the International Conference on Computer Vision (ICCV'01). IEEE, Los Alamitos, CA, 454--461.Google ScholarGoogle Scholar
  7. Bertsekas, D. 1992. Auction algorithms for network flow problems: A tutorial introduction. Comput. Optim. Appl. 1, 7--66.Google ScholarGoogle ScholarCross RefCross Ref
  8. Black, M. J. and Anandan, P. 1996. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Comput. Vision Image Understand. 63, 1, 75--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bouguet, J. Y. 2000. Pyramidal implementation of the lucas-kanade feature tracker: Description of the algorithm. Tech. rep., Intel Microprocessor Research Labs.Google ScholarGoogle Scholar
  10. Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. 2004. High accuracy optical flow estimation based on a theory for warping. In Proceedings of the European Conference on Computer Vision (ECCV'04). Springer-Verlag, Berlin, 25--36.Google ScholarGoogle Scholar
  11. Bruhn, A., Weickert, J., and Schnörr, C. 2005. Lucas/kanade meets horn/schunck: Combining local and global optic flow methods. Int. J. Comput. Vision 61, 3, 211--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Buehler, C., Bosse, M., McMillan, L., Gortler, S., and Cohen, M. 2001. Unstructured Lumigraph Rendering. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). ACM, New York, 425--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Canny, J. 1986. A computational approach to edge detection. Trans. Patt. Anal. Mach. Intell. 8, 679--714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Carranza, J., Theobalt, C., Magnor, M., and Seidel, H. P. 2003. Free-viewpoint video Of human actors. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'03). ACM, New York, 569--577. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Chen, S. and Williams, L. 1993. View interpolation for image synthesis. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'93). ACM, New York, 279--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Cooke, T., Cunningham, D., and Bülthoff, H. 2004. The perceptual influence of spatiotemporal noise on the reconstruction of shape from dynamic occlusion. In Proceedings of the 26th DAGM Symposium on Pattern Recognition. Springer-Verlag, Berlin, 407--414.Google ScholarGoogle Scholar
  17. Cunningham, D., Shipley, T., and Kellman, P. 1998. The dynamic specification of surfaces and boundaries. Perception 27, 4, 403--416.Google ScholarGoogle ScholarCross RefCross Ref
  18. Debevec, P., Borshukov, G., and Yu, Y. 1998. Efficient view-dependent image-based rendering with projective texture-mapping. In Proceedings of the Eurographics Rendering Workshop (EGRW '98). Springer-Verlag, Berlin, 105--116.Google ScholarGoogle Scholar
  19. Exner, S. 1894. Entwurf zu einer physiologischen Erklärung der psychischen Erscheinungen. F. Deuticke, Leipzig Wien.Google ScholarGoogle Scholar
  20. Felzenszwalb, P. and Huttenlocher, D. 2004. Efficient graph-based image segmentation. Int. J. Comput. Vision 59, 167--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Fu, M. F., Au, O., and Chan, W. C. 2002. Temporal interpolation using wavelet domain motion estimation and motion compensation. In Proceedings of the International Conference on Image Processing (ICIP ‘02). IEEE, Los Alamtios, CA, 393--396.Google ScholarGoogle Scholar
  22. Gibson, J. 1955. The Perception of the Visual World. Cambridge University Press, Cambridg, UK.Google ScholarGoogle Scholar
  23. Gibson, J., Kaplan, G., Jr., H. R., and Wheeler, K. 1969. The change from visible to invisible: a study of optic transitions. Percept. Psychophys. 5, 2, 116--131.Google ScholarGoogle ScholarCross RefCross Ref
  24. Gortler, S., Grzeszczuk, R., Szeliski, R., and Cohen, M. 1996. The Lumigraph. In Proceedings Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'96). ACM, New York, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hartley, R. and Zisserman, H. 2000. Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Heeger, D., Boynton, G., Demb, J., Seidemann, E., and Newsome, W. 1999. Motion opponency in visual cortex. J. Neurosci. 19, 7162--7174.Google ScholarGoogle ScholarCross RefCross Ref
  27. Horn, B. and Schunck, B. 1981. Determining optical flow. Artif. Intell. 17, 185--203.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Hubel, D. 1995. Eye, Brain, and Vision 2nd Ed. W. H. Freeman, New York.Google ScholarGoogle Scholar
  29. Isaksen, A., McMillan, L., and Gortler, S. 2000. Dynamically reparameterized light fields. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'00). ACM, New York, 297--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jain, J. and Jain, A. 1981. Displacement measurement and its application in interframe image coding. IEEE Trans. Comm. 29, 12, 1799--1808.Google ScholarGoogle ScholarCross RefCross Ref
  31. Kellman, P. J. and Shipley, T. F. 1992. Perceiving objects across gaps in space and time. Curr. Directions Psych. Science 1, 6, 193--199.Google ScholarGoogle ScholarCross RefCross Ref
  32. Levoy, M. and Hanrahan, P. 1996. Light Field Rendering. In Proceedings Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lucas, B. and Kanade, T. 1981. “an iterative image registration technique with an application to stereo vision”. In Proceedings of the International Joint Conference on Artificial Intelligence. 674--679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Mark, W., McMillan, L., and Bishop, G. 1997. Post-Rendering 3D Warping. In Proceedings of the Symposium on Interactive 3D Graphics. 7--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Marr, D. 1983. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Matusik, W., Buehler, C., Raskar, R., Gortler, S., and McMillan, L. 2000. Image-Based Visual Hulls. In Proceedings Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). 369--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Matusik, W. and Pfister, H. 2004. 3D TV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. In Proceedings Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'04). ACM, New York 814--824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. McMillan, L. and Bishop, G. 1995. Plenoptic modeling: an image-based rendering system. In Proceedings Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '95). ACM, New York, 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Microsoft Corporation. Media player 9 video quality demos. http://www.microsoft.com/windows/windowsmedia/demos/video quality demos.aspx.Google ScholarGoogle Scholar
  40. O'Sullivan, C., Howlett., S., Mcdonnell, R., Morvan, Y., and O'Conor, K. 2004. Perceptually adaptive graphics. InEurographics, State-of-the-art-Report 6.Google ScholarGoogle Scholar
  41. Perona, P. and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. Trans. Patt. Anal. Mach. Intell. 12, 7, 629--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Qian, N. and Andersen, R. 1997. A physiological model for motion-stereo integration and a unified explanation of Pulfrich-like phenomena. Vision Res. 37, 1683--1698.Google ScholarGoogle ScholarCross RefCross Ref
  43. Ramanarayanan, G., Bala, K., and Ferwerda, J. 2008. Perception of complex aggregates. In Proceedings Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'08). ACM, New York, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual equivalence: Towards a new standard for image fidelity. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'07). ACM, New York, 654--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Reichardt, W. 1961. Autocorrelation, A principle for the evaluation of sensory information by the central nervous system. In Sensory communication, W. Rosenblith Ed., MIT Press-Wiley, New York, 303--317.Google ScholarGoogle Scholar
  46. Ruzon, M. and Tomasi, C. 1999. Color edge detection with the compass operator. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR'99). IEEE, Los Alamitos, 160--166.Google ScholarGoogle Scholar
  47. Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'06). ACM, New York, 533--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Seitz, S. and Dyer, C. 1996. View morphing. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'96). ACM, New York, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Shipley, T. and Cunningham, D. 2001. Perception of occluding and occluded objects over time: Spatiotemporal segmentation and unit formation. In From Fragments to Object: Segmentation and Grouping in Vision. Elsevier Science Ltd., Oxford, UK, 557--585.Google ScholarGoogle Scholar
  50. Snavely, N., Seitz, S., and Szeliski, R. 2006. Photo tourism: Exploring photo collections in 3D. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '06). ACM, New York, 835--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Stich, T., Linz, C., Albuquerque, G., and Magnor, M. 2008a. View and time interpolation in image space. Comput. Graphics Forum 27, 7, 1781--1787.Google ScholarGoogle ScholarCross RefCross Ref
  52. Stich, T., Linz, C., Wallraven, C., Cunningham, D., and Magnor, M. 2008b. Perceptionmotivated interpolation of image sequences. In Proceedings of the Symposium on Applied Perception in Graphics and Visualization (APGV'08). ACM, New York, 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Tourapis, A., Cheong, H., Liou, M., and Au, O. 2001. Temporal interpolation of video sequences using zonal based algorithms. In Proceedings of the International Conference on Image Processing (ICIP '01). IEEE, Los Alamitos, CA, 895--898.Google ScholarGoogle Scholar
  54. van Santen, J. P. H. and Sperling, G. 1985. Elaborated reichardt detectors. J. Opt. Soc. Am. A, 2, 300--320.Google ScholarGoogle ScholarCross RefCross Ref
  55. Vangorp, P. and Dutré, P. 2008. Shape-dependent gloss correction. In Proceedings of the Symposium on Applied Perception in Graphics and Visualization (APGV'08). ACM, New York, 123--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Vangorp, P., Laurijssen, J., and Dutré, P. 2007. The influence of shape on the perception of material reflectance. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'07). ACM, New York, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Vedula, S., Baker, S., and Kanade, T. 2005. Image based spatio-temporal modeling and view interpolation of dynamic events. ACM Trans. Graphics 24, 2, 240--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Wallach, H. 1935. Ueber visuell wahrgenommene Bewegungsrichtung. Psychologische Forschung 20, 325--380.Google ScholarGoogle ScholarCross RefCross Ref
  59. Wallraven, C., Bülthoff, H. H., Fischer, J., Cunningham, D. W., and Bartz, D. 2007. The evaluation of real-world and computer-generated stylized facial expressions. ACM Trans. Appl. Percept. 4, 3, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Wertheimer, M. 1938. Laws of organization in perceptual forms. In A Source Book of Gestalt Psychology, W. Ellis, Ed. Kegan Paul, Trench, Trubner & Co. Ltd., London, 71--88.Google ScholarGoogle Scholar
  61. Wolberg, G. 1998. Image warping: a survey. Visual Comput. 14, 360--372.Google ScholarGoogle ScholarCross RefCross Ref
  62. Wood, D., Azuma, D., Aldinger, K., Curless, B., Duchamp, T., Salesin, D., and Stuetzle, W. 2000. Surface light fields for 3D photography. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'00). ACM, New York, 287--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Yuille, A. L. and Poggio, T. A. 1986. Scaling theorems for zero crossings. IEEE Trans. Pattern Anal. Mach. Intell. 8, 1, 15--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Zitnick, C., Jojic, N., and Kang, S. B. 2005. Consistent segmentation for optical flow estimation. In Proceedings of the International Conference on Computer Vision (ICCV '05) 2, 1308--1315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Zitnick, C., Kang, S., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-quality video view interpolation using a layered representation. In Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'04). ACM, New York, 600--608. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Perception-motivated interpolation of image sequences

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Applied Perception
          ACM Transactions on Applied Perception  Volume 8, Issue 2
          January 2011
          125 pages
          ISSN:1544-3558
          EISSN:1544-3965
          DOI:10.1145/1870076
          Issue’s Table of Contents

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 February 2011
          • Accepted: 1 April 2010
          • Revised: 1 February 2010
          • Received: 1 February 2009
          Published in tap Volume 8, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader