skip to main content
10.1145/1871437.1871533acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Network growth and the spectral evolution model

Published:26 October 2010Publication History

ABSTRACT

We introduce and study the spectral evolution model, which characterizes the growth of large networks in terms of the eigenvalue decomposition of their adjacency matrices: In large networks, changes over time result in a change of a graph's spectrum, leaving the eigenvectors unchanged. We validate this hypothesis for several large social, collaboration, authorship, rating, citation, communication and tagging networks, covering unipartite, bipartite, signed and unsigned graphs. Following these observations, we introduce a link prediction algorithm based on the extrapolation of a network's spectral evolution. This new link prediction method generalizes several common graph kernels that can be expressed as spectral transformations. In contrast to these graph kernels, the spectral extrapolation algorithm does not make assumptions about specific growth patterns beyond the spectral evolution model. We thus show that it performs particularly well for networks with irregular, but spectral, growth patterns.

References

  1. R. Albert, H. Jeong, and A.-L. Barabási. The diameter of the World Wide Web. Nature, 401:130, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Bennett and S. Lanning. The Netflix prize. In Proc. KDD Cup, pages 3--6, 2007.Google ScholarGoogle Scholar
  3. K. Bollacker, S. Lawrence, and C. L. Giles. CiteSeer: An autonomous web agent for automatic retrieval and identification of interesting publications. In Proc. Int. Conf. on Autonomous Agents, pages 116--123, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. Brožovský and V. Petříček. Recommender system for online dating service. In Proc. Znalosti, pages 29--40, 2007.Google ScholarGoogle Scholar
  5. O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning. In Advances in Neural Information Processing Systems, pages 585--592, 2003.Google ScholarGoogle Scholar
  6. J. Ding and A. Zhou. Eigenvalues of rank-one updated matrices with some applications. Applied Mathematics Letters, 20(12):1223--1226, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  7. K. Emamy and R. Cameron. CiteULike: A researcher's social bookmarking service. Ariadne, (51), 2007.Google ScholarGoogle Scholar
  8. F. Fouss, L. Yen, A. Pirotte, and M. Saerens. An experimental investigation of graph kernels on a collaborative recommendation task. In Proc. Int. Conf. on Data Mining, pages 863--868, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2):133--151, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. GroupLens Research. MovieLens data sets. http://www.grouplens.org/node/73, October 2006.Google ScholarGoogle Scholar
  11. B. H. Hall, A. B. Jaffe, and M. Trajtenberg. The NBER patent citations data file: Lessons, insights and methodological tools. In NBER Working Papers 8498, National Bureau of Economic Research, Inc, 2001.Google ScholarGoogle Scholar
  12. A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. BibSonomy: A social bookmark and publication sharing system. In Proc. Workshop on Conceptual Structure Tool Interoperability, pages 87--102, 2006.Google ScholarGoogle Scholar
  13. J. Kandola, J. Shawe-Taylor, and N. Cristianini. Learning semantic similarity. In Advances in Neural Information Processing Systems, pages 657--664, 2002.Google ScholarGoogle Scholar
  14. B. Klimt and Y. Yang. The Enron corpus: A new dataset for email classification research. In Proc. Eur. Conf. on Machine Learning, pages 217--226, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In Proc. Int. Conf. on Machine Learning, pages 315--322, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Kunegis and A. Lommatzsch. Learning spectral graph transformations for link prediction. In Proc. Int. Conf. on Machine Learning, pages 561--568, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Kunegis, A. Lommatzsch, and C. Bauckhage. The Slashdot Zoo: Mining a social network with negative edges. In Proc. Int. World Wide Web Conf., pages 741--750, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. D. Lax. Linear Algebra and Its Applications. John Wiley & Sons, 1984.Google ScholarGoogle Scholar
  19. J. Leskovec. Stanford network analysis project. http://snap.stanford.edu/, March 2010.Google ScholarGoogle Scholar
  20. J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution of social networks. In Proc. Int. Conf. on Knowledge Discovery and Data Mining, pages 462--470, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Ley. The DBLP computer science bibliography: Evolution, research issues, perspectives. In Proc. Int. Symposium on String Processing and Information Retrieval, pages 1--10, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In Proc. Int. Conf. on Information and Knowledge Management, pages 556--559, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge University Press, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P. Massa and P. Avesani. Controversial users demand local trust metrics: an experimental study on epinions.com community. In Proc. American Association for Artificial Intelligence Conf., pages 121--126, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Mislove. Online Social Networks: Measurement, Analysis, and Applications to Distributed Information Systems. PhD thesis, Rice University, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Growth of the Flickr social network. In Proc. Workshop on Online Social Networks, pages 25--30, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Radl, U. v. Luxburg, and M. Hein. The resistance distance is meaningless for large random geometric graphs. In Proc. Workshop on Analyzing Networks and Learning with Graphs, 2009.Google ScholarGoogle Scholar
  28. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender systems - a case study. In Proc. ACM WebKDD Workshop, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  29. D. Stewart. Social status in an open-source community. American Sociological Review, 70(5):823--842, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  30. G. W. Stewart. Perturbation theory for the singular value decomposition. Technical report, Univ. of Maryland, College Park, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: Dynamic tensor analysis. In Proc. Int. Conf. on Knowledge Discovery and Data Mining, pages 374--383, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in Facebook. In Proc. Workshop on Online Social Networks, pages 37--42, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wikimedia Foundation. Wikimedia downloads. http://download.wikimedia.org/, January 2010.Google ScholarGoogle Scholar
  34. X. Zhu, J. Kandola, J. Lafferty, and Z. Ghahramani. Semi-supervised Learning, chapter Graph Kernels by Spectral Transforms. MIT Press, 2006.Google ScholarGoogle Scholar
  35. C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In Proc. Int. World Wide Web Conf., pages 22--32, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Network growth and the spectral evolution model

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CIKM '10: Proceedings of the 19th ACM international conference on Information and knowledge management
      October 2010
      2036 pages
      ISBN:9781450300995
      DOI:10.1145/1871437

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 October 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,861of8,427submissions,22%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader