Fast Query Expansion Using Approximations of
Relevance Models

Marc-Allen Cartright!, James Allan', Victor Lavrenko?, and Andrew McGregor?

ICIIR
Dept. of Computer Science
Univ. of Massachusetts
Amherst, MA 01003
irmarc,allan@cs.umass.edu

ABSTRACT

Pseudo-relevance feedback (PRF) improves search quality
by expanding the query using terms from high-ranking doc-
uments from an initial retrieval. Although PRF can often
result in large gains in effectiveness, running two queries
is time consuming, limiting its applicability. We describe
a PRF method that uses corpus pre-processing to achieve
query-time speeds that are near those of the original queries.
Specifically, Relevance Modeling, a language modeling based
PRF method, can be recast to benefit substantially from
finding pairwise document relationships in advance. Using
the resulting Fast Relevance Model (fastRM), we substan-
tially reduce the online retrieval time and still benefit from
expansion. We further explore methods for reducing the pre-
processing time and storage requirements of the approach,
allowing us to achieve up to a 10% increase in MAP over
unexpanded retrieval, while only requiring 1% of the time
of standard expansion.

Categories and Subject Descriptors: H.3.3 Information
Search and Retrieval: Relevance Feedback, Retrieval Models

General Terms: Algorithms, Performance

Keywords: relevance model, pseudo-relevance feedback,
distributed computing

1. INTRODUCTION

Lavrenko and Croft’s Relevance Model (RM) [6] is a pseudo-
relevance feedback method developed for the language mod-
eling (LM) framework. The standard formulation of this
method involves submitting an original query (LM), using
the resulting ranked list to perform weighted query expan-
sion, and performing a second round of retrieval (RM). The
second query can consist of hundreds of terms, resulting in
a slow evaluation over the collection. Table 1 illustrates this
problem.

Even for a small collection such as AP89, the original

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’10, October 26-30, 2010, Toronto, Ontario, Canada.

Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

2School of Informatics

University of Edinburgh
Edinburgh, UK

vlavrenk@inf.ed.ac.uk

3Dept. of Computer Science
Univ. of Massachusetts
Amherst, MA 01003
mcgregor@cs.umass.edu

Collection | # docs | terms | unique | Ratio (RM/LM)
(10%’s) | (10%s) | (10*’s) | MAP | Ret. Time

AP89 84.6 42.1 2115 | 1.21 191.37

WSJ 173.2 81.7 | 243.5 | 1.28 160.63

Robust05 1033.4 484.2 892.2 | 1.38 430.88
Table 1: Collection statistics. The last column

presents ratios of RM to LM effectiveness and speed:
RM is more effective but much slower than LM

Relevance Model (RM) is nearly 200 times slower than the
Language Model (LM), while providing a 20% relative im-
provement in retrieval. This tradeoff is unacceptable for any
realistic setting. In this work, we reformulate RM to perform
much of the computation offline, allowing for improved re-
trieval times. We also investigate techniques for reducing the
time and space requirements of the offline computation while
avoiding a significant negative impact on retrieval perfor-
mance. These improvements result in up to a 10% increase
in MAP over LM while requiring only 1% of the retrieval
time of the original RM. Although our experiments and dis-
cussion focus on the RM, the ideas generalize to most forms
of PRF and are an important step towards overcoming the
inefficiency that prevents their being adopted.

2. FASTRM IN MAPREDUCE

We begin with the derivation made by Lavrenko and Al-
lan [5], essentially requiring the cross-entropy between doc-
ument M (the model) and document D (the candidate for
scoring). Calculating the cross-entropy between two doc-
uments lends itself nicely to the MapReduce framework,
though some care must be taken to account for the smooth-
ing factors involved in the second probability term. Starting
from the H(M]|| D) term:

H(M||D) =) P(t|M)log P'(t|D) (1)
teM
An inner product over a set of documents can be performed
simply by incrementing a score accumulator using the post-
ing lists of an indexed collection [3, 7]. However, because
of smoothing the situation is not so simple. Consider these
two example documents:

di1 ={ The cat crossed the street }
d2 ={ The dog crossed the river }

1573

Substituting into Equation 1:

H(d1||d2) = P(the|d1) log P,(theldg)

+ P(cat|d1) log P’ (cat|d2)
+ P(crossed|d;) log P’ (crossed|dz)
+ P(street|d;) log P’ (street|d2)

(2)

Notice that neither posting list for the terms “cat” nor “street”
will have dz in them. We will never be able to generate the
second nor the fourth additive terms of the sum in Equa-
tion 2, yet they are nonzero values, as the second part of
each product is a smoothed probability, and therefore never
zero. We circumvent this issue by producing the background
score for every document pair, and then incrementing from
that point to produce the final scores. Let us begin with
Equation 1 again:

