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ABSTRACT

Many existing indexes on text work at the document granu-
larity and are not effective in answering the class of queries
where the desired answer is only a term or a phrase. In this
paper, we study some of the index structures that are capa-
ble of answering the class of queries referred to here as wild
card queries and perform an analysis of their performance.
Our experimental results on a large class of queries from
different sources (including query logs and parse trees) and
with various datasets reveal some of the performance bar-
riers of these indexes. We then present Word Permuterm
Index (WPI) which is an adaptation of the permuterm in-
dex for natural language text applications and show that this
index supports a wide range of wild card queries, is quick to
construct and is highly scalable. Our experimental results
comparing WPI to alternative methods on a wide range of
wild card queries show a few orders of magnitude perfor-
mance improvements for WPI while the memory usage is
kept the same for all compared systems.

Categories and Subject Descriptors

I.7.3 [Document and Text Processing]: Index Gener-
ation; H.2.4 [Database Management]: Systems—Query
Processing

General Terms

Performance

Keywords

Indexing natural language text, Querying performance, Wild
card queries

1. INTRODUCTION
Natural language text is pervasive; emails, news-group

messages, web pages, research papers, books, news, etc.
are almost entirely authored in a human readable natural
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language. Such huge volumes of data provide the feed for
many applications including search engines, Question An-
swering (QA) systems, and many analytical tools built on
more ad-hoc basis. QA systems in particular are important
in that they extract relevant facts and meaningful answers
to questions, but mostly deal with relatively small and clean
corpora and involve deep and time-consuming natural lan-
guage processing. Hence, there has been little focus on the
performance of such systems on large text collections. This
is the topic we study in this paper. In particular, we intro-
duce and evaluate access methods that greatly improve upon
the performance of keyword searching for wild card queries
over large natural language text collections. The work has
a significant impact on many applications where answers to
natural language questions are sought or the query includes
some wild cards.

1.1 FromNatural Language Questions toWild
Card Queries

Question answering on a large corpus is a challenging task
mainly because it is difficult to analyze the whole (or a good
portion of) data and to retrieve candidate answers. On
open-domain QA applications, such as question answering
over the web1, it would be very difficult to build a general
QA system with high accuracy. In those cases, a reason-
able approach is to convert natural language questions into
queries and benefit from available querying engines to en-
hance the performance of the search. The choice of queries
can further affect the efficiency of searching, ease of trans-
lating questions to queries and the relevance of the results.
Table 1 gives a list of query types and some of the contexts
where each query type is used.

Of those listed, wild card queries, where keywords match-
ing a wild card are sought, are particularly important for
several reasons. First, a large number of natural language
questions can easily be translated into one or more wild card
queries. As an example who and what questions and a large
number of which and where questions can be translated into
wild card queries (See Table 2). Second, the results of such
queries can easily be joined with data that may reside in
a database. For example, candidate answers for the which
question in Table 2 can be further refined by looking up the
values returned by the first query in a database populated
with a list of city names (second query). Finally, question
answering systems often rely on NLP components that may
directly or indirectly use wild card queries. Examples are
taxonomy construction, fact extraction, named entity recog-

1See OpenEphyra [7] for an example



Table 1: Summary of the literature on query types and their result sets

Query Type Query Elements Result Set References

Keyword queries keywords, Boolean operators documents AltaVista [1], Google [4], Yahoo [8]
Multi-keyword queries keywords, phrases documents [17], [11, 30]
Proximity queries keywords, proximity radius documents Lucene [2], INDRI [5], [16]
Wild card queries queries, wild cards(%) list of keywords Dewild [28], BE [14], KnowItAll [18]
Structured queries SQL, text predicates relations Oracle InterMedia Text[9], DB2 Text

Extender[24], [15]
Full-text search characters, regular expressions strings

nition and query expansion. Rafiei and Li [28] present wild
card querying over web text and discuss several techniques
such as query expansion and relevance ranking to increase
the precision and recall of extractions.

Table 2: Samples of natural language questions and

their corresponding wild card queries
Question Translation
Who invented the light bulb? % invented the light bulb
What is glass made of? glass is made of %
Which city hosted 1988 % hosted 1988 Olympics
Olympics? % is a city
Where is Grand Canyon lo-
cated?

Grand Canyon is located in %

There has been a great deal of activity around increasing
the efficiency of keyword-based queries. However, the same
structures and algorithms would not necessarily be useful
or efficient for evaluating wild card queries. Assume we are
given an inverted index structure, such as the one depicted
in Figure 1 with four terms and three documents. Each term
t in the index has a list of postings, each posting in the form
of a triplet < d, ft,d, [o1, · · · , oft,d ] > where d is a document
id, ft,d is the frequency of t in d and o1 · · · oft,d are offsets
in d where t appears.

Given a keyword query Q1:‘world population’ and a
wild card query Q2:‘world population is %’, the algo-
rithm for evaluating Q1 involves only intersecting the posting
lists of terms ‘world’ and ‘population’, and finding the
list of matching documents. However, for Q2, each match-
ing document has to further be scanned in order to find the
keywords that match the wild card. In the above example,
Q1 matches <1,2,[37,56]>, <2,1,[124]> and <3,1,[7]>, and
Q2 matches ‘6706993152’ which is located on offset 10 of
document 3. Although Q2 matches its answer in fewer docu-
ments than Q1, the query response time for Q2 using inverted
indexes in one of our experiments was 12 times larger. This
indicates that inverted indexes are not appropriate for eval-
uating wild card queries.

6706993152 →<3,1,[10]>

is →<1,4,[12,154,184,190]>,<2,4,[379,401,427,503]>

,<3,1,[9]>

population →<1,7,[8,30,38,57,153,170,194]>,<2,2,[125,155]>

,<3,1,[8]>

world →<1,3,[11,37,56]>,<2,2,[29,124]>,<3,1,[7]>

Figure 1: Architecture of an inverted index

Solutions on multi-keyword queries such as phrase and
nextword indexes [11, 30] can help reduce the time it takes

to intersect the posting lists, but won’t help in the keyword
matching step, which is in most cases the dominant process.
Therefore, development of solutions for efficient retrieval of
keyword matches from text seems essential.

1.2 Our Contributions and the Structure of
the Paper

In this paper we introduceWord Permuterm Index (WPI),
as an efficient index structure for evaluating wild card queries
over natural language text. WPI extends Permuterm Index
(PI) [22] in several aspects. (1) By construction, WPI sup-
ports pattern matching over keywords rather than charac-
ters, (2) WPI supports a wider range of queries than PI,
adding support for queries that are more frequently used
over natural language text, and (3) WPI returns the ac-
tual keywords that match a wild card query whereas PI is
mostly used to find the range of elements that match a pat-
tern. Thus, WPI goes one more step toward matching the
keywords after finding the range of matching elements. Our
other contribution is a broad set of experiments and analy-
ses comparing the performance of WPI to alternative state-
of-the-art methods. Our performance comparison includes
cases where WPI is given a limited memory and is forced
to do paging. To the best of our knowledge this is the first
work that experimentally compares traditional inverted file
indexes with more recent compressed full-text indexes (See
the survey in [26]).

The rest of this paper is structured as follows. In Section 2
we describe the different index structures in the literature
and how they can be utilized to solve the wild card querying
problem. In Section 3 we detail our solution and give a the-
oretical comparison with the previous approaches. In Sec-
tion 4 we provide comprehensive comparison among these
structures and their performance. A review of the literature
on different query types, index structures and querying al-
gorithms are given in Section 5. Finally we conclude and
provide remarks for future work in Section 6.

2. BASELINE METHODS
Without loss of generality, we consider phrase queries that

have exactly one wild card and any number of non-wild card
terms, referred to as literals. For queries with multiple wild
cards, one can find the matches for query sub-sequences that
have only one wild card, substitute the wild card with its
matches and look for further matches.

Next, we introduce a few baseline access methods that
are used within natural language applications and study
their performance. Regardless of the access strategy, a wild
card query evaluation can be often divided into two phases:
(1) Binding phase, where the indexed elements (e.g. sen-
tences, paragraphs or documents) are filtered based on the



query literals that are present and maybe their order, and
(2) Matching phase in which filtered elements are scanned
and the keywords that match the wild card are retrieved.

2.1 Full Scan
A straightforward approach for answering wild card queries

is to scan the full dataset and check every unit for possible
query matches. If the dataset fits in main memory, a full
scan may not be a bad idea given that the initial cost of
loading is negligible when amortized over a reasonable-sized
set of queries.

2.2 Inverted Index
As illustrated in Figure 1, our implementation of an in-

verted index stores a linear vector of posting triplets <
d, ft,d, [o1, · · · , oft,d ] >. Wild card query evaluation over
inverted index can be easily adapted from the standard im-
plementations of keyword queries. Keyword queries are eval-
uated by intersecting the posting lists of query literals and
finding the matching documents and corresponding offsets.
The key idea behind wild card query evaluation is to sequen-
tially scan these documents and to find and extract the wild
card matches. Thus, in order to do the wild card matching
we need to store and access the text dataset as well.

The complexity of wild card matching over an inverted
index is O(

∑m
i=1,qi 6=% ‖qi‖) + O(‖Q‖ · |davg|), where ‖P‖ is

the number of bindings of a pattern P 2. Since we have to
go through all the matching elements in order to find the
wild card matches, the cost is ‖Q‖ · |davg|, where davg is the
average size of an index element.

2.3 Neighbor Index
Neighbor index, as proposed by Cafarella and Etzioni [14],

is an inverted index that is more suitable for queries over
natural language text data. The index stores for each term
both its left and right neighbors. As shown in Figure 2
for our running example (given in Figure 1), the inverted
lists have grown significantly larger, but the answer to wild
card matches are stored within the index and can be found
by looking at the appropriate neighbors of a query literal.
For example, to find the matches for Q2 in the neighbor
index, the search is conducted in the inverted index until
offset o = 10 in document d = 1 is identified as an answer.
To obtain the actual answer, it is sufficient to look at the
right neighbor of the term at offset 9 in the index without
retrieving the document. This can speed up the evaluation
of wild card queries by 1-2 orders of magnitude compared to
inverted index, as reported by the authors and confirmed in
some of our experiments.

The original implementation of the neighbor index stores
for each neighbor in addition to the term, both its part of
speech (e.g. noun-phrase) and its role (e.g. term). Since the
tags are not explicitly used in our queries, we implemented a
simplified version of the neighbor index, where for each off-
set, only one left neighbor and one right neighbor were stored
with no further information. Therefore, the structure of a
posting in our implementation of the neighbor index looked
like < d, ft,d, [(o1, l1, r1), · · · , (oft,d , lft,d , rft,d)] >, where li
and ri are the left and right neighbors of the i’th occurrence
of t in d, respectively.

Given that neighbor index is an inverted index, the algo-

2The number of documents matching P

rithm for evaluating wild card queries over neighbor index
follows the same bind-and-match process of any inverted in-
dex, except that the matching phase is much less costly.
Once the matching documents and offsets are found, the
wild card matches can be extracted in constant time. Thus,
the running time of wild card query evaluation over a neigh-
bor index will be O(

∑m
i=1,qi 6=% ‖qi‖) +O(‖Q‖).

3. PERMUTERM INDEX OVER NATURAL

LANGUAGE TEXT
This section presents our Word Permuterm Index (WPI)

as an efficient access method that supports wild card query-
ing over natural language text. WPI is an adaptation of the
permuterm index [22, 21] and as such it has the following
three components: (1) A word level Burrows-Wheeler (BW)
transformation of text [13], (2) an efficient mechanism to
store and access the alphabet, and (3) an efficient mecha-
nism to access the ranks. Next, we discuss these components
in more detail.

3.1 Word Level Burrows-Wheeler transforma-
tion

Burrows-Wheeler transformation (BWT) is a reversible
transformation that is used in well-known compression algo-
rithms such as bzip2 and is believed to give a permutation
that is more amenable to compression. The transformation,
when applied to a character string, can change the ordering
of the characters in the string but not their values. Our work
applies BWT to words instead of characters; a word-level
transformation has some interesting properties especially in
answering wild card queries.

Assume we are given a dataset containing three sentences
S1: ‘Rome is a city’, S2: ‘countries such as Italy’ and
S3: ‘Rome is the capital of Italy’, and we would like to
index them using WPI. Adapting the ideas proposed by
Manning et al. [25] and Ferragina and Venturini [21], we sort
this dataset lexicographically3 and use the $ symbol, to mark
the sentence boundaries and the ˜ symbol, to mark the end
of the dataset. This results in our dataset to look like T: ‘$

Rome is a city $ Rome is the capital of Italy $ countries

such as Italy $ ˜’.
A word-level BWT is obtained by (1) computing all the

cyclic rotations of the words, (2) sorting the rotations, and
(3) finding the vector that contains the last word in the ro-
tations in the same order after the sorting. Figure 3 depicts
the result of applying these three steps to T in the given
example. Note that the set of sentences are rotated by one
word at each level. We denote the vector of last words, BW-
transformation, by L and the sorted vector of first words,
by F .

BWT has some very interesting properties. First, for any
word in T , the j’th occurrence of the word in L and the
j’th occurrence of the word in F correspond to the same
word of the sequence. For instance, the second occurrence
of the word ‘Italy’ in L is preceded by ‘as’, and so is the
second ‘Italy’ in F ; hence, L(4) = F (6). Second, for every
row, L(i) precedes F (i) in T . Given these two properties,
Ferragina and Manzini [20] propose the following function
for traversing L in backward order:

LF (i) = C[L[i]] +RankL[i](L, i)
3Sorting guarantees nice properties on BWT, See Section 3.4



6706993152 →<3,1,[(10,is,<DBM1
>)]>

is →<1,4,[(12,world,estimated),(154,population,expected),(184,Earth,experiencing),(190,consensus,that)]>,

<2,4,[(379,sector,equally),(401,there,a),(427,there,a),(503,action,not)]>, <3,1,[(9,population,6706993152)]>

population →<1,7,[(8,human,of),(30,human,to),(38,world,has),(57,world,growth),(153,world’s,is),(170,human,over),

(194,current,expansion)]>,<2,2,[(125,world,and),(155,a,set)]>,<3,1,[(8,world,is)]>

world →<1,3,[(11,the,is),(37,The,population),(56,of,population)]>,<2,2,[(29,and,population),(124,fastgrowing,population)]>

,<3,1,[(7,the,population)]>
1
Document Boundary Marker

Figure 2: Architecture of a neighbor index
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the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is

~ $ Rome is a city $ Rome is the capital of Italy $ countries such as Italy $

countries such as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $

is a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome

is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome

such as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries

of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is the capital

capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is the

city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a

as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such

a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is

Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $

Rome is a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $

Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such as

Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is the capital of

$ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such as Italy

$ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city

$ countries such as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy

$ Rome is a city $ Rome is the capital of Italy $ countries such as Italy $ ~

Li F

Figure 3: Sorted permutations of a sample set of sentences and the first and last word lists, F and L.

where C[L[i]] is the number of words smaller than L[i] and
RankL[i](L, i) is the number of times L[i] appears in the
sub-sequence L[1..i]. LF (i) tells where the element pre-
ceding L[i] in T is located in L. E.g. LF (6) = C[′as′] +
Rank′as′(L, 6) = 9 + 1 = 10 and L(10) is ‘such’ and is
the word preceding L(6) =‘as’ in T . Since T is sorted,
one can start from L(1) = F (n) and repeatedly call LF to
find L(n) = F (1), traversing the whole text in backward
order. Therefore, L is reversible, meaning that given L, any
sub-sequence of words in T can be re-constructed. We can
use this property to turn L into an index that can support
searches over word sequences. The challenges would be to
support a wide range of wild card queries and to efficiently
support access to C and Rank, required for traversing L in
backward order. Next, we discuss these challenges and the
proposed solutions.

3.2 Maintaining the Alphabet
A major difference between the permuterm index and

WPI is in the size of their alphabets. The alphabet in
permuterm index typically consists of ascii characters and
symbols which are small in size and are not required to be
explicitly stored. However, the alphabet size in WPI grows
with the size of text dataset almost linearly. When |Σ| is in
the order of millions, efficient access to alphabet elements,
their ordering and their frequency is crucial.

In order to provide efficient access to Σ, we built one ar-
ray and one hash table. The array stores the elements of

Σ in ascending order, therefore the first element is always
$ and the last is .̃ The array helps to find which alphabet
element is represented by which numerical code, which is its
index in the array. Coding the alphabet is essential for effi-
cient implementation of algorithms such as backwardSearch
and Rank. Without coding, we will not be able to achieve
the time complexities we later report for these algorithms.
Moreover, coding reduces the index size, replacing a key-
word and a delimiter by a code which uses smaller number
of bits.

The hash table stores the same information in the reverse
order; given an alphabet element, the hash returns the code
of the element, together with its frequency and cumulative
frequency, C. Thus, C[t] counts the number of alphabet
elements in the whole dataset that are smaller than t. In
the above example, |Σ| = 13 and the hash table provides
constant-time access to C values for all the alphabet ele-
ments.

3.3 Rank Data Structures
Rankc(L, i) returns the number of occurrences of c ∈ Σ

in the prefix 1 · · · i of array L. In order to evaluate queries
over WPI, we make frequent accesses to Rank and therefore,
quick access would be required. Naive baseline solutions to
the rank problem are as follows. (1) Start from the first ele-
ment on L and compute rank by counting, which has space
complexity and average search complexity of O(n). (2) Keep
a matrix of all the alphabet elements and all the locations



on L and pre-compute all the values. This approach has
the optimal constant search time but a space requirement
of O(n|Σ|), which is too much given the fact that |Σ| grows
relative to the size of the dataset. Given the large size of
our alphabet, we chose a combination of a wavelet tree [23]
and a three level architecture to support constant time rank
operation over a bit sequence [26].

A wavelet tree is a perfect binary tree, with a bit sequence
at each node representing the occurrences of a sequence of
alphabet elements. The root represents Σ over L and each
leaf represents one of the alphabet elements. A non-leaf
node v represents alphabet elements Σv = {ei · · · ej} and
contains a bit sequence Bv = bi · · · bj . For each i ≤ k ≤ j
we have bk = 0, if L[k] ∈ {ei · · · e(i+j)/2} and bk = 1, if
L[k] ∈ {e(i+j)/2+1 · · · ej}. The bit sequence at the left child
of v will represent elements of Σ in {ei · · · e(i+j)/2} and the
right child represents alphabet elements {e(i+j)/2+1 · · · ej},
recursively. Thus, the algorithm for computing rank of an al-
phabet element e ∈ Σ in prefix 1 . . . i of L, using the wavelet
tree, would be as shown in Figure 4.

Rank(Node,f,l,e,i)

1 if i = j return nodeRank(Node,i)
else

2 if e ≤ ⌊ f+l
2

⌋

3 return Rank(Node→left, f, ⌊ f+l
2

⌋, e, i - nodeRank(Node,i))
else

4 return Rank(Node→right,⌊ f+l
2

⌋+1,l, e,nodeRank(Node,i))

Figure 4: Rank function computes the occurrences of e

in prefix 1 . . . i of L

In Figure 4, nodeRank(Node, e, i) counts the number of
1’s in the prefix 1 . . . i at node Node. The count of 0’s can be
obtained by i−nodeRank(Node, e, i). Counting the number
of 1’s in each node by sequential scanning is very in-efficient.
There are a few solutions, that provide constant-time access
to binary rank values over a bit sequence [26]. In our work,
we used a solution which uses n+o(n) bits of additional stor-
age at each node, where n is the length of the bit sequence in
the node. Figure 5 depicts our wavelet tree solution over L
for the example of Section 3.1. For the nodeRank to operate
in constant time, two arrays are maintained at each node,
namely sbr and br4. For each node, sbr[i] stores the count
of 1’s in the range [b0 . . . bi×S2

b
−1], where Sb = ⌈log n⌉ and

i ∈ {0 . . . ⌊ n
S2

b

⌋}. br[i] stores the count of 1’s for the range

[b
⌊
i×Sb

S2

b

⌋×S2

b

. . . bi×Sb−1]. Finally, a table called Small Rank

(sr) is pre-populated, which stores the binary rank values
for bit sequences of size t = ⌊Sb/2⌋ + 1.

Recall that nodeRank function returns the rank of a prefix
of the bit string stored at a given node. As depicted in
Figure 6, nodeRank uses sbr, br and sr arrays to compute
the rank in constant time. nodeRank is computed as shown
in Figure 6. In this figure, b2d(bs, p, len) returns the decimal
equivalent of the bit sub-sequence bsp . . . bsp+len.

3.4 Algorithms and Analysis
Ferragina and Manzini in [20] benefit from the proper-

ties of the Burrows-Wheeler transformation discussed in Sec-

4These stand for super block rank and block rank, re-
spectively

nodeRank(Node,e,i)

1 Rsbr = sbr[⌊ i
S2

b

⌋], Rbr = br[⌊ i
Sb

⌋]

2 if i− Sb × ⌊ i
Sb

⌋ < t

3 Rsr=sr[b2d(Node→bs,Sb × ⌊ i
Sb

⌋,t)][i-Sb × ⌊ i
Sb

⌋-1]

4 else if i− Sb × ⌊ i
Sb

⌋ = t

5 Rsr=sr[b2d(Node→bs,Sb × ⌊ i
Sb

⌋,t)][t-1]

6 if i− Sb × ⌊ i
Sb

⌋ > t

7 Rsr=Rsr+sr[b2d(Node→bs,Sb × ⌊ i
Sb

⌋+t,t)][i-Sb × ⌊ i
Sb

⌋-t-1]

Figure 6: A constant-time nodeRank, returning binary

rank at each node

tion 3.1 and propose backwardSearch algorithm, which searches
for a pattern over PI in backward order and returns the
range of matching strings. The term-level adaptation of
backwardSearch over WPI is depicted in Figure 7. Given
a sequence of natural language words P = p1 · · · pq, back-
wardSearch finds the range [first, last] of the sorted cyclic
rotations prefixed by P . For the example provided in Fig-
ure 3, backwardSearch returns the range [7, 8] for the pat-
tern P = ‘Rome is’, which is the range of cyclic rotations
prefixed by P .
backwardSearch makes O(|P |) accesses to C and Rank.

We adjust the hash table size so that it provides constant
time access to hash elements. The wavelet tree access for
Rank requires traversing from the root to one of the leaves
which requires O(log |Σ|) accesses to the tree nodes. Thus,
backwardSearch has a complexity of O(|P | log |Σ|).

backwardSearch(P )

1 i = |P |, c = P [i], first = C[c] + 1, last = C[c+ 1]
2 while ((first ≤ last) and (i ≥ 2)) do
3 c = P [i]
4 if 1 ≤ first ≤ M , increment first. Same for last
5 first = C[c] +Rankc(L, first− 1) + 1
6 last = C[c] + Rankc(L, last)
7 i = i− 1
8 return the range [first, last]

Figure 7: backwardSearch algorithm for traversing

L in backward order

Adding delimiters and sorting stings as discussed in Sec-
tion 3.1, permuterm index supports wild-card pattern match-
ing over dictionary strings. More specifically, it supports
(1) Prefix ($α%), (2) Suffix (%β$), (3) Substring (γ) and
(4) PrefixSuffix ($α%β$) queries where α, β and γ are ar-
bitrary sequences of characters [21]. We adapted the above
four queries to wild-card keyword matching over natural lan-
guage text. Thus in our queries α, β and γ are sequences
of natural language text words. Moreover, we have added
support for queries such as (5) α%, (6) %β, (7) α%β, (8)
α%β$ and (9) $α%β where α or β could be in arbitrary
places in the document. The set of queries supported by
PI are very limited and we often need to search for natural
language patterns that are neither a prefix nor a suffix in a
document.

The key idea behind supporting wild card queries us-
ing backwardSearch is to convert them into prefix searches
over rotations. Table 3 gives a summary of how to evalu-
ate wild card queries using backwardSearch. In this table,
the columns from left to right display the different types of
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Figure 5: A sample wavelet tree. In each node a bit string and two arrays ,super block rank and block rank,

are stored.

queries supported by WPI, the pattern(s) to invoke back-

wardSearch with, the range of wild card keyword matches,
and the time complexity of the query evaluations, respec-
tively. As displayed in this table, the first six queries could
be matched with only one call to backwardSearch, while the
last three require two invocations of backwardSearch as the
sequence of words are separated by a wild card. For these
queries, firstα and lastα are the beginning and end of the
range returned by backwardSearch when invoked by α. Re-
call that backwardSearch returns only a range of matching
rotations, prefixed by a given pattern. Therefore, it does not
provide any efficient support for extracting keyword matches
for a wild card. We solved this problem by storing two ad-
ditional lists, T and IF , where IF is the list of locations of
elements of F over T ; hence T [IF [i]] = F [i]. These lists
require O(n) extra space. However, since the overall space
consumption of the index is O(n log |Σ|), storing these addi-
tional lists will not change the space complexity of WPI.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
For the experiments we used all or parts of the following

two text collections. (1) News Dataset is the AQUAINT
corpus of English News Text [3], which we processed and
extracted the sentences to be indexed. It contains around
18 million sentences and its size is more than 2 GBs. (2)
Web Dataset is our crawl of the web done on May 2008,
which contains around 2 million documents and is around 8
GBs in size.

We created three sets of wild card queries. (1) WHQ
query-set was created by replacing the wh keywords in who
and what questions from AOL query log [27] with a wild
card. (2) SVO query-set was generated by randomly replac-
ing the subject or the object of a Subject-Verb-Object rela-

tion with a wild card. We obtained the SVO relationships
using the minipar dependency parser [6]. Finally, (3) n-gram
query-set was generated by randomly replacing a keyword
with a wild card in an n-gram, with n = 1..5. These n-grams
were selected according to their number of bindings in our
datasets, in an attempt to cover a wide range of bindings.

WPI is a memory-based index, hence to be fair to other
indexes we assigned in our experiments as much cache to the
inverted and neighbor indexes as the memory used by WPI.
We ran each query multiple times and only considered the
last running time, in order to make sure cache is being uti-
lized by the querying engine. Neighbor and inverted indexes
were implemented over Berkeley DB, with the terms as the
keys and posting lists as values.

4.2 Performance of Querying
Our first set of experiments compared the performance of

the indexes under different settings, in terms of the average
running time of queries in seconds. Table 4 gives a summary
of the performance of each index over 10 million sentences
of news data and 1 million documents of the web data and
all the query sets.

As Table 4 suggests, WPI performs the best among all in-
dexes on any combination of data and query sets. The third
row of the table shows the average number of bindings per
query for each query and data set used. Neighbor index per-
forms relatively good when the number of bindings are high.
Inverted index performs very poorly on queries that match
a large number of documents. MemScan performs relatively
slow regardless of what type of query is given. The statisti-
cal correlation of the running time of queries over indexes is
largest for inverted index and smallest for WPI. These cor-
relations reflect how the indexes perform when the number
of bindings grow. Figures 8 and 9 depict the behavior of
these four methods with respect to the number of bindings



Table 3: Running queries of different types and the analysis of their complexity

Q P wild card match Complexity

(1)$α% $α T [IF [first]+|$α|]..T [IF [last]+|$α|] O(|$α| log |Σ|)
(2)%β$ β$ L[first..last] O(|β$| log |Σ|)
(3)γ γ matches documents1 O(|γ| log |Σ|)
(4)$α%β$ β$α L[first..last] O(|β$α| log |Σ|)
(5)α% α T [IF [first]+|α|]..T [IF [last]+|α|] O(|α| log |Σ|)
(6)%β β L[first..last] O(|β| log |Σ|)

(7)α%β α, T [IF [firstα]+|α|]..T [IF [lastα]+|α|], ‖α‖ ≤ ‖β‖ O[(|α|+|β|) log |Σ|] +
β T [IF [firstβ]-1]..T [IF [lastβ ]-1], ‖α‖ > ‖β‖ O[min(‖α‖|β|, ‖β‖|α|)]

(8)α%β$ α, T [IF [firstα]+|α|]..T [IF [lastα]+|α|], ‖α‖ ≤ ‖β$‖ O[(|α|+|β$|) log |Σ|] +
β$ T [IF [firstβ]-1]..T [IF [lastβ ]-1], ‖α‖ > ‖β$‖ O[min(‖α‖|β$|, ‖β$‖|α|)]

(9)$α%β $α, T [IF [firstα]+|$α|]..T [IF [lastα]+|$α|], ‖$α‖ ≤ ‖β‖ O[(|$α|+|β|) log |Σ|] +
β T [IF [firstβ]-1]..T [IF [lastβ ]-1], ‖$α‖ > ‖β‖ O[min(‖$α‖|β|, ‖β‖|$α|)]

1 See displayString in [21] for details

Table 4: Summary of the performance of the indexes

in terms of the running time in seconds
News data Web data

10M sentences 1M documents
n-gram WHQ SVO n-gram WHQ SVO

Avg Bindings 2.5e+5 0.4 3.3e+3 5.4e+5 5.1 220

M
in

WPI 2e-6 1e-6 4e-6 3e-6 2e-6 4e-6

Neighbor 1e-4 0.008 0.005 1.34e-4 0.274 0.013
Inverted 0.03 0.007 0.028 0.01 0.064 0.022
Memscan 82.0 86.6 83.5 30.8 29.4 29.7

M
a
x

WPI 0.03 2.5e-4 2.6e-4 0.06 0.01 0.02

Neighbor 24.0 10.0 4.30 194 8.98 10.2
Inverted 1.6e+4 8.99 493 4.6e+4 4.03 35.8
Memscan 431 432.9 424.8 219.8 116 33.2

