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ABSTRACT
This paper presents a novel approach for the visualization
and clustering of crowd video contents by using multilin-
ear principal component analysis (MPCA). In contrast to
feature-point-based approach and frame-based dimension-
ality reduction approach, the proposed method maps each
short video segment to a point in MPCA subspace to take
temporal information into account naturally through tenso-
rial representations. Specifically, MPCA projects each short
segment of a video to a low-dimensional tensor first. A few
MPCA features are then selected according to the variance
captured as the final representation. Thus, a video is vi-
sualized as a trajectory in MPCA subspace. The trajec-
tory generated enables visual interpretation of video con-
tent in a compact space as well as visual clustering of video
events. The proposed method is evaluated on the PETS
2009 datasets through comparison with three existing meth-
ods for video visualization. The MPCA visualization shows
superior performance in clustering segments of the same
event as well as identifying the transitions between events.

Categories and Subject Descriptors
G.3 [ Probability and Statistics]: Statistical computing;
I.2.10 [Vision and Scene Understanding]: Video analy-
sis

General Terms
Algorithms,Experimentation, Human Factors, Management
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Visualization, clustering, crowd, video analysis, MPCA

1. INTRODUCTION
Recent proliferation of surveillance cameras has led to a

strong demand for automatic data processing tools for the
enormous amount of video data generated in applications
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such as surveillance, healthcare, and ambient intelligence [8,
10, 4]. While earlier works focused on videos with single or
just a few subjects [8, 7], the analysis of crowd video content
starts to attract more and more attentions recently [4].

A popular approach to video analysis is to detect and track
a set of feature points [7], which has been quite successful
for videos with single or just a few subjects. However, this
approach is sensitive to noise and the performance is heavily
dependent on the detection and tracking modules. Further-
more, when there is a crowd in the scene, it will be extremely
difficult to detect and track individuals. On the other hand,
it might not be necessary to know the movement of each in-
dividual, instead, a characterization of the crowd movement
as a whole would provide insights on the scene.

To avoid object detection and tracking, recent approach
considers frames of a video as a set of images with each
frame (image) as a basic video element. In [8], video is
considered as a collection of unordered images and an image
space is defined through Isomap [9]. Thus, video sequences
specify a trajectory through that image space. Similarly in
[10], input frames are represented in a low-dimensional space
using Laplacian Eigenmaps [1], where a graph is defined
based on similarity of frames. Since the video sequences
used in [10] consist of video events well separated by the
so-called no event, a rule-based temporal graph is further
introduced to incorporate temporal information.

Instead of embedding the raw frames, another approach
is to extract motion patterns through the calculation of op-
tical flow. In [11], a video sequence is divided into video
segments (or clips) and then each segment is split into sev-
eral cuboids. A “video word” representation is obtained for
each video segment by concatenating histograms of optical
flow fields for all the cuboids in the segment. Diffusion map
[3] is employed to embed the motion pattern information.

In this work, we consider a short video segment as a basic
video element represented as a tensor (a multidimensional
array) and propose to use multilinear principal component
analysis (MPCA) [5] to embed each video segment into more
compact manifolds for analysis. The proposed approach is
less sensitive to noise and it operates on raw video sequences,
without background subtraction, foreground segmentation,
or silhouette extraction. Video content can be visualized
as a trajectory in MPCA subspace and the visual cluster
rendering scheme in [2] can further be adopted for inter-
pretation. The proposed solution is evaluated on sequences
from the Performance Evaluation of Tracking and Surveil-
lance (PETS) 2009 [4] against three other methods to show
its superior performance.



Figure 1: Illustration of the proposed MPCA-based
approach for crowd video content analysis.

2. VIDEO ANALYSIS IN MPCA SUBSPACE
Figure 1 illustrates the proposed MPCA-based approach

for crowd video content analysis. Each segment is repre-
sented naturally as a third-order tensor with three modes
(row, column and time). Input video segments are first
mapped to low-dimensional tensors by MPCA. Then, a few
MPCA features are selected to obtain low-dimensional vec-
tors for final representation. Since we treat a video seg-
ment as a basic video element, we analyze the input video
in overlapping segments by using an observation window of
L frames. This window is shifted by S frames in each step.
Thus, for a video with H frames in total, the number of
overlapping segments will be

M = b(H − L+ S)/Sc, (1)

where b·c denotes the floor operation.

2.1 Notations
In this paper, vectors are denoted by lowercase boldface

letters, e.g., x; matrices by uppercase boldface, e.g., U; and
tensors by calligraphic letters, e.g., A. Their elements are
denoted with indices in brackets. Indices are denoted by
lowercase letters and span the range from 1 to the uppercase
letter of the index, e.g., n = 1, ..., N . An N th-order tensor is
denoted as A ∈ RI1×...×IN . It is addressed by N indices in,
n = 1, ..., N , and each in addresses the n-mode of A. The
n-mode product of a tensor A by a matrix U ∈ RJn×In ,
denoted by A×n U, is a tensor with entries [5]:

(A×nU)(i1, ..., in−1, jn, in+1, ..., iN ) =
∑
in

A(i1, ..., iN )·U(jn, in).

(2)

A rank-1 tensor A equals to the outer product of N vectors:

A = u(1) ◦ ... ◦ u(N), (3)

which means that A(i1, ..., iN ) = u(1)(i1) · ... · u(N)(iN ) [5].

2.2 MPCA feature extraction and selection
MPCA [5] is a multilinear subspace learning method that

extracts features directly from tensorial representation of
multi-dimensional objects. In [5, 6], MPCA is proposed for
gait recognition by representing each half cycle of gait sil-
houette sequences as a third-order tensor. In this paper, we
apply MPCA to crowd video analysis by extracting MPCA
features from raw video sequences.

As described in the beginning of this section, M overlap-
ping video segments are obtained first from the video to be
analyzed. They are represented as M third-order tensors
{X1, ..., XM ∈ RI1×I2×I3} (I3 = L), as the input to MPCA.
The MPCA algorithm solves for a multilinear projection

{ Ũ(n) ∈ RIn×Pn , n = 1, 2, 3}, (4)

where Pn < In for n = 1, 2, 3, that maps the original video
tensor space RI1

⊗
RI2

⊗
RI3 into a lower-dimensional ten-

sor subspace RP1
⊗

RP2
⊗

RP3 :

Ym = Xm ×1 Ũ(1)T ×2 Ũ(2)T ×3 Ũ(3)T ,m = 1, ...,M, (5)

such that the total tensor scatter ΨY =
∑M

m=1 ‖ Ym−Ȳ ‖2F ,

is maximized, where Ȳ = 1
M

∑M
m=1 Ym is the projection of

the mean sample (i.e., the average of the M tensorial sam-
ples). This MPCA problem is solved through an iterative
alternating projection method in [5].

The MPCA projection matrices {Ũ(n), n = 1, 2, 3} can be
viewed as

∏3
n=1 Pn EigenTensors [5]:

Ũp1p2p3 = ũ(1)
p1 ◦ ũ(2)

p2 ◦ ũ(3)
p3 , (6)

where ũ
(n)
pn is the pthn column of Ũ(n). Since our objective is

to perform unsupervised analysis on crowd video content, in
particular visualization, only the first a few most important
EigenTensors are needed. Therefore, we further perform
a feature selection based on an importance score Υp1p2p3

calculated from the variation captured in each EigenTensor.
Υp1p2p3 for the eigentensor Ũp1p2p3 is defined as

Υp1p2p3 =

M∑
m=1

[
Ym(p1, p2, p3)− Ȳ(p1, p2, p3)

]2
(7)

where Ym is the projection of Xm in MPCA subspace, and
Ȳ is the mean feature tensor defined above.

For the EigenTensor selection, the entries in Ym are ar-
ranged into a feature vector ym according to Υp1p2p3 in de-
scending order. Only the first D entries of ym are kept for
subsequent analysis.

2.3 MPCA-based visualization and clustering
The selected D features allow us to embed each video seg-

ment to a D-dimensional MPCA subspace, resulting a tra-
jectory for the video. Since the raw video segments are pro-
jected, the relative positions between data points in MPCA
subspace will be closely related to the visual changes be-
tween the corresponding video segments. Small changes will
result in closely spaced points while abrupt changes will lead
to points far apart. In the case of crowd video content, the
spacing between points in MPCA subspace tends to be af-
fected mainly by two factors: crowd size and activity speed.
Generally, small crowd with slow activity results in very
closely spaced data points while big crowd with fast activity
results in large spacing between data points. Therefore, we
expect the MPCA subspace embedding to provide a good
visualization of the video content. Two key benefits of the
proposed approach are summarized below:

1. The raw video segments are taken as the input so there
is no need for object detection, silhouette extraction,
and object tracking. In addition, the method is robust
against noise, occlusion or shadows.

2. Through representing video segments in their inher-
ent 3D form using tensors, the temporal information
is naturally taken into consideration in MPCA sub-
space. The MPCA projection maps a spatial-temporal
volume to a point in a subspace. In contrast, in the
frame-based approach [8, 10], each frame is mapped to
a point based on image similarity so the distance be-
tween points reflects only the similarity between two



frames, while temporal information is not being con-
sidered in such mapping.

Benefiting from human cognitive abilities, visualization of
patterns is a practical way to gain insight into large databases
[2]. As MPCA-based visualization can provide us cues on
the characteristics of the video content in a compact form,
human subjects can perform various tasks by observing and
interpreting the visualization of a video rather than the
video itself, such as anomaly detection, video summarization
and clustering of video events. In the next section, experi-
ments on real-world crowd video sequences are carried out to
demonstrate the superiority of the MPCA-based approach
in visualization of crowd video content for summarization
and visual clustering of events.

3. EXPERIMENTAL EVALUATION
In this section, several experiments on real-world sequences

from surveillance cameras are performed to show the effec-
tiveness of our proposed method in video content visualiza-
tion and event clustering. Different from commercial movies,
video sequences from surveillance cameras usually contain a
smooth change of motion in the frames rather than frequent
scene cuts and rapid changes [10]. Therefore, we expect a
smooth manifold of motion over time for these sequences.

3.1 Experimental data and design
The proposed method is evaluated on the dataset S3“Event

Recognition” of the PETS 2009 database1 with dense crowd
and subjective difficulty of L3 (the most difficult) [4]. There
are four sequences with time stamps 14-16, 14-27, 14-31 and
14-33. Due to space limitation, only results on sequence
14-27 from view 001 are reported in this paper. There are
334 frames in this sequence (H = 334). In simulations, the
original sequence is down-sampled for lower computational
cost. The original color sequences are converted to gray-
level and each frame is resized to 192 × 144 pixels. The
sequences are recorded at 7 frames per second. Figure 2(d)
shows four frames from this sequence. For performance eval-
uation, we compare the visualization of sequence Time1427
from PETS 2009 in a two-dimensional (2D) space using four
methods with the following settings.

Isomap-based method [8] and Laplacian-Eigenmap-
based method [10]: the distances between each frame pair
of a sequence are calculated and for each frame, the distance
for the k nearest neighbors are kept. Four values of k =
4, 6, 8, 10 are tested and the best results are reported.

Diffusion-map-based method [11]: a video is divided
into overlapping segments, each with L = 5 frames. Two
successive segments are overlapped by 4 frames (S = 1) so
that almost every frame will have a corresponding segment
for easy comparison with the first two methods. 8 × 8 × 5
cuboids are obtained for each segment and 4-bin histograms
of optical flow are computed for each cuboid, which are con-
catenated to form “video words”. The frequency of each
video word in different segments is normalized to obtain
probability, with 10% of the video words with the highest
and lowest conditional entropy are discarded. Four sets of
diffusion map parameters (t, σ) are tested: (2, 8), (2, 10),
(4, 6) and (8, 5). The best results are reported.