H(M||D)

= > P(t|M)log P'(t|D) (3)

teM
meaning if the term does not occur in D but does occur in M,
we still need the term’s contribution to the document pair.
Early experiments indicated that Jelinek-Mercer smoothing

is superior to Dirichlet smoothing for this method, therefore
we expand our smoothed probability as follows:

P'(t|D) = AP(t|D) + (1 — M) P(t|C) (4)
Let [(t) represent the background probability of ¢. This is

the quantity (1 — A)P(¢|C) in Eq. 4:
7 P(tM)log P'(t1D) = 3 P(M) log(B(1)) +
> P(tM) [log(P'(¢|D)) — log(B(t))]

teMND

We now focus our attention on the second term to expose
the smoothed probability:

> P(tM) [log(P'(t|D)) —log(5(t))]

teMND
> P(t|M)log{ t|D +ﬁ }
teMND
Z P@M) o [AP t\D }
teMnND

Substituting back into Equation 1:
=D P(tM)log(B(t)+

te M

>

teMnND

H(M| D)

AP(t|D)

B(1) ®)

P(t|M)log [+ 1}

This formulation has two crucial advantages over Equa-
tion 1: the second sum is now over the intersection of M
and D, and all of the terms are raw probabilities. The cross-
product of postings will in fact recover all of the terms in
the second sum for every M,D pair. At the end of scanning

1574

a document, we emit the value of the first sum as a “null
term”, which now represents the background cross-entropy
score of all documents with respect to M. All we need to do
is carry the null term downstream to the final sums for all
documents. This process only produces an extra |C| incre-
ments to shuffle, a negligible increase in volume.

3. EXPERIMENTAL SETUP

We implemented the offline calculation using Hadoop Map-
Reduce v0.20.1, and processing was performed on Yahoo!
Inc.’s M45 cluster!. For retrieval, we modified a copy of
Indri 2.10% to support merging the previously calculated
scores into the ranked list. We conduct our experiments
over the three collections shown in Table 1. We use the
built-in Krovetz stemmer and the INQUERY stopword list
during indexing. We use topics from the early ad-hoc tracks
of TREC? as the query set for AP89 and WSJ. Robust05
represents the topics and documents from the TREC Ro-
bust 2005 track. We use only the title text of each topic.
For all PRF experiments, we set the number of feedback
documents (fbDocs) to 10, and the number of feedback
terms (fbTerms) to 100. We report Mean Average Pre-
cision (MAP) and in order to gauge retrieval performance
between different methods. The LM and RM methods act
as the baselines for our experiments: we want LM speed
with RM accuracy. We use the paired sample randomiza-
tion ¢ test as described by Smucker et al. [8] for significance
testing. We use 10 million samples for each significance test.
Often RM can be improved if the original query’s likelihood
is interpolated into the score [1]. All experiments here use
that variation of RM.

4. MAKING FASTRM FASTER

Although Lavrenko and Allan have shown that fastRM
can be slightly slower than LM while providing much of the
gain of RM [5], there are two issues that appear as the col-
lection size grows:

1. The time needed to calculate the matrix is reasonable
for the AP89 collection, but will grow unacceptably
with more documents — even using cloud-based ap-
proaches such as MapReduce.

The full matrix grows quadratically. The AP89 collec-
tion produces a matrix of over 53GB, which is manage-
able. However we estimate the size of the full matrix
for Robust05 to be over 8TB. This growth factor will
quickly impact storage costs and scan time at retrieval.

In the rest of this section we present methods for addressing
the issues above via approximation of the matrix.

4.1 Measuring approximation

Let A represent a fully calculated matrix of cross-entropy
scores, and let A be an approximation of A. The approx-
imation methods used here may drop entries from A, or
alter values in the cells, however the cells will never change
row-rank order. We can use standard ranked list evaluation
measures to inform us how A impacts retrieval. However,
when comparing a A and /1, we would like a more direct

"http://research.yahoo.com/node,/1884
2http://www.lemurproject.org/indri/
3http://trec.nist.gov

[cols (¢c) | AP89] WSJ | Robust05 |
0 13.11 31.92 66.13
100 19.22 37.92 146.92
1000 25.66 44.84 157.76
10000 110.50 138.52 262.60
00 800.80 | 2125.29 | 18131.89

[RM [2506.90 | 5124.07 | 28494.73

Table 2: Query-processing times for different num-
ber of scanned columns (c¢). Time is in milliseconds.
c =0 is the Language Model run. ¢ = oo is using the
entirety of the provided matrix. Collection is AP89.

measure of how much of the original matrix is recovered by
the approximation. We desire a method that assigns more
importance to documents at higher ranks in a particular row.
We would also like a measure that is bounded, since by def-
inition the best performance we can hope for is recovering
exactly the elements of the row we specify.

We draw inspiration from the NDCG measure [4] to fulfill
this role, calling the resulting measure RowEval. Let A;
be row i in a fully calculated matrix of cross-entropy values.
Let A; be the corresponding row i in A. Some documents do
not appear in the approximate row, so if | A;| represents the
number of non-empty entries in row A;, then |A;] > |Asl.
NDCG is defined over two lists of the same length, so we
need to treat Az as if it has the same number of entries as
A;. To do this we simply inject a ‘non-relevant’ entry into
A; in place of every document not recovered, to create a new
list A/. For example, if:

A; ={1,2,3,4,5,6,7,8,9,10}
A; ={1,6,7,8,10}, then
Al ={1,x,x,%,x,6,7,8, x,10} (6)

If we define rel(id) to be 1 if document id is not a x symbol,

and 0 otherwise, then RowEval@p is:
Z rel A []]
< log,(j +1)

Simply put, we use the non-relevant entries to make sure
the actual entries in A; are assigned the proper gain during
computation.

rel(A

RowEvalQp(A, Aj) (Z oz, (i + 1
2

4.2 Reducing Storage Requirements

Previous work [9, 2] has shown that binning retrieval scores
can simultaneously increase efficiency and reduce space re-
quirements while not significantly impacting retrieval perfor-
mance. Binning the values would reduce the total number
of cells required for each row scan; Table 2 shows retrieval
times for various scan-lengths, indicating a substantial im-
provement. We study two binning techniques to determine
the impact on retrieval performance.

e-based binning. For a given retrieval run, we define the
variable € to be the amount two scores must differ by in order
to create a new bin. Given two row-wise adjacent entries in a
matrix, A; ; and A; ji1, if |score(A; ;) — score(A; j+1)| < €,
then A; j4+1 is placed in the same bin as A;; and uses the
same score that A; ; is using (which itself may be a surrogate
score). Otherwise we create a new bin, using score(A; j11)

1575

as the score for that bin. As e — 0,# bins — |C|. Inversely,
as € — 00, # bins — 1.

Stepwise binning. The step function uses two values,
the binsize (b) and the number of bins (n). For example, a
bin size of 100 with 10 bins means that the first 1000 doc-
uments are placed into 10 bins, where the first bin contains
the 100 most highly scored documents, the second bin con-
tains the 100 next documents, and so on. For each bin, the
highest score in a that bin is used for all of the documents
contained in the bin. If the number of documents in the
row is greater than the number specified by b x n, all of the
remaining documents are placed in the last (i.e. rightmost)
bin.

Table 3 shows results for several values of € and stepwise
binning. Both methods appear to show marked improve-
ment over the run without binning (leftmost), suggesting
that we could reorganize our matrix to only store the val-
ues that start a bin, and delete the other scores in each
bin. Notice that the stepwise method shows more variabil-
ity between values, indicating higher sensitivity to parame-
ter changes.

4.3 Reducing Offline Computation Time

We can drop columns without dropping effectiveness [5],
which implies that we can save computation time if we can
only calculate the pairs we need. In order to achieve this
effect, we use the following method. When processing a
document, we order all of the unique terms by an impact
function Z. We set some threshold 7, and only emit the first
7 unique terms from each impact-ordered document. We
then form a list of document pairs based on the intersec-
tions within the remaining term posting lists. Using this list
we then generate the exact cross-entropy scores to form the
approximate matrix. We set ‘tf-idf’ as the Z function, while
varying 7. The operation behaves like a high-pass filter on
the document terms, therefore we refer to this method as
Highpass.

Figure 1 shows results for different settings of 7 compared
to the Language Model (LM) and best fastRM (full) runs
for the respective collections. All values have been scaled
to reflect the increase from the lowest to the highest value
for that particular axis and collection. Therefore a value of
0.5 indicates the actual value to be low + 0.5(high — low).
Figure 1 shows that for 7 = 10 and 7 = 20, the the build
times are relatively short, but the relative increase in MAP
is substantial. The runs where 7 = 100 took longer to con-
struct than the original full calculation were due to how the
cross-entropy scores are calculated from the resulting list of
document pairs. It demonstrates that although high 7 value
does increase the build time as expected, it does not bring
increased accuracy.

Table 4 provides some insight into why the Highpass method
performs well with so few terms projected. At 7 = 10, the
RowEval@1K is above 0.5 for all 3 collections. However
one can easily see the diminishing returns in increasing the
value of 7. This suggests that while the RowEval increases
as expected, at higher values of 7 the documents for a given
row are on average of lower quality (i.e. less similar). This
explains the phenomenon of the 7 = 100 runs actually per-
forming worse than the runs with fewer terms used. This
begs the question of how much the performance is tied to
the number of terms projected, as opposed to just picking
the right terms to project.