A
v
g

WPI 3.5e-4 6.6e-5 1.2e-4 6.8e-4 2.5e-4 3e-4

Neighbor 1.37 0.93 1.20 5.42 1.44 0.77
Inverted 373 0.73 9.71 1.2e+3 0.75 1.66
Memscan 87 90.5 87.47 44.9 31.3 30.7

of a query, plotted over 100 n-gram queries over 10 million
sentences of news data and 1 million documents of web data,
respectively. As these figures show, the running time of WPI
is almost entirely independent of the number of bindings of
the query. For the data presented in these figures, on aver-
age WPI is 5 orders of magnitude faster than the neighbor
index. The worst case performance of WPI is still an order
of magnitude faster than the neighbor index whereas in its
best case, WPI is 6-7 orders of magnitude faster. The worst
case, observed as a spike in Figures 8 and 9 for the run-
ning time of WPI, belongs to the query ‘the % of’. The
running time of WPI on this particular query is relatively
higher because the query is of type α%β whose running time
complexity is decided by ‖α‖ and ‖β‖ according to Table 3.
Since α=’the’ and β=’of’ are the two highest selective words
in the alphabet, we observe the spike in these two figures.

In order to compare the scalability of the indexes we con-
ducted another experiment to compare how the indexes per-
form as the dataset size grows. Figure 10 shows the total
querying time of the four indexes over 1000 SVO queries
computed over web datasets of size 0.4, 0.8, 1.2, 1.6 and 2
million documents. As this figure shows, the running time
of WPI stays almost constant. Starting as low as 0.095 sec-
onds for 0.4 million documents and going up to at most
0.118 seconds for 2 million documents, WPI shows only 24%
growth in the overall querying time. The running times
of neighbor and inverted indexes grow almost linearly with
the dataset size. The minimum (maximum) running times
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Figure 8: The performance of the indexes based on

the number of bindings of queries over 10 million

sentences of news data

are 370 (1693) and 600 (2211) for neighbor and inverted in-
dexes, respectively. Finally, MemScan shows an exponential
growth with respect to the dataset size. The maximum run-
ning time (for 2 million documents) shows almost two orders
of magnitude growth with respect to the minimum running
time of MemScan.

4.3 WPI Performance with Limited Physical
Memory

Given that WPI is a memory-based index, it is impor-
tant to evaluate its performance in settings where the space
consumption of WPI exceeds the available system physical
memory. This is a worst-case scenario for WPI whereas in-
verted and neighbor indexes are not expected to be affected
much by limitations on the size of memory. A straight-
forward solution would be to use disk as a supplementary
storage and allocate more memory than available and let the
operating system do the paging5 (i.e. decide which memory
blocks to swap with disk). In an attempt to push WPI to

5the terms swapping and paging are used interchangeably
in this paper
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Figure 9: The performance of the indexes based on

the number of bindings of queries over 1 million doc-

uments of web data

do paging, we ran a set of experiments on the news data
of sizes 4, 6, 8, 10, 12, 14, 16 and 18 million sentences and
web data of sizes 0.4, 0.8, 1.2, 1.6 and 2 million documents.
We used a machine with 4 GBs of physical memory, around
0.8 GB of which was reserved by a distribution of the Linux
operating system for kernel and other system processes. We
report here the amount of memory that was required for
storing all data structures required by WPI, as a percentage
of the available system physical memory. These memory re-
quirements are depicted on the horizontal axis of Figures 11
and 12 for different sizes of data. The reported values are
not the peak memory usage of operating system for WPI
process as the process needed additional memory for code,
stack and other static and dynamic data items. Hence, the
amount of memory the process required exceeded the above
figures, and paging could happen for the smaller datasets as
well.

Figures 11 and 12 show the total running time of 1000
SVO queries over WPI and neighbor index as the datasets
vary in size. As Figure 11 shows, WPI’s running time grows
dramatically as its size grows to 80% of the memory size.
This shows the effect of paging on the WPI process. More-
over, as the figures show, even when paging happens, the
running time of WPI is still much lower than the neighbor
index. By increasing the swap size, we were able to run WPI
over datasets that required memory equal to approximately
10 times that of the available system memory. For large
datasets, a major part of the index resides over disk and
increasing the dataset size, as our results suggest, does not
dramatically change the running time of the queries. Even
with such a naive disk-based solution to WPI, it performs
pretty well and can scale up well with limited available mem-
ory.

The total running times of queries for the inverted index
and MemScan exceed those of the neighbor index in Fig-
ures 11 and 12 and have been omitted for brevity.

4.4 Index Construction Time
Table 5 shows the time required to construct WPI com-

pared to neighbor index for our experiment in Section 4.3.
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Figure 10: Scalability of the indexes over web data

of growing sizes.

As this table suggests, the construction time of WPI is
smaller than neighbor index for the given sets of data. In
most cases, inverted index has a slightly lower construction
time than WPI and memory scan can be considered as hav-
ing no construction time except loading the dataset once
into the main memory.

Table 5: Index construction time of WPI compared

to the neighbor index in seconds
News dataset sentences

4M 6M 8M 10M 12M 14M
WPI 457 689 796 1172 2191 2246

Neighbor 871 1439 2028 2265 3170 3853

5. RELATED WORK
Querying over natural language text is often addressed in

the literature by indexes that are based on inverted lists.
For large text corpora, these indexes run into the problem
of high costs of intersecting long posting lists. As a result,
solutions for multiple keywords have been proposed that ma-
terialize posting lists for more than one keyword. Examples
are the works on phrase index and nextword index [11, 30].
Phrase index extracts natural language phrases from a query
log and stores inverted lists for such phrases. A nextword in-
dex, for each term, keeps a list of high frequency terms that
follow it in the text and the pair’s corresponding inverted
list. Chaudhuri et al. [17] propose breaking long posting
lists into smaller ones by storing lists for multiple keywords.
As a result they can guarantee an upper bound for the worst
case running time of the queries. The above works have no
support for wild card queries. However, it would be interest-
ing to compare the performance of these systems on keyword
queries with WPI.

Recently, there has been an evolving trend in develop-
ing indexes supporting fast sub-string searches over large
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Figure 11: The performance of WPI vs. neighbor

index using paging on News Data of sizes 4, 6, 8,

10,12, 14, 16 and 18 million sentences

text corpora. As a result, self-indexes6 have been developed
and many interesting problems associated with them have
been proposed or solved [26]. One of the key ideas that
led to the development of such indexes have been the idea
of the Permuterm Index by Garfield [22]. Burrows-Wheeler
transformation [13] discussed in Section 3.1 uses Garfield’s
permuterm index to build a self-index that is highly com-
pressible. Ferragina and Manzini [20] propose algorithms for
searching patterns over BWT in time proportional to the
length of the pattern. In order to do that, they benefit from
constant time access to structures such as Count and Rank.
As discussed by Navarro and Makinen in a survey on com-
pressed full-text indexes [26], different structures could be
used to provide constant-time access to Rank over a fixed
size alphabet. For large variable size alphabets, as is the
case for WPI, wavelet trees [23] are proposed. WPI benefits
from the above ideas for solving full-text search over strings
to improve querying over natural language text. More space
efficient implementations of nodeRank function have been
reported in [29]. Similar to WPI, keyword-based generaliza-
tions of text index structures such as suffix arrays [19] and
suffix trees [10] have been developed. Finally, Manning et
al. [25] propose solutions for wild card queries with more
than one wild card over Permuterm Index. They use the
similar concept of materializing the range of matching ro-
tations for one substring of query literals and intersecting
with the results obtained from the prefix range returned by
the rest of the query literals. Storing T and IF , we would be
able to answer queries with arbitrary number of wild card
over WPI.

There’s a great deal of recent activity around compressing
indexes that support full-text search. This emergence has
been started since the introduction of the Burrows-Wheeler
transformation in 1994 which has a high compressibility and
is reversible, making it a good candidate for building a self-
index. The state of the art research in this area suggests
indexes that are nearly optimal in size and search time. Fer-
ragina and Venturini [21] proposed Compressed Permuterm

6an index which could replace the text

253% 419% 592% 776% 945%
0

200

400

600

800

1000

1200

WPI memory consumption in terms of available system physical memory

T
o

ta
l 
ru

n
n

in
g

 t
im

e
 o

f 
1

0
0

0
 S

V
O

 q
u

e
ri
e

s
 (

s
e

c
o

n
d

s
)

 

 

WPI

Neighbor

Figure 12: The performance of WPI vs. neighbor

index using paging on Web Data of sizes 0.4, 0.8,

1.2, 1.6 and 2 million documents

Index (CPI). CPI benefits from the high compressibility of
the Burrows-Wheeler transformation. They propose the full
indexing algorithms and asymptotic analysis and study the
performance of CPI under different compression techniques
and how it compares with other indexes such as a trie. There
is also work on compressing natural language text databases
in [12], suggesting high compression ratios are achievable.
We did not dig into the subject of compression over our
WPI and focused more on efficiency of indexing. However,
since we are using the same concept of BW-transformation,
our index could also benefit from the results achieved in this
domain.

6. CONCLUSIONS AND FUTURE DIREC-

TIONS
We discussed the development of Word Permuterm In-

dex (WPI) which supports single wild card natural language
queries. WPI fills in the gaps for a time-efficient index sup-
porting a wide range of wild card queries over natural lan-
guage text. In this paper we presented our data structures
and algorithms. Our asymptotic analysis of the complexity
bounds of querying over different indexes shows the better
time complexity of WPI over other approaches. Our wide
range of experiments show the large gap in the performance
of WPI with neighbor and inverted indexes over all combi-
nations of data and query sets and number of bindings. Our
results also show that WPI performs better than neighbor
index even in the lack of sufficient physical memory, result-
ing in paging memory pages in and out of the disk which
greatly reduces its performance.

Allowing the operating system to swap memory pages in
and out of the disk is a naive approach for solving the high
memory consumption of WPI. One future extension would
be to benefit from the localities available in natural language
text to store WPI structures over disk in such a way to opti-
mize the number of disk block accesses; hence, increasing the
efficiency. WPI’s high space consumption is currently one of
its main drawbacks. As another improvement, Compression
techniques can be used to reduce the size of WPI. Finally,



as memory is getting cheaper and the indexing of natural
language text is a data parallel task, one idea would be to
generously allocate memory to WPI structures and build a
distributed WPI.
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