
Automatic Schema Merging Using Mapping Constraints
Among Incomplete Sources

Xiang Li Christoph Quix David Kensche Sandra Geisler
Informatik 5 (Information Systems)

RWTH Aachen University
52056 Aachen, Germany

{lixiang,quix,kensche,geisler}@dbis.rwth-aachen.de

ABSTRACT
Schema merging is the process of consolidating multiple schemas
into a unified view. The task becomes particularly challenging
when the schemas are highly heterogeneous and autonomous. Clas-
sical data integration systems rely on a mediated schema created by
human experts through an intensive design process.

In this paper, we present a novel approach for merging multi-
ple relational data sources related by a collection of mapping con-
straints in the form of P2P style tuple-generating dependencies
(tgds). In the scenario of data integration, we opt for minimal
mediated schemas that are complete regarding certain answers of
conjunctive queries. Under Open World Assumption (OWA), we
characterize the semantics of schema merging by properties of the
output mapping system between the source schemas and the me-
diated schema. We propose a merging algorithm following a re-
dundancy reduction paradigm and prove that the output satisfies
the desired logical properties. Recognizing the fact that multiple
plausible mediated schemas may co-exist, a variant of the a priori
algorithm is employed to enumerate alternative mediated schemas.
Output mappings in the form of data dependencies are generated
to support the mediated schemas, which enables query processing.
We have evaluated our merging approach over a collection of real
world data sets, which demonstrate the applicability and effective-
ness of our approach in practice.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Schema and
subschema; H.2.5 [Database Management]: Heterogeneous
Databases; H.2.4 [Database Management]: Systems—Relational
databases

General Terms
Algorithms, Design

Keywords
schema merging, data integration, model management, schema
mappings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

1. INTRODUCTION
Modern data intensive applications often involve a multitude of

heterogeneous data sources. Schema merging is the process to con-
solidate multiple related heterogeneous schemas to provide a uni-
fied user view called the mediated schema. In order to support
data loading from the sources to the mediated schema (e.g., in data
warehousing), or to enable querying of sources through the me-
diated schema (e.g., in data integration [24] or dataspaces [31]),
mappings revealing the relationship between the mediated schema
and the source schemas have to be established in the merging pro-
cess. Classical data integration systems [24] nowadays still rely
on a mediated schema created by an intensive manual design pro-
cess by human experts, which is costly and inflexible in a dynamic
evolving environment such as dataspaces.

In vision of the importance of schema merging, Merge is pro-
posed as one of the major operators in Model Management [7].
Nevertheless, as retrospected by Bernstein and Melnik in [9], the
original vision of Model Management 1.0 is not semantic but struc-
tural, i.e., not relating schema and data. In other words, operators
are interpreted in terms of schemas, while lacking connection to
the underlying data of the schemas. A semantic merging approach
is in need, not only for the sake of expressiveness but also for ex-
ecutability reasons. Merging using logical schema mappings, e.g.,
tgds, is inevitable for realizing a model management engine to ad-
dress real-world data programmability problems. In order to be
executable, a semantic merging algorithm not only consumes data
dependencies as input, but also produces data dependencies as out-
put, so that query processing or data migration can be performed.

Although differing a lot in terms of mapping language, seman-
tics, data models, and methodologies, most existing schema merg-
ing techniques are binary, i.e., merging two schemas at a time. We
deem a native n-ary merge as interesting for generating mediated
schemas for a multitude of data sources. Though binary merging al-
gorithms can be applied iteratively to merge multiple schemas, the
process need a full human supervision, i.e., in each iteration an ex-
pert is required to generate mapping between a new source schema
and the intermediate merged result from previous steps. Moreover,
in a scenario of ad hoc P2P environments, only some particular
mappings are available and nobody has the complete knowledge
to produce arbitrary mappings. Therefore, a native n-ary merging
algorithm is more suited to exploit all the available mappings for
multiple data sources. In the survey by Batini et al. [6], they con-
tribute the popularity of binary merge to a complexity reason, that
is, by involving less input the problem of merging will become less
complicated. However, as we have already described, constructing
schema mappings is also quite expensive and requires a lot of hu-
man supervision, which compensates for the increased computation
efforts of a native n-ary merge.

company
cid
cname
city

grant
grantee
pi
amount
sponsor
proj

project
name
year

org
oid
name

funding
pi
oid
aid

financial
aid
amount
proj
year

⊆
⊇

⊆

S1: S2:

⊇

Figure 1: The Running Example

In this paper, we propose a native n-ary semantic merging ap-
proach. Without human supervision, it generates a series of candi-
date minimal mediated schemas that are complete regarding certain
answers of conjunctive queries. It takes source integrity constraints
and P2P style tgds as input and generates logical output mappings
in the form of data dependencies. Our contributions are as follows:

• we provide a logical characterization of the semantics of
schema merging based on OWA. The adoption of OWA is es-
sential because real world data sources are independently de-
veloped, and their extensions, i.e., explicitly stored data, usu-
ally do not conform to any inter-schema logical constraints;

• we employ tuple generating dependencies among multiple
schemas as the input mapping language, instead of being
confined to source-to-target tgds. This extends the expres-
siveness of mapping languages used in [11, 10, 28]. For ex-
ample, transitive closures can now be expressed in an input
mapping;

• source integrity constraints in the form of tgds and egds are
seamlessly incorporated into our framework;

• we provide a native n-ary algorithm for creating mediated
schemas and mappings satisfying the desired semantics.

• we provide a procedure to enumerate all the mediated
schemas with no redundant column; and, finally,

• we report the implementation of our approach and the eval-
uation results on several real world data sets and a generated
workload.

As a running example, consider the schemas illustrated in Fig.
1, adapted from [18]. Given are two schemas, each one with three
relations. In schema S1, grant represents a many-to-many relation-
ship between companies and projects. Similarly, funding represents
a many-to-many relationship between organization and financial
in S2. The corresponding foreign key constraints for these rela-
tionships are indicated by ⊆-lines, while keys are underlined. In
addition, we show the value correspondences of the attributes of
the schemas in straight lines.

The relationship between source schemas can be captured pre-
cisely in tgds:

M1 : company(Cid,Cname,City)↔ org(Cid,Cname)

M2 : grant(G,Pi,A,Sp,P j)∧ pro ject(P j,Y r)↔
f unding(Pi,G,Aid)∧ f inancial(Aid,A,P j,Y r)

M3 : grant(G,Pi,A,Sp,P j)∧ pro ject(P j,Y r)↔
f inancial(Aid,A,P j,Y r)

M4 : pro ject(P j,Y r)→ f inancial(Aid,A,P j,Y r)

Tgd M1 states that the relations company and org are equivalent,
except for the additional column city in company. Such simple
one-to-one correspondences can be represented in most other ap-
proaches, too. However, more complex relationships can only be
formalized by mappings involving joins between several relations.
For example, the tgd M2 states that the join of grant and project in
S1 is equivalent to the join of funding and financial in S2. M3 is
similar but it states that the relation financial is equivalent to a pro-
jection of the join of grant and project. With the inclusion of M3,
we know that there are no dangling tuples of financial that do not
join with some tuple of funding. Finally, M4 states that all tuples
from project are contained in financial. The details of the mapping
language will be given in Section 2.

As in the running example, source schemas usually contain im-
portant information in the form of integrity constraints, such as
keys and foreign keys. Integrity constraints reveal inner structure of
a schema and hence are a significant source of information which
should be taken into consideration in schema merging.

The remaining of the paper is organized as follows. Sec. 2 de-
scribes some background definitions. We characterize the seman-
tics of schema merging in the concrete scenario of designing a me-
diated query interface in Sec. 3. The main aspects of our approach
and the algorithms are presented in Sec. 4. Experimental results are
reported in Sec. 5. Related works are covered in Sec. 6, before we
conclude and discuss future work in Sec. 7.

2. PRELIMINARIES
Data Dependencies: A tuple generating dependency (tgd) [1],

is a query containment constraint in the form of: ∀~X [∃~Y φ(~X ,~Y)→
∃~Zψ(~X ,~Z)], where φ and ψ are conjunctions of atoms and ~X ,~Y and
~Z are mutually disjoint variables. It is full, if there are no existen-
tial variables on the right hand side, otherwise it is an embedded
tgd. An equality-generating dependency (egd) [1] has the form
∀~X [φ(~X) → (Xi = X j)], where φ(~X) is a conjunction of atoms,
and Xi, X j are variables in ~X . A set of tgds is said to be weakly
acyclic, if there is no recursive implication of existential variables
[19]. In the following, we omit the quantifiers for brevity. We also
write φ(~X ,~Y)↔ ψ(~X ,~Z) to denote both, ψ(~X ,~Z)→ φ(~X ,~Y) and
φ(~X ,~Y) → ψ(~X ,~Z) in a mapping. For a source schema S and a
target schema T , a source-to-target tgd (s-t tgd) is a tgd such that
the antecedent contains only atoms from S and the consequent con-
tains only atoms from T . For a schema with relations r1,r2, . . . ,rn,
a set of tgds are called copy tgds, if they send each source relation
to a distinct target relation with the same arity, i.e., in the form of
{r̂i(~X)← ri(~X)} with r̂i being the corresponding target relation for
ri. For a relation r with arity n, we say an identity query is a query
q(X1,X2, . . . ,Xn)← r(X1,X2, . . . ,Xn), with n different variables.

Schemas and Mappings: A schema S is a sequence of relation
symbols (r1,r2, . . . ,rn) where each ri has a fixed arity. An instance
I of a schema S, denoted by I ∈ Inst(S), is the union of relation
instances over ri where ri ∈ S. An instance I is legal wrt. a set of
data dependencies Σ formulated as tgds and egds [1] over S, if it

satisfies the dependencies, i.e., I |= Σ. A binary mapping between
two schemas S1 and S2 is a triple M = (S1,S2,Σ) where Σ is a set
of dependencies. The semantics of a binary mapping is a binary
relation with instances of the source schema as the domain and in-
stances of the target schema as the range, i.e., Inst(M) = {(I,J) :
I ∈ Inst(S1)∧J ∈ Inst(S2)∧(I,J) |= Σ}, The semantics of the com-
position of two mappings M13 = M12 ◦M23 is then defined as
Inst(M13) = {(I,K) : ∃J (I,J)∈ Inst(M12)∧(J,K)∈ Inst(M23)}.
For a mapping M from S to T , the possible worlds, called solu-
tions, of T wrt. an instance I of S are SolM (I) = {J ∈ Inst(T) :
(I,J) ∈ Inst(M)}. We denote it by Sol(I) when the mapping in-
volved is clear from context. A solution is called a universal solu-
tion if there is a homomorphism from it to any other solution [19].
A universal solution that has no homomorphism to a subset of it-
self is called a core [20]. It is known that the core is unique up to
isomorphism when it exists.

Chase and Certain Answers: The chase procedure [13] is an
indispensable tool for reasoning with data dependencies. Let Σ be
a set of tgds and egds with terminating chase, we use chaseΣ(I) to
denote the result of the chase using Σ over a database I. When Σ

is a set of s-t tgds and target dependencies. We also use chaseΣ(I)
to denote the target instance J such that (I,J) = chaseΣ(I, /0). For
a schema mapping specified by a finite set of s-t tgds Σst and a
set of target dependencies Σt consisting of a finite set of weakly
acyclic tgds and a finite set of egds, it is shown in [19] that for
any source instance I, chasing I against Σst ∪ Σt yields a univer-
sal solution if the chase succeeds. The certain answer of a query
q wrt. a set of database instances P over the same schema is:
certain(q,P) =

⋂
I∈P q(I). Equivalence of two sets of databases is

then defined using certain answers. Two sets of database instances
P1 and P2 under the same schema are said to be L-equivalent wrt.
a query language class L, denoted by P1 ≡L P2, if for any query in
L they have the same certain answer. In this paper, we are partic-
ularly interested in equivalence wrt. conjunctive queries, i.e., CQ-
equivalence.

3. TOWARDS A MEDIATED QUERY
INTERFACE

In [26], Miller et al. first use formal schema equivalence results
to characterize the semantics of schema merging. However, as we
understand it today, the semantics of a mediated schema is better
characterized using not only the structure of the schema itself but
also the mapping relating the mediated schema to data sources that
host extensional data. Based on such an observation, the semantics
of schema merging in our approach is characterized as logical prop-
erties of the output mapping system between the source schemas
and the mediated schema, targeting at the scenario of creating a me-
diated query interface over incomplete data sources. We first state
the problem of n-ary schema merging in Section 3.1, where the
inter-schema mapping constraints and source integrity constraints
are unified. In Section 3.2, we propose the completeness criteria
aiming at retaining not only all the ground data, but also certain
answers ensured by data dependencies. Section 3.3 formalizes the
desiderata that data asserted to be equivalent in the input mapping
should be integrated via the output mapping system. In Section
3.4, we formulate minimality of a mediated schema such that no
column in the schema is redundant.

3.1 N-ary Schema Merging
Consider the scenario of merging multiple data sources to create

a single unified query interface. Since the data sources are indepen-
dently developed, their extensions, i.e., explicitly stored data, usu-

ally do not conform to any inter-schema logical constraints. That is,
under Closed World Assumption, logical constraints usually cannot
be asserted among data sources. This is one reason why Pottinger
and Bernstein [28] interpret their input mapping as specification of
overlap between schemas instead of direct logical constraints over
data instances. In this paper, we take the OWA by interpreting input
mapping as constraints that are expected to hold over the integrated
global database, which is also inline with the common assumption
in data integration that sources are sound but incomplete.

Definition 1. Given an incomplete database I of schema S, the
semantics of I wrt. a set of data dependencies Σ over S is SemΣ(I) =
{I′ : I′ ∈ Inst(S)∧I⊆ I′∧I′ |=Σ}. When the dependencies are clear
from context, we simply write Sem(I) for brevity.

Consider n source schemas S1,S2, . . . ,Sn with no two relations
sharing the same name. Each source schema Si has a set of in-
tegrity constraints Σi as a union of tgds and egds. The input map-
ping is specified by a set of inter-schema tgds Σin among the source
schemas.

Definition 2. The joint source schema is the disjoint union of
the n source schemas, while a joint source instance is the disjoint
union of n instances with one instance for each source schema. The
merge input is then a pair (S,Σ), with S being a joint source schema
and Σ = Σin ∪

⋃
i Σi. The semantics of a joint source instance I is

then SemΣ(I).

In the following of the paper, we only consider sound data
sources, that is, they are consistent with the specified data depen-
dencies and the possible world set they present is not empty.

Definition 3. For a merge input (S,Σ), a merge output is a binary
mapping Mo = (S,G,Σo), called the output mapping, in which G
is the mediated schema and Σo is a set of data dependencies.

It is now commonly observed that for a given merging scenario,
there may be multiple plausible mediated schemas [12, 31]. With-
out human intervention, our approach will produce a series of plau-
sible outputs.

3.2 Completeness
In the survey by Batini et al. [6], completeness of a mediated

schema is described as containing all concepts in the union of the
source schemas’ application domains, which is rather representa-
tive of the approaches they surveyed, since they mostly employ
a conceptual model such as EER and do not explicitly consider
querying of the mediated schema.

Pottinger and Bernstein [28] concretize Hull’s notion of query
dominance [23] in the scope of schema merging as retaining in the
mediated schema the data of each source relation. We extend their
formalization in two aspects. First, we consider retaining answers
of all conjunctive queries besides each source relation. Second, we
take source incompleteness into consideration and hence require
the retainment of both, extensively stored data and inferred data,
for which we use the notion of certain answers.

Definition 4. Given a merge input (S,Σ), an output mapping
Mo = (S,G,Σo) is complete wrt. a mapping language L, if there ex-
ists a mapping Mw = (G,S,Σw) with Σw specified in L such that for
any joint source instance I, we have: SemΣ(I) ≡CQ SolMo◦Mw(I).
Mw is called a witness mapping.

The requirement of completeness ensures that an output map-
ping system has a mapping backward to the joint source schema,

which is a witness of the retainment of certain answers of queries.
If the witness mapping allows CQ rewriting, e.g., specified in s-t
tgds, then for each q ∈ CQ over S, the rewriting against Mw pro-
duces a query over the mediated schema producing the same certain
answer.

EXAMPLE 1. Consider a subset of our example containing
only the relations company and org and the mapping M1 :
company(Cid,Name,City) ↔ org(Cid,Name). The mediated
schema {company_org(cid,Name,city)} is complete with the out-
put mapping:

company_org(Cid,Name,City)← org(Cid,Name)

company_org(Cid,Name,City)← company(Cid,Name,City)

A witness mapping is:

company(Cid,Name,City)← company_org(Cid,Name,City)

org(Cid,Name)← company_org(Cid,Name,City)

3.3 Integratedness
Completeness alone is not sufficient to indicate the quality of an

output mapping system, as illustrated in the following example.

EXAMPLE 2. Consider the same input as in Ex. 1. A copy of
the source schema with the following output mapping is also com-
plete: company′(Cid,Name,City) ← company(Cid, Name,City)
and org′(Cid,Name)← org(Cid,Name). A possible witness map-
ping is:

company(Cid,Name,City)← company′(Cid,Name,City)
company(Cid,Name,City)← org′(Cid,Name)

org(Cid,Name)← company′(Cid,Name,City)
org(Cid,Name)← org′(Cid,Name)

A problem with the above output mapping system is that, although
in the input mapping company and org are asserted to be equiva-
lent when projected to cid and name, their images in the mediated
schema are still separate. This phenomenon reveals that complete-
ness does not guarantee that equivalent data are integrated in the
mediated schema.

When creating a mediated query interface, semantically equiv-
alent data should be provided in a seamless way in the merged
schema, while the users do not need to concern about either the ori-
gin or the structural heterogeneity. We formalize below the require-
ment that integration is actually performed via the output mapping.

Definition 5. Given a merge input (S,Σ), an output mapping
Mo = (S,G,Σo) is integrated if for any joint source instance I, the
following holds:

SolMo(I)≡CQ
⋃

J∈Sem(I) SolMo(J).

Besides mixing equivalent data, integratedness has another im-
plication under OWA. Since data sources are incomplete, two dif-
ferent joint source instances may have the same semantics, i.e., the
same possible world set. Integratedness requires that the output
mapping does not distinguish these equivalent joint sources regard-
ing query answering.

EXAMPLE 3. Consider a source instance I =
{company(1, IBM, Armonk),org(2,Microso f t)} for Example
2. The query q(Y) ← company(X ,Y,Z) will give only IBM as
certain answer. However, the same query has {IBM,Microso f t}
as the certain answer for

⋃
J∈Sem(I) SolMo(J). Therefore, it is

not integrated. It is straightforward to verify that Example 1 is
integrated.

We have to point out that integratedness alone is not sufficient
either, since a constant output mapping producing a constant target
side always satisfies integratedness. Hence, integratedness has to
be used together with completeness.

3.4 Minimality
In the scenario of creating a mediated query interface for data

integration systems, we make the assumption that a smaller query
interface (still retaining all the query capabilities) is better and head
for a minimal schema with no redundant column. Redundancy of
columns is defined wrt. a given output mapping.

Definition 6. For a target schema G in an output mapping Mo,
the induced mapping wrt. a projection Mp of G is the composition
Mo ◦Mp.

An induced mapping is actually an adaptation of the output map-
ping after removing some columns from the mediated schema.

EXAMPLE 4. Consider a fragment of the running exam-
ple with the source schema S consisting of the relations
grant(grantee,pi,amount,sponsor), funding(pi,oid, aid) and finan-
cial(aid,amount,project,year). The input mapping is

grant(O,Pi,A,S)← f unding(Pi,Aid,O)∧ f inancial(Aid,A,P j,Y r).

Let G be a replica of S and denote the predicates in G by grant’,
funding’ and financial’. A complete and integrated output mapping
Mo consists of the following dependencies:

grant(O,Pi,A,S)→grant ′(O,Pi,A,S)
f inancial(Aid,A,P j,Y r)∧

f unding(Pi,O,Aid)→grant ′(O,Pi,A,S)
f unding(Pi,O,Aid)→ f unding′(Pi,O,Aid)

f inancial(Aid,A,P j,Y r)→ f inancial′(Aid,A,P j,Y r)

Let Mp be a projection that removes the pi column from grant’.
The subschema G′ contains grant”, financial” and funding”. The
induced mapping is M = (S,G′,Σ) with Σ represented by the fol-
lowing dependencies:

grant(G,Pi,A,S)→grant ′′(G,A,S)
f inancial(Aid,A,Pj,Y r)∧ f unding(Pi,O,Aid)→ grant ′′(O,A,S)

f unding(Pi,O,Aid)→ f unding′′(Pi,O,Aid)
f inancial(Aid,A,Pj,Y r)→ f inancial′′(Aid,A,Pj,Y r)

Definition 7. An output mapping Mo = (S,G,Σo) is minimal
wrt. a set of output mappings P , if for any projection of G that
is not an identity, the induced mapping does not belong to P .

The set of output mappings P may be the set of all mappings
having certain properties, e.g., the properties completeness and in-
tegratedness as introduced above. In the following, we are always
interested in the minimal mappings that are complete and integrated
and simplify say minimal or minimality.

Intuitively, an output mapping is minimal, if removing any
columns will cause loss of some property (e.g., completeness).

EXAMPLE 5. Consider the induced mapping M in Example 4.
It is no longer complete because the information over pi of grants
is lost due to the projection. In fact, the original output mapping
Mo is minimal wrt. completeness.

The next proposition suggests we only need to focus on com-
pleteness for induced mappings of an integrated output mapping.

PROPOSITION 1. Any induced mapping of an integrated output
mapping is also integrated.

For instance, the induced mapping in Example 4 is still inte-
grated.

4. A LOGICAL FRAMEWORK
In this section, we describe an algorithm producing complete

and integrated mediated schemas that have no redundant columns.
The algorithm consists of two stages: a constraint repairing stage
and a mediated schema minimization stage. Sec. 4.1 describes
a constraint repairing procedure which produces an initial medi-
ated schema with an output mapping that is both, complete and
integrated, and which we call the canonical mediated schema. In
Sec. 4.2, we provide a procedure for testing completeness after re-
moving columns from the canonical mediated schema schema (or
equivalently, whether some columns are redundant), which is at the
core of the mediated schema minimization stage described in Sec.
4.3. Finally, we describe the complete algorithm in Sec. 4.4.

4.1 The Canonical Mediated Schema
In this section we show that there always exists a merge output

that is both, complete and integrated, which we call the canonical
output mapping. The mediated schema is called the canonical me-
diated schema. Given a merge input (S,Σ), we create the canonical
output mapping as follows:

1. Initialize G to be a replica of S. Let Σcopy be the copy tgds,
i.e., the 1-to-1 mapping from S to G.

2. Let ρ be the renaming of predicates from S to their images in
G. Construct the target dependencies over G as ΣG = ρ(Σ).

3. The canonical output mapping is Mo = (S,G,Σcopy∪ΣG).

The output mapping consists of two parts: a set of s-t tgds trans-
ferring all the facts in the source database to the global schema
(Σcopy) and a set of target dependencies over the mediated schema
(ΣG).

LEMMA 1. The canonical output mapping Mo described
above is both complete (wrt. full s-t tgds) and integrated.

PROOF. Completeness: for any source instance I, we have
ρ(Sem(I)) = SolMo(I) with ρ being the renaming as in the cre-
ation of the canonical output mapping. Using a set of copy tgds
(the inverse of Σcopy, which exists as G is a 1-1 copy of S) as the
witness mapping, we obtain a solution set co-initial (i.e., with the
same minimal elements regarding set inclusion) with Sem(I). Co-
initiality implies CQ-equivalence, since CQ is monotone.

Integratedness: for each complete ground source I′ ∈ Sem(I) we
have ρ(I′) as the minimal solution of SolMo(I

′) in terms of set in-
clusion, because ρ(I′) is a solution and it is a subset of any other
solution. Therefore,

⋃
I′∈Sem(I) SolMo(I

′) and ρ(Sem(I)) are co-
initial. Considering ρ(Sem(I)) is identical to SolMo(I), integrated-
ness is straightforward.

Interestingly, Melnik describes in [25] a straightforward algo-
rithm creating a mediated schema for view integration, which dif-
fers from our canonical mediated schema only in the direction of
the output mapping. However, the size of the schema does not
matter for view integration and hence he does not head for mini-
mization of mediated schemas.

EXAMPLE 6. The output mapping Mo in Example 4 is the
canonical output mapping obtained from the input using the pro-
cedure described.

We have shown that a complete output mapping is able to be
expressed in the language of s-t tgds and target dependencies. The
following proposition reveals that without the target dependencies
in the output mapping, completeness cannot be achieved.

PROPOSITION 2. There exists an input mapping specified as a
finite set of full tgds, such that no output mapping defined as a finite
set of s-t tgds is complete wrt. s-t tgds.

PROOF SKETCH. Consider the following input mapping, in
which relations from source schemas S1 and S2 are labeled with
corresponding subscripts:

e1(x,y) → c2(x,y)
c1(x,y)∧ e1(y,z) → c2(x,z)

c1(x,y) ↔ c2(x,y)

e1 represents the edges in a graph, c1 and c2 express the transitive
closure of e1. A query asking for the certain answers of c1 is a wit-
ness of the incompleteness, which simply follows from the inability
of first order queries to express transitive closure [1].

4.2 Test Schema Reduandancy
We introduce in Section 4.2.1, a procedure testing whether the

answer of a CQ is still obtainable after removing some columns
from a schema. This is then employed by the algorithm in Section
4.2.2, which tests schema redundancy.

4.2.1 Query Recoverability
We first introduce in this section a useful notion which we call

query recoverability. Intuitively, it is a formalization that the an-
swer of a query is still obtainable after a projection.

Definition 8. For a given projection mapping Mp and a given
query class L:

• A query q is recoverable wrt. a database I, if ∃q′ ∈ L over the
projection of I, producing the same answer as q over I. We
say q is recoverable via q′.

• A query q is recoverable wrt. a set of databases P, if ∃q′ ∈ L,
such that ∀I ∈ P, q is recoverable via q′.

• A query is recoverable wrt. a set of dependencies Σ, if it is
recoverable wrt. the set of all legal databases under Σ.

EXAMPLE 7. Consider two relations company(cid, cname,
city) and org(oid, name) with the dependencies Σ that contain
a tgd company(Cid,Cname,city)→ org(Cid,Cname) and an egd
org(Oid,Name1)∧org(Oid,Name2)→ Name1 = Name2. Let Mp
be the projection that projects out the cname column of company.
Then the query πcname(company) is recoverable wrt. Σ. If we
denote the projected relation by company’(cid, city), the query
πcname(company′ 1 org) can be used to recover the original an-
swer to πcname(company).

We describe in Figure 2 a test for conjunctive query recoverabil-
ity. The correctness is given in Theorem 1. By freezing a query as
a database, we mean sending each distinct variable to a fresh new
constant following the query containment tests described in [33].

THEOREM 1. Let Σ be a set of tgds and egds with terminating
chase. A conjunctive query (CQ) q is recoverable wrt. Σ, a pro-
jection Mp and the query class CQ, if and only if q passes the
recoverability test.

recoverable(q,Σ,Σp)
Input: A conjunctive query q, a set of dependencies Σ, and a
projection Σp
Output: Returns true if q is recoverable after projection

01 If chasing q against Σ fails, return true;
02 else let q′ = chaseΣ(q).
03 Freeze q′ as a database d1
04 Perform the following:
05 d2 = chaseΣp(d1)

06 Reverse the arrows in Σp resulting in Σ−1
p ;

07 d3 = chaseΣ−1
p
(d2)

08 d4 = chaseΣ(d3)
09 If the frozen head of q′ is contained in q′(d4) return true;
10 else return false

Figure 2: Algorithm for Testing CQ Recoverability

PROOF SKETCH. The case when the chase on line 1 fails is
straightforward. We prove in the following the case when the chase
succeeds.
⇒: Assume there exists a query q1 over the projected schema

that recovers q. Let q2 be the unfolding of q1 against the projection,
we have q2 ≡Σ q′. We also know q2(d1) ⊆ q2(d4), since q2 does
not make use of any source data not exported by the projection.
Therefore, q′. f rozenHead ∈ q′(d1) = q2(d1) ⊆ q2(d4) = q′(d4),
i.e., the test succeeds.
⇐: We define a melting transformation, denoted by f−1, which

sends each frozen constant to its original variable but keeps vari-
ables introduced during chase unchanged. In this way, a frozen
database is transformed into a CQ. We claim that f−1(d2) ≡Σ q is
a recovery query.

EXAMPLE 8. We perform the recoverability test over
Example 7. Chasing against Σ leads to the query
q′ = πcname(company 1 org). After freezing we get:
d1 = {company(id0,name0,city0),org(id0,name0)}. Af-
ter the expanding following projection, we get d3 =
{org(id0,name0),company(id0,Name1,city0)} with Name1
being a new variable. Chasing d3 against Σ gives
d4 = {org(id0,name0),company(id0,name0,city0)}. As
name0 ∈ q′(d4), the original query passes the recoverability
test.

The recoverability test can be extended to the language of union
of CQs (UCQs):

PROPOSITION 3. A UCQ, with no component CQ contained in
another, is recoverable wrt. UCQ if and only if each component
CQ is recoverable wrt. CQ. In particular, a CQ is recoverable wrt.
UCQ if and only if it is recoverable wrt. CQ.

THEOREM 2. Let Σ be a set of weakly acyclic tgds and egds,
and q be a CQ, the recoverability is NP-complete wrt. |q|. More-
over, when each dependency in Σ has a bounded length, and q is
either of bounded length or project-free, then the recoverability test
is in PTIME wrt. the size of Σ, q, and S.

PROOF SKETCH. Since the data complexity of chasing against
weakly acyclic tgds is PTIME [19], the database d4 is of polyno-
mial size. It is straightforward that embedding the body of q′ via
a homomorphism to d4 is in NP. The NP-hardness is due to a re-
duction from rewriting CQ using conjunctive views. When each

reducible(Mp,Mw)
Input: a projection Mp = (G,G′,Σp) to be tested and a map-
ping Mw = (G,S,Σw). ΣG denotes the dependencies in G.
Output: returns true if the projection is reducible.

01 for each r ∈ S
02 qr = unfolding of r against Σw
03 endfor
04 return

∧
r∈S recoverable(qr,ΣG,Σp)

Figure 3: Reducibility Test

dependency has a bounded length, the chase result is again of poly-
nomial size. Hence the final database is of polynomial size. When
q is of bounded length or project-free, testing embedding can be
done in PTIME.

4.2.2 Projection Reducibility
Given a complete initial output mapping, a projection is re-

ducible with respect to a mapping language L, if the induced map-
ping is complete with respect to L. The existence of a reducible
projection suggests that the mediated schema in the original out-
put mapping has redundant columns. Therefore, testing projection
reducibility is in fact testing schema redundancy.

The following theorem states that projection reducibility can be
tested by query recoverability tests, which we have already devel-
oped in Section 4.2.1.

THEOREM 3. Let M = (S,G,Σsg ∪Σg) be the canonical out-
put mapping with a witness mapping Mw. The following two state-
ments are equivalent:

1. A projection Mp of G is reducible wrt. full s-t tgds;

2. For each relation r ∈ S, unfolding of the identity query
against Mw is recoverable wrt. Σg, Mp and UCQs.

PROOF SKETCH. It is obvious that if all identity queries are re-
coverable, we just take the union of the recoverable queries of all
source relations to get a witness mapping for the induced mapping
system. The other direction holds because each valid instance of
the target schema of the canonical mediated schema is a ground
core [20] of some source instance, and in this case retaining certain
answers of CQs implies the identity queries are recoverable.

Taking into consideration that an identity mapping is a witness
mapping for the canonical output mapping and proposition 3, we
are now able to develop a procedure for testing projection reducibil-
ity over the canonical mediated schema, which is described in Fig.
3.

LEMMA 2. For inputs with terminating chase, a projection of
the canonical mediated schema is reducible wrt. full s-t tgds if and
only if it passes the reducibility test.

EXAMPLE 9. Consider the mediated schema G and the output
mapping Mo as in Ex. 4. We test whether the projection Mp is re-
ducible. Recall that the witness mapping for the canonical output
mapping system is in a simple form, i.e., a set of copy tgds. The cor-
responding unfolding of the identity query of each source predicate
r(~X) will be r′(~X). Since only grant ′ is affected in the projection
Mp, all other unfoldings are trivially recoverable. Therefore, in
order to test whether Mp is reducible, we only need to test whether
the query q(G,P,A,S)← grant ′(G,P,A,S) is recoverable. The re-
coverability test returns false, which is in line with our previous
discussion.

enumMaxPro jection(Il ,Cl , l,MP,Mw)
Input: a projection set of columns Il , a set Cl of possible
columns to be further projected, the recursion level l, the set
MP of maximal projections computed already, a set of depen-
dencies Σ, and a witness mapping Mw.
Output: a set of maximal sets of projections MP.

01 for each x ∈Cl
02 Il+1 = Il ∪{x}
03 Pl+1 = {y ∈Cl |y > x}
04 if ∃I′ ∈MP such that Il+1∪Pl+1 ⊆ I′

05 return
06 endif
07 Cl+1 = /0
08 for each y ∈ Pl+1
09 if reducible(Il+1∪{y},Mw)
10 Cl+1 =Cl+1∪{y}
11 endif
12 endfor
13 if Cl+1 = /0∧¬∃I′ ∈MP such that Il+1 ⊆ I′

14 MP = MP∪{Il+1}
15 else
16 enumMaxPro jection(Il+1,Cl+1, l +1,MP,Mw)
17 endif
18 endfor

Figure 4: Maximal Projection Enumeration Algorithm

4.3 Schema Minimization
With the schema redundancy test at hand, we are now able to

search for minimal mediated schemas. A naive way of finding min-
imal subschemas of the canonical mediated schema that retain com-
pleteness is to enumerate all possible projections and test for re-
ducibility. If a projection is maximal in terms of set inclusion rela-
tionship, namely any superset will not retain completeness, the cor-
responding induced output mapping is a desired minimal mediated
schema. Obviously, the above enumeration procedure is exponen-
tial. We present a more efficient enumeration algorithm by making
use of the following property: if a projection is reducible, then pro-
jecting out any subset also results in a reducible subschema. This
is known as the A-priori property [2]. We use here a variant of
the depth-first GenMax algorithm [22], which makes use of both
superset pruning (as in the original A-priori) and subset pruning.
Fig. 4 depicts the procedure to compute the maximal projections.
As input it receives a set Il of columns projected out, a set of can-
didate columns Cl that possibly can be projected out additionally,
the recursion level l, an initially empty set of result projections,
and a witness mapping Mw. After termination MP contains all the
maximal projections representing minimal induced mappings. For
brevity, we denote in the algorithms in Fig. 4 and Fig. 5 a projec-
tion by the set of positions to be projected out instead of explicitly
constructing a projection mapping.

EXAMPLE 10. Consider the full running example specified in
Figure 1, with all integrity constraints and mappings (M1 to M4).
The merging algorithm reveals four different ways to reduce redun-
dancy in the mediated schema:

1. remove the whole project relation and company.cname;

2. remove the relations project and org;

3. remove company.cname and financial.year;

4. remove the relation org and financial.year.

merge(S, Σ)
Input: joint source schema S, input dependencies Σ

Output: a series of output mappings Result = {M }

01 compute the canonical output mapping Mo = (S,G,Σcopy∪ΣG)
02 construct the witness mapping Mw for Mo
03 C = /0
04 let C′ be the set of all columns in any relations in G
05 for each c ∈C′

06 if reducible({c},Mw)
07 C =C∪{c}
08 endif
09 endfor
10 MP = /0
11 enumMaxPro jections(/0,C,0,MP,Mw)
12 if MP = /0 return {Mo}
13 for each P ∈MP
14 construct subschema G′ defined by P
15 construction projection mapping Mp determined by P
16 M = Mo ◦Mp
17 Result = Result ∪{M }
18 endfor
19 return Result

Figure 5: The complete merging algorithm

4.4 The Full Picture
The complete merging algorithm is depicted in Figure 5. The

algorithm starts by creating the canonical mediated schema, tak-
ing into consideration all the egds and tgds in the input mapping
and integrity constraints incorporated in the source schemas, if any.
An initialization step finds all the projections of size one that are
reducible. The initial candidate set is then fed to the enumeration
algorithm. The reducibility test is employed by the enumeration
algorithm to detect redundancy in the canonical mediated schema.
Each maximal projection determining a minimal output mapping is
added to the output.

THEOREM 4. Let Σ be a set of tgds and egds over S with ter-
minating chase. The algorithm merge(S,Σ) produces all and only
the subschemas of the canonical mediated schema with an output
mapping that is complete (with respect to full s-t tgds), integrated,
and minimal.

PROOF. The result simply follows the correctness of the Gen-
Max algorithm [22], Lemma 1, Lemma 2, and Proposition 1.

Language for Output Mappings The output mapping M gener-
ated by the algorithm is the composition of Mo, which is a union of
a set of full s-t tgds and a set of target dependencies, and Mp, which
is a special form of full s-t tgds. A recent result by Arenas et al. [3]
shows that composition of two mappings specified by s-t tgds with
target dependencies is able to be expressed using source-to-target
second order dependencies (s-t SO dependencies). Therefore, s-t
SO dependencies can be used as the syntax for the output map-
ping. An alternative is to use predicates in the canonical mediated
schema G0 as helper predicates and express the output mapping as
a set of egds and tgds over (S,G0,G). The latter is our current im-
plementation for the output mapping language. Implementation of
s-t SO dependencies is in our research agenda.
Processing Queries Over Mediated Schema Given a user query
against the mediated schema, there are two strategies for query pro-
cessing. The first way is query answering using a universal solu-
tion [19], while the second is query rewriting. When the input data

dependencies admit a terminating chase, the output mapping gen-
erated by our approach is guaranteed to admit also a terminating
chase. Therefore, query answering can be performed by chasing
the source instances against the output mapping and then perform
query evaluation over the materialized instance of the mediated
schema. However, the expressive mapping language we allow im-
poses challenges on query rewriting, since the output mapping may
involve recursion of relations. We detail here an algorithm which
is able to rewrite a conjunctive query into a Datalog program when
the input mapping consists of weakly acyclic tgds [19], which is an
extension of the inverse rule algorithm for query rewriting in Local-
As-View systems [16]. The rewriting algorithm proceeds in three
stages. In the first stage, bottom-up generation of functional pat-
terns of predicates are performed until a fixpoint is reached. This
stage can be shared by rewriting of different queries against a given
mediated schema. In the second stage, for a given user query, we
check the reachability of patterned predicates backward from the
given query. The third stage takes as input the reachable patterned
rules obtained in the previous stage and employs the predicate-split
[16] technique to produce a function-free Datalog program.

5. EXPERIMENTS
The merging algorithm is implemented using Java SE 6 and

SWI-Prolog 5.8.0. A parallel chase [13] is implemented in Pro-
log for reducibility tests. A-priori enumeration is implemented in
java. The experiments have been carried out on a 2GHz dual core
computer. The maximal heap size is set to 512M, while the initial
heap size is 40M. Disk I/O costs are excluded from profiling, while
communication costs between Java and Prolog are included. Two
sets of experiments are carried out. The first are performed over
real data sets to evaluate effectiveness for practical merging scenar-
ios. The second are carried out over a workload of various degrees
of complexities to demonstrate the scalability.

5.1 Effectiveness over Real World Data Sets
Experiments are carried out over the real world data sets from

Illinois Semantic Integration Archive (http://pages.cs.wisc.
edu/~anhai/wisc-si-archive/). Three out of five data sets
are used: Courses, Real Estate II, and Inventory. The remaining
data sets are Faculty and Real Estate I . The former has an identical
schema for all data sources and hence is of little interest for schema
merging. The latter is left out because it is a variant of Real Estate
II, with less complicated mappings.
Expressiveness of Mapping Language Complex relationships in-
volving joins of relations arise in the data sets, which confirms the
necessity of tgds as the mapping language. Furthermore, we see
it is crucial to be able to specify integrity constraints over source
schemas. Without presence of keys in the source, e.g., house in
RealEstate II, no attribute is projectable, even many attributes are
asserted to be equivalent. This is in line with completeness: when
there is no functional dependency, a tuple is only retrievable when
all components are kept. The Courses data set demonstrates the
strength of our approach to perform n-ary merge. The Courses
data set consists of five heterogeneous sources for courses. Instead
of consecutive binary merging, we utilize tgds from four binary
mappings among the five data sources and perform only one merg-
ing. This is particularly suitable in scenarios where only few fixed
mappings are available, such as in a P2P setting. Value conver-
sion functions and arithmetic expressions arising in the data sets
are not directly expressible in tgds. We handle the problem by
using skolem functions as in SO tgds [21]. Non-invertible func-
tions are expressed as skolem terms in the head of tgds, while
invertible functions are handled using helper predicate and rules

to avoid recursive nesting of skolem functions during chase. An
example is the concatenation of names, for which a ternary pred-
icate concat(FirstName,LastName,FullNmae) is introduced to-
gether with two rules: concat(split_ f irst(N),split_last(N),N)←
N \= concat2(_,_), !. and concat(F,L,concat2(F,L))← true. We
conclude that the language of tgds as in our approach is rich
enough and necessary to capture real world relationships among
data sources.

Comparison to Manually Created Schemas Our merging al-
gorithm removed a large number of redundant attributes from the
mediated schema for all three data sets: 31 over 70 (Courses), 16
over 57 (RealEstate II), 32 over 89 (Inventory). There is a man-
ually created mediated schema available for Course. Our medi-
ated schema differs from the referential schema in several aspects.
First, some source attributes occurring in only one source are left
out in the referential schema while our algorithm retains them due
to the requirement of completeness. Second, our generated schema
is more normalized than the referential schema, which is probably
due to the fact that we follow a reduction based approach. Third,
since we perform multi-way merging of five course schemas using
only four binary mappings among them, some correspondences of
attributes are not transitively captured in the mapping simply be-
cause the intermediate schema in-between does not have an equiv-
alent attribute. An example is course_rice and course_wsu have
no direct mapping and are mapped independently to course_reed.
course_reed does not have an attribute for comment. Therefore,
comments from the two schemas are not revealed to be equivalent.
The conclusion is our approach has successfully reduced schema
level redundancy in real world scenarios.

5.2 Scalability
Workload Generator A random workload generator has been

implemented to provide inputs of varied complexities. The work-
load generator consists of three components: a schema generator, a
match generator, and a mapping generator. Given a set of config-
urations, the schema generator generates a universal relation and a
set of functional dependencies, which are then fed to a top-down
decomposition based schema normalizer. The schema normalizer
takes as input a universal relation and a set of functional depen-
dencies, performs a normalization, and creates a database schema
in BCNF with functional dependencies and acyclic inclusion de-
pendencies. The match generator uniformly selects one position
from each schema to form a value correspondence. Each value cor-
respondence pair is selected independently of previously selected
pairs. A cyclicity test is performed before each candidate value cor-
respondence is admitted into a match, i.e., a set of correspondences,
so that the implied mapping is weakly acyclic. Given a match, the
mapping generator generates a tuple generating dependency using
a simplified version of query discovery [18].
Scalability Experiment Result We generated 166 random inputs
ranging from 10 to 200 attributes, with the size of the dependency
graph (covering mapping and ICs) from 10 to 5000. The running
time wrt. the size of the dependency graph is demonstrated in Fig-
ure 6. The time grows following a polynomial trend line. A close
look at the generated workload reveals that most of them have only
a small number of redundant attributes (165 out of the 166 inputs
have less than 3 redundant attributes). Therefore, the enumeration
of the candidate position sets does not take much time, which in
worst case can be exponential. Therefore, the running time is deter-
mined by the reducibility test, which is in PTIME when the query
recoverability test is in PTIME. This is in line with our previous
analysis.

http://pages.cs.wisc.edu/~anhai/wisc-si-archive/
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/

300

400

500

600

700

Ti
m
e
(in

 s
)

Time vs. Dependency Graph Size

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m
e
(in

 s
)

of edges in Dependency Graph

Time vs. Dependency Graph Size

Figure 6: Running Time vs. Size of Dependency Graph

6. RELATED WORK
Schema merging has a long history in database research. We do

not head for a detailed survey, but instead focus on the evolution
of schema merging methodologies and compare those works to our
logical approach.

Batini et al. [6] provide an early survey covering a lot of classical
view/database integration approaches. As the integration tasks are
usually carried out in a schema design scenario, schemas are repre-
sented in a variant of ER model or Object-Oriented model. Those
approaches differ a lot on how inter-schema relationships between
source schemas are represented. So called inter-schema assertions
[32, 29] are a popular language specifying set-based relationships
(e.g., inclusion, disjoint, and equal) between possible extensions
of concepts in different schemas. Most of the approaches undergo
a two phase procedure: first collapse equivalent elements in the
source schemas and then resolve the conflicts arising in collaps-
ing. Spaccapietra et al. [32] is a well known representative, which
is able to handle a wide class of conflicts. Pottinger and Bern-
stein [27] give a categorization of various types of conflicts. A
common shortcoming of this line of work is that no output map-
ping in the form of logical mappings (e.g., tgds) are generated, al-
though attribute correspondences between source schemas and tar-
get schemas are an implicit result.

Schema merging using expressive logical mappings is consid-
ered to be largely unexplored [14, 8]. [10] and [11] are pioneers
using logical constraints in merging. Similar to us, they con-
sider source integrity constraints and head for a minimal mediated
schema. However, their input mapping language is a special class
of mappings in the form of one-to-one relation-wise implications
and keys are required to be present in each implication. Our ap-
proach can be deemed as an extension of their work in the sense that
we consider tuple generating dependencies which is much more
expressive. Another distinction is that we consider source incom-
pleteness, while they do not. In [28], Pottinger and Bernstein ex-
tend their early work [27] to a merging algorithm working with
relational schemas and generating output mappings. Similar to us,
they also head for minimal mediated schemas in data integration.
Our approach differs from theirs in several ways. First, their in-
put mapping language is a special class of GLAV mappings using
conjunctive queries to specify overlap between schemas. In con-
trast, we consider arbitrary query containment constraints in the
form of tuple generating dependencies with the only restriction that
they admit a terminating chase. Second, their merging semantics is
based on preserving source information and overlap. Since we do
not have the concept of overlap, there is no overlap preservation in
our requirements for schema merging. They assume that the ex-
tensions of the sources do not conform to any direct constraints
and hence their completeness requirement is based on preserving
all extensionally stored data. In contrast, we consider source in-
completeness as a basic assumption and take the input mapping as
expected constraints over the integrated global database. Therefore,
our completeness requires preserving not only extensional data but

also inferred data in the form of certain answers. Third, the queries
used in their approach to witness the complete preserving of source
information do not contain joins, i.e., over a single relation, while
our approach uses conjunctive queries over the mediated schema
to reconstruct source information, which probably leads to smaller
mediated schemas. Last but not least, source integrity constraints
made use of in our approach are not exploited in theirs.

As clarified in [26], view integration is a closely related but
semantically different problem from data integration. View inte-
gration aims at creating a backend storage schema supporting the
source schemas as views, which results in quite different require-
ments on the merging algorithm. Melnik [25] proposes a straight-
forward algorithm for view integration of logical schemas. The
mediated schema is taken to be a disjoint union of the source
schemas, with source dependencies and input mapping encoded as
constraints. Output mappings are identity mappings copying part
of the mediated schema to a corresponding source schema. Are-
nas et al. [4] extend the work to achieve a smaller instance for the
mediated schema by adding denial constraints. The two works dif-
fer fundamentally from our work in that they head for creating a
backend storage schema to support the views satisfying the input
mapping. That’s why their output mapping is from the mediated
schema to the source schemas while we create a mapping from the
sources to the mediated schema. They are more concerned with
creating a smaller mediated instance of the mediated schema while
the schema’s size is insignificant. To the contrary, we aim at gener-
ating a minimal query interface instead of a minimal instance.

Chiticariu et al. [12] propose an interactive schema merging ap-
proach using schema matches as input. Concepts are extracted from
logical schemas and each possible configuration of concept collaps-
ing results in a plausible mediated schema. The space of plausible
collapsing of concepts is then navigated by the user in an interac-
tive manner. Since each extracted concept has a particular join path
in the source schemas, two concepts and value correspondences be-
tween them comprise an implicit GLAV mapping. Following this
point of view, a schema match is a representation of a collection
of uncertain mapping constraints. The work is extended in [30]
to generate only top-k mediated schemas, with a ranking of qual-
ity of candidate mediated schemas. A mediated schema is consid-
ered more desired if it collapses concepts with higher similarity or
higher sub-element coverage. Sarma et al. [31] provide another un-
certain schema merging approach using also schema matches. They
represent alternative mediated schemas as a probability distribution
over different clustering of attributes. A probabilistic mapping [15]
is produced for each possible mediated schema. In our approach,
the input mapping is constrained by logical formulas and bears no
uncertainty. However, uncertainties still arise from the fact that
the same piece of information can be structured in different ways.
Similarly to [12], we allow multiple plausible mediated schemas as
output.

We make use of the notion of witness mapping in our defini-
tion of completeness to support the recovery of certain answers.
The witness mapping is from the mediated schema backward to the
joint source schema. At a first glance, it is similar to the notion
of mapping inverse [17] or mapping recovery [5]. However, the
witness mapping is neither an inverse nor a recovery mapping of
the output mapping. The composition of the output mapping and
the witness mapping only need to be CQ-equivalent to the map-
ping (S,S,Σ) with Σ being the union of input tgds and source in-
tegrity constraints, and it does not need to contain the pair (I, I) in
the solution space,which is common for both, mapping inverse and
mapping recovery, when I is an incomplete joint source instance.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel approach to n-ary

schema merging for the relational model. We extend existing
work by considering source integrity constraints and using a much
broader class of mapping language, namely tgds with terminating
chase. Under OWA, we opt for minimal mediated schemas that
are complete wrt. certain answers of CQs. We have developed an
algorithm producing all desired mediated schemas as results of re-
moving redundant columns from the joint source schema. We have
also described the feasibility of query processing in our framework.
Finally, the evaluation has shown the applicability of our approach
to real world data sets.

In future work, we will study the various requirements for
schema merging under different scenarios, i.e., by investigating the
semantics for other applications than virtual data integration. One
possible direction is data warehousing, in which a schema is cre-
ated to materialize reconciled data. Furthermore, our approach for
the relational model should be extended to other popular metamod-
els, such as XML. Last but not least, merging schemas when the
underlying data sources are not consistent is also of practical sig-
nificance.

Acknowledgements: The authors are grateful to the anony-
mous referees for comments helping to improve the paper. The
work is supported by the DFG Research Cluster on Ultra High-
Speed Mobile Information and Communication UMIC (www.
umic.rwth-aachen.de).

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proc. VLDB, pages
487–499, 1994.

[3] M. Arenas, R. Fagin, and A. Nash. Composition with target
constraints. In ICDT, 2010.

[4] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros.
Foundations of schema mapping management. In PODS,
pages 227–238, 2010.

[5] M. Arenas, J. Pérez, and C. Riveros. The recovery of a
schema mapping: bringing exchanged data back. In PODS,
pages 13–22, 2008.

[6] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Computing Surveys, 18(4):323–364, 1986.

[7] P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A vision for
management of complex models. SIGMOD Record,
29(4):55–63, 2000.

[8] P. A. Bernstein and H. Ho. Model management and schema
mappings: Theory and practice. In Proc. VLDB, pages
1439–1440, 2007.

[9] P. A. Bernstein and S. Melnik. Model management 2.0:
Manipulating richer mappings. In Proc. SIGMOD, pages
1–12, Beijing, China, 2007.

[10] J. Biskup and B. Convent. A formal view integration method.
In Proc. SIGMOD, pages 398–407, Washington, D.C., 1986.

[11] M. A. Casanova and V. M. P. Vidal. Towards a sound view
integration methodology. In PODS, pages 36–47, Atlanta,
GA, 1983. ACM.

[12] L. Chiticariu, P. G. Kolaitis, and L. Popa. Interactive
generation of integrated schemas. In Proc. SIGMOD, pages
833–846, 2008.

[13] A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In
PODS, pages 149–158, 2008.

[14] A. Doan and A. Y. Halevy. Semantic integration research in
the database community: A brief survey. AI Magazine,
26(1):83–94, 2005.

[15] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration with
uncertainty. VLDB J., 18(2):469–500, 2009.

[16] O. M. Duschka and M. R. Genesereth. Answering recursive
queries using views. In Proc. PODS, pages 109–116, 1997.

[17] R. Fagin. Inverting schema mappings. In Proc. PODS, pages
50–59, 2006.

[18] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema mapping creation
and data exchange. In Conceptual Modeling: Foundations
and Applications, volume 5600 of LNCS, pages 198–236.
Springer, 2009.

[19] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. Theoretical
Computer Science, 336:89–124, 2005.

[20] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting
to the core. ACM Trans. Database Syst., 30(1):174–210,
2005.

[21] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing
schema mappings: Second-order dependencies to the rescue.
ACM Trans. Database Syst., 30(4):994–1055, 2005.

[22] K. Gouda and M. J. Zaki. Genmax: An efficient algorithm
for mining maximal frequent itemsets. Data Mining &
Knowledge Discovery, 11(3):223–242, 2005.

[23] R. Hull. Relative information capacity of simple relational
database schemata. SIAM Journal of Computing,
15(3):856–886, August 1986.

[24] M. Lenzerini. Data integration: A theoretical perspective. In
PODS, pages 233–246, 2002.

[25] S. Melnik. Generic Model Management: Concepts and
Algorithms. PhD thesis, Universität Leipzig, 2004.

[26] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The use
of information capacity in schema integration and translation.
In Proc. VLDB, pages 120–133. Morgan Kaufmann, 1993.

[27] R. Pottinger and P. A. Bernstein. Merging models based on
given correspondences. In Proc. VLDB, pages 826–873,
2003.

[28] R. Pottinger and P. A. Bernstein. Schema merging and
mapping creation for relational sources. In Proc. EDBT,
2008.

[29] C. Quix, D. Kensche, and X. Li. Generic schema merging. In
Proc. CAiSE’07, volume 4495 of LNCS, pages 127–141,
2007.

[30] A. Radwan, L. Popa, I. R. Stanoi, and A. A. Younis. Top-k
generation of integrated schemas based on directed and
weighted correspondences. In Proc. SIGMOD, pages
641–654, 2009.

[31] A. D. Sarma, X. Dong, and A. Y. Halevy. Bootstrapping
pay-as-you-go data integration systems. In Proc. SIGMOD,
pages 861–874, 2008.

[32] S. Spaccapietra, C. Parent, and Y. Dupont. Model
independent assertions for integration of heterogeneous
schemas. VLDB Journal, 1(1):81–126, 1992.

[33] J. D. Ullman. Information integration using logical views. In
Proc. ICDT, pages 19–40, Delphi, Greece, 1997. Springer.

www.umic.rwth-aachen.de
www.umic.rwth-aachen.de

	Introduction
	Preliminaries
	Towards a Mediated Query Interface
	N-ary Schema Merging
	Completeness
	Integratedness
	Minimality

	A Logical Framework
	The Canonical Mediated Schema
	Test Schema Reduandancy
	Query Recoverability
	Projection Reducibility

	Schema Minimization
	The Full Picture

	Experiments
	Effectiveness over Real World Data Sets
	Scalability

	Related Work
	Conclusion and Future Work
	References