WB e-binned stepwise binned
Collection 0.1 0.5 1 1.5 1.75 1-1000 | 10-100 | 100-10 | 1000-1
AP89 0.2159 || 0.21717 | 0.2155 | 0.21917 | 0.2246" | 0.2223" || 0.2159 | 0.2216" | 0.2376" | 0.22117
WSJ 0.2099 || 0.2298" | 0.2278" | 0.2363" | 0.2347" | 0.2312" || 0.2099 | 0.2240" | 0.2392" | 0.2085
Robust05 | 0.1264 || 0.1268 | 0.1252 | 0.13247 | 0.1304 | 0.1273 || 0.1264 | 0.1298T | 0.14057 | 0.1285

Table 3: Retrieval results (MAP) for the binning techniques. The fastRM run with 1000 retained top docs
for each row. The run without binning (WB) is in the leftmost column. t indicates statistical significance of

p < 0.05 over the WB run.

e 4 o fullgo @
fullw KT
10w
[e] .
020a i
© o .
e o 20w
104 o)
o 504 71004
50y
o | .
& <} ° s o
o .
< 16 S0x x 100y
3
© Q 7 o
& < | 50r - 100%
=} e
N ., ’
S 7 .
- p
S 7 LMaw)
T T T T T I
0.0 0.2 0.4 06 08 1.0
Scaled Time
Figure 1: Graph comparing increase in retrieval

performance versus time to build the matrix used.
A’ W’ and 'R’ indicate AP89, WSJ, and Robust05
respectively. Labels are the value of .

Value of 7
Collection 10 [20 | 50] 100
AP89 0.524 | 0.727 | 0.921 | 0.984
WSJ 0.567 | 0.786 | 0.948 | 0.984
Robust05 | 0.718 | 0.887 | 0.977 | 0.990

Table 4: RowEval@1K of Highpass for the different
values of 7, across all collections.

5. CONCLUSIONS AND FUTURE WORK

We have shown that we can reformulate the traditional
Relevance Model to allow for much of the computation to
occur offline. Additionally, we can reduce the computational
requirements of calculating the matrix by accurately pre-
dicting the high-quality document pairs and only produc-
ing values for those entries. Results indicate that at least
one method, the Highpass algorithm, shows considerable
promise.

Several avenues emerge to continue this work. We plan to
investigate other approximation techniques that can further
improve pre-processing time and storage requirements. We
would also like to broaden the scope of our work to apply
to other PRF methods, with the intention of discovering
principles that hold true across all PRF methods.

1576

We believe this work demonstrates the potential of our
approach towards improving efficiency of theoretically sound
query expansion. Furthermore, this work represents a sig-
nificant step in bridging the gap between applying statistical
PRF in a lab setting versus using it in the real world.

6. ACKNOWLEDGMENTS

This work was supported in part by the Center for Intel-
ligent Information Retrieval, in part by NSF IIS-0910884,
and in part by NSF CLUE 11S-0844226. We thank Yahoo!
for the use of the M45 cluster. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those
of the sponsors.

REFERENCES

[1] N. Abdul-Jaleel, J. Allan, W. B. Croft, F. Diaz,

L. Larkey, X. Li, M. D. Smucker, , and C. Wade.
UMASS at TREC 2004 — novelty and HARD. In
Proceedings of TREC, Gaithersburg, MD, USA, 2004.
NIST.

V. N. Anh and A. Moffat. Pruned query evaluation
using pre-computed impacts. In Proceedings of SIGIR,
pages 372-379, 2006.

T. Elsayed, J. Lin, and D. W. Oard. Pairwise document
similarity in large collections with mapreduce. In
Proceedings of ACL/HLT, pages 265-268, Morristown,
NJ, USA, 2008. Association for Computational
Linguistics.

K. Jarvelin and J. Kekéldinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst.,
20(4):422-446, 2002.

V. Lavrenko and J. Allan. Real-time query expansion in
relevance models. IR 473, University of Massachusetts
Ambherst, 2006.

V. Lavrenko and W. B. Croft. Relevance based
language models. In Proceedings of SIGIR, pages
120-127, New York, NY, USA, 2001. ACM.

J. Lin. Brute force and indexed approaches to pairwise
document similarity comparisons with MapReduce. In
Proceedings of SIGIR, pages 155-162, New York, NY,
USA, 2009. ACM.

M. D. Smucker, J. Allan, and B. Carterette. A
comparison of statistical significance tests for
information retrieval evaluation. In Proceedings of
CIKM, pages 623-632, New York, NY, USA, 2007.
ACM.

T. Strohman. Efficient Processing of Complex Features
for Information Retrieval. PhD thesis, University of
Massachusetts Amherst, December 2007.

(8]

(9]