The proposed MPCA-based method: overlapping seg-
ments are first obtained with L = 5 and S = 1 as in the

1http : //www.cvg.rdg.ac.uk/PETS2009/a.html

Diffusion-map-based method for easy comparison. They are
then embedded in a 2D MPCA subspace (D = 2) following
the process described in Section 2 with the same setting for
MPCA in [5].

3.2 Experimental results and discussions
The visualizations obtained from the four methods enable

visual cluster rendering of the video sequences [2]. For the
convenience of evaluation, we use different colors to code
different events. The color code for each event is depicted
in Fig. 2(a). The labeling of events is produced by human
subjects. The visualizations of the Time1427 sequence are
reported in Figs. 2(b), 2(c), 2(e) and 2(f), each showing the
2D embedding by a method with each point corresponding
to a frame or a video segment. There is a scene change in the
sequence so Isomap-based method and Laplacian-Eigenmap-
based method detect two separately connected components.
Thus, the respective visualizations are shown separately for
each connected component detected for fair comparison. For
each visualization, a red asterisk marks the beginning of the
trajectory and a red pentagram marks the end of the trajec-
tory. For evaluation, we examine whether the visualizations
provide clear clues about the events in the sequences and
whether we can visually identify the start and end of the
events as well as the transitions between them from the vi-
sualizations.

There are six events (with two transitions) for the se-
quence Time1427, with a scene change in the middle. The
Isomap-based method performs poorly for most of the tra-
jectory, mapping points of the same event to points far apart,
except for events 3 (green) and 6 (red). The Laplacian-
Eigenmap-based method is able to map two different crowd
patterns to different parts of the trajectory in Fig. 2(c).
However, the trajectory does not truly reflect the actual
characteristics of the event. E.g., the event crowd pattern
1 (blue) consists of small local movement of the same pat-
tern, but it is mapped to a long trajectory in Fig. 2(c).
The Diffusion-map-based method fails in visualizing this se-
quence, with points of different events heavily mixed. The
MPCA-based method has visualized this sequence particu-
larly well. Events 1 (blue), 3 (green), 4 (yellow) and 6 (red)
all have fixed crowd patterns and their MPCA visualiza-
tions form small clusters in Fig. 2(f), except a few green
points due to the scene change. The transition (cyan) be-
tween patterns 1 (blue) and 2 (green) is more significant and
it is clearly observed in Fig. 2(f). The transition (orange)
between patterns 3 (yellow) and 4 (red) is more subtle so it
is less distinguishable from pattern 4 (red) in Fig. 2(f).

In summary, the Isomap visualization tends to be noisy
while the Laplacian Eigenmap visualization produces smooth
curves for events of very different characteristics so it is dif-
ficult to interpret events. The Diffusion map visualization
cannot provide insights to the corresponding video content
at all. In contrast, the proposed MPCA visualization is more
meaningful and gives a better interpretation of the video
content. In particular, small local movements for a partic-
ular crowd pattern nicely form clusters in MPCA subspace.
Furthermore, its performance is consistent over the other
PETS2009 sequences with various characteristics, which are
not reported here due to space constraint. Therefore, the
proposed MPCA-based method for video visualization and
clustering provides a powerful tool to video analysis.



(a) Color labels of events. (b) Isomap on video frames. (c) Laplacian Eigenmap on video frames.

(d) Example frames. (e) Diffusion map on video motion patterns. (f) MPCA on video segments.

Figure 2: Visualization results for sequence Time1427 (best viewed on screen or in color print).

4. CONCLUSIONS
Analysis of crowd video content is becoming an important

topic, where detection and tracking of individual subjects
have become extremely difficult due to the large number of
subjects in the scene. In this paper, we use MPCA, a recent
multilinear statistical method, to analyze crowd activities
and events, with no need for object detection and tracking.
We consider a video segment as a basic video element and
map it to a point in MPCA subspace. The MPCA visualiza-
tion characterizes the entire video sequence with an abstract
description of the events and it provides a valuable tool in
analyzing video content for video summarization, anomