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This paper studies the limiting behavior of a system com-
posed by a large number of objects when the dynamics is
non-smooth. Under classical smoothness assumptions, there
exist general results that show that the limiting system can
be described by a system of ordinary differential equations

y(t) = f(y(®)). (1)

See [4] and the references therein for examples of such con-
vergence results. In most cases, the limiting function f is
assumed to be Lipschitz. This condition limits the applica-
bility of these results in many practical cases, in particular,
for systems exhibiting thresholds dynamics or with bound-
ary conditions.

Let us consider a simple queuing system with one buffer
and many processors that can serve one packet per unit of
time in average. If y denotes the size of the queue, then the
average decrease of the size of the queue is one packet per
unit of time (under a proper rescaling of time) if the queue
is non-empty (i.e. y > 0) and zero if the queue is empty.
This leads to a deterministic limit behavior:

gty =—1 if y(t) >0 and ¢(t) =0 if y(t)=0. (2)

This dynamics is not continuous and therefore non Lipschitz
which makes the classical approach inapplicable in that case.
Actually, most work using mean field for networks do not
involve queues or when they do, the number of queues scale
with the number of objects (as in [5]), or convergence is
obtained using ad hoc proofs (see for example [2]).

In the case of a non-continuous right-hand side, the dif-
ferential equation (1) is not well-defined since there exist no
function y that is differentiable and that satisfies (2). The
proper way to define solutions of (2) is to use differential
inclusions (DI). The Equation 1 is replaced by the equation

y(t) € F(y(t)). ®3)

where F' is a set-valued mapping. Of course a differential
inclusion problem may have multiple solutions.

In the following, we will provide generic convergence re-
sults that show that under few conditions on the initial sys-
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tem, its behavior converges to the solutions of (3)(Theorem 1).
This result is generic and does not require any Lipschitz
property on the function F'. In particular, it shows that
when (3) has a unique solution, the behavior of the system
converges to it. Moreover, we also show that when F' sat-
isfies a one-sided Lipschitz condition (7), we can bound the
gap with the limiting dynamics with explicit bound (The-
orem 3). The one-sided Lipschitz condition is satisfied in
most systems involving queues.

The rest of the paper is organized as follows. In Section 1,
we briefly describe the model and give some examples. We
will briefly recall some definitions and properties of DIs in
Section 1.1. Section 2 provides the main theoretical results
and Section 3 give some application example. Finally, we
show in Section 3.2 that these results can also be applied to
optimization problems.

1. MEAN-FIELD MODEL

We consider of system of N objects evolving in a finite
state space S = {1...5}. Time is discrete and the state of
object n at time step k is denoted X} (k). The objects all
evolve in a common environment, called the context. The
context at time step k is denoted CV (k) € R?. The state
of the global system at time k is (XY (k),C™ (k)). We de-
note by MY (k) the empirical measure associated with the
N objects:

N
det 1
n=1

Since an object has S possible states, MY (k) can be rep-
resented by a vector with S components, its ¢th compo-
nent being the proportion of objects in state i. The sys-
tem (MY (k),CN (k))x is assumed to be a Markov chain. In
particular, this is true if the evolution of the context is de-
terministic and if the evolution of the system is invariant by
any permutation of the N objects. The state space of this

Markov chain is included in R®*¢. To simplify the notations,
def

we call YV (k) = (M" (k),CN (k).
The expected difference between YV (k+1) and YV (k) is
called the drift and is denoted f™ (y):

W) EE(Y kD) YV RY KR =y).

We assume that as N grows, the drift vanishes with speed
I(N). For all N, I(N) > 0 is called the intensity of the
model and we assume that limy o0 I(N) = 0. We further
assume that there exists a function f defined on R5+% such



that

M y) =I(N)f(y). (4)
Finally , the difference between Y™ (k + 1) and Y™ (k) is
assumed to be of the same order as the drift: There exists
b > 0 such that

E <HYN(I<:+1) —YN(k)H2> < BI(N)2. )

All these assumptions are more or less necessary to use a
mean field approach. The notable important feature of our
model is that we do not assume any regularity property of
the function f.

1.1 Differential inclusions

Here are the main concepts on differential inclusions. For
a more complete description, the reader is referred to [1]. In
all that follows, (z,y) denotes the classical inner-product on
R? and ||z = (z,2) (L? norm) and ||A]| = sup,c 4 [l«].

We consider the following differential inclusion problem:

i Ty €FW@). v0)=w%  (©)

where F is a set-valued function mapping each point y € R?
to a set F(y) C R%. Let I C R be an interval with 0 € I.
A function y : I — R? is called a solution of the DI (6)
with initial condition y(0) = yo if there exists a function
f: I — R? such that:

(i) for all t € I y(t) = yo + fot f(s)ds;

(ii) for almost every (a.e.) t € I: f(¢t) € F(y(t))
In particular, this implies that y is differentiable at almost
every t € I with ¢(t) € F(y(t)).

In the following, we assume that for all y € R, F(y) is a
non-empty closed, convex and bounded set.

We say that F' is upper semi-continuous (USC) if for any
y € R and any open set O containing F(y), there exists a
neighborhood V' of y such that F(V) C O. We say that F is
one-sided Lipschitz (OSL) with constant L if for all y,5 € D
and for all z € F(y) z € F(3):

(y=9,2=2) <L{y—4,y—79). (7

These two conditions gives necessary and sufficient condi-
tions for the existence and the uniqueness of solution of the
DI (6). If F is USC with |[F(z)|| < ¢(1 + ||z||) then there

exists solutions of (6) on all [0;00). If F'is OSL, there exists
at most one solution of (6).

In our framework, if f is the limit of the drift as defined
by (4), we define the set-valued function F' by

P(y) = (oom (f({z € R : |1z = y] < )

where conv(A) is the closure of the convex hull of a set A.

If the original function f is continuous in a point y, F(y) =
{f(y)} while if f is discontinuous in y, F'(y) is a set-valued
function. Moreover, if the original f(y) is bounded on all
sufficiently small open sets, F' is USL.

2. CONVERGENCE RESULTS

The state of the system at time k + 1 can be written
Y¥(kt1) = YV(R) + YV (R)
+Y N (k+1) =YY (k) — N (YN (k).

Let UN(k+1) = &5 (YN (k+1) = YV (k) — FN (YN (k)

so that Equation 4 can be rewritten
YN (k1) = YY)+ IN) (FON ) + UV R+ 1) (8)

UV (k4 1) is a martingale difference sequence with respect
to the filtration Fj, associated with the Markov chain (Y}).
(i.e. E(UNL|FY) = 0).

Let us denote YV (t) the piecewise affine interpolation of
Y™ (k) when we shrink time by a factor I(N): Y™ (t) is affine
between kI(N) and (k + 1)I(N) and YV (kI(N) = YN (k).
YN () is a stochastic approzimation associated with the DI
(6). It can be seen as an Euler discretization of the DI (6)
plus a random error term UN (k + 1).

Using an approach similar to [3] from stochastic approxi-
mation, if we denote Dr(yo) the set of the solutions of the
DI (6) starting from y(0) = yo, we can show that Y(.) con-
verges (in probability) to Dr(yo). More precisely, the fol-
lowing theorem holds.

THEOREM 1. Assume that:

e Fis USC and Jc >0 s.t. ||F()| < c(1+ |lyl),
o YN(0) L yo.

Then VT >0, inf sup H?N(t) — y(t)H 2.

y€DT(yo) 0<t<T

In general a differential inclusion may have multiple solu-
tions. Here, YV may converge to any solution of the DI, de-
pending on the value of U™ (.), making all this inefficient for
performance evaluation. This result is of greater interest if
the DI starting from yo has a unique solution: D7 (yo) = {y}.
In that case, as a direct corollary of the preceding result, Y
converges in probability to y on all intervals [0; 7.

COROLLARY 2. Under the conditions of Theorem 1 and
if the DI (6) has a unique solution y, then for all T':

sup |[¥(0) = y(0)

0<t<T

Z0.

In some cases, like the example of Boinc in Section 3, the
limiting differential inclusion clearly has a unique solution
which makes the preceding corollary directly applicable. The
main drawback of the previous theorem is that it does not
give any insight on the speed of convergence on the stochas-
tic system towards its limit.

This limitation can be overcome when the function F sat-
isfies a one-sided Lipschitz condition (7). Firstly, this en-
sures the uniqueness of the solution. Secondly, one can get
precise bounds on the gap between the stochastic system
and its limit in that case.

THEOREM 3. Under the conditions of Theorem 1 and if
F is OSL with constant L, the DI has a unique solution y
and there exist constants Ar, Bo, Cr depending only on T, L
and ¢ such that for all e,

P( sup [V @) - w)]| = [V (©) - yo)| 7

0<t<T

+VI(N)Ar + I(N)Br + e) < I(N)%.

The constants Ar, Br and Cr are given by



def c LI(N vz LT
Ar ¥ (e @ [ pe) (2 +1) -

o eEHOT

Br=<= -
T VLe
Cr b+ be? T (B2 + 2be/L).

(HyN(o)H + HYN(O)H +2eT + 1) :

where ¢ is defined in Theorem 1 and b in Equation (5).

These bounds are of a greater order than bounds that
can be obtained in the case where f is Lipschitz (see [5]).
The convergence speed with respect to N is in O(1/I(N))
(compared with O(I(NN)) is the Lipschitz case). When the
unique solution y(.) is piecewise Lipschitz with a finite num-
ber of pieces, this can be reduced to order O(I(N)) using
the results of [6].

3. AN EXAMPLE: DESKTOP GRIDS

We consider a model of a volunteer computing system such
as BOINC http://boinc.berkeley.edu/. In such systems,
each volunteer offer their computing resource (called a host)
to a distributed computing system. When a host is not used
by its owner, its resources are available for the distributed
computing system. However, as soon the owner of a host
wants to use it, she preempts it and the host becomes un-
available for the computing system. The BOINC project is
based on a push/pull model. The distributed applications
push jobs to a central server that stores it in a buffer. When-
ever a host becomes available, it pulls a job from the buffer
and executes it.

This system fits our framework: The context C(t) rep-
resents the size of the buffer while the N objects represent
both the application sending jobs and the hosts executing
them. The state of a host is its availability and its idleness
(whether it is executing a job or not). The non-smooth part
of the dynamics comes from the buffer size. When C(¢) > 0,
if a host asks for a job, it gets it with probability one while
when C(t) = 0, a host asking for a job will get nothing.
In that case, one can show that this dynamics satisfies the
one-sided Lipschitz condition (7). Therefore, we can apply
Theorem 3 to study the limiting behavior of the system when
the number of hosts and applications grows.

In the simplest case, the intensity of the system is I(N) =
1/N and an application sends a job to the system with
probability A\/N while a job is completed with probability
1/N. To represent the communication cost, a host gets a
job with probability v. It becomes unavailable with proba-
bility p. /N, available with probability p./N if C(¢t) > 0 and
0 otherwise. If b, a,u denote respectively the proportion of
busy, available and unavailable hosts, the limiting system is
described by a DI:

b(t) —pb(t) + 7a(t)10<t)>0

a(t) = p(t)d(t) + pau(t) — ’Ya(t)lc(t)>0
u(t) —pau(t) + pual(t)

C(t) —va(t)lowy>o0 + ALet) < Crax

The corresponding DI is obtained by replacing a(t)1c )0
by the terms vya(t) if C(t) > 0 and [0;ya(t)] when C(t) = 0.

3.1 Controlled dynamics

Yet an other application is for controlled systems. Con-
sider a model similar to the previous one where, to avoid
contention on the server that dispatches the jobs, a con-
troller allocates multiple servers to this task. This system

can be represented by multiple buffers, with respective sizes
C1(t)...Cx(t) and each host is associated to a single server.

When designing such a system, a natural question is how
to balance the load among servers. A natural strategy is
to send incoming jobs to the server with the smaller current
number of jobs. This strategy, called join the shortest queue,
is highly non-smooth. If two queues almost have the same
number of jobs C1 = (3, the job will be sent to queue 1 or
2 depending on their precise comparison.

Many practical policies used for controlling systems have
such threshold dynamics. Moreover, in many cases, policies
are based on heuristics on the fluid limit and lead to a unique
fluid trajectory. In such cases, Corollary 2 can be used and
shows that the stochastic system indeed converges to its fluid
approximation.

3.2 Extension to optimal control

Yet another application of these convergence results is the
optimal control of stochastic system. Again, let us consider
the previous model with multiple servers where the con-
troller wants to minimize the expected sojourn time of the
jobs. The optimal control of this stochastic system can be
modeled by a Markov decision process: a controller chooses
an action ay at each time step k trying to minimize the ex-
pectation of a cost that both depends on the action taken
and the current state of the system. Markov decision pro-
cess theory shows that if the action set is compact, then
there exists an optimal policy 7' for the stochastic system
of finite size N.

If the action is fixed (ar = a for all k), the corresponding
limiting dynamics of the system is f(t) € F.(y(t)).Using
Theorem 3 and similar ideas as in [5], one can show that
if all multi-valued functions F, are OSL, then the optimal
control of the limiting system m, is asymptotically optimal
for the stochastic system. Moreover, one can bound the gap
between the performances of m. and the optimal policy of
the stochastic system, using similar bounds as in Theorem 3.
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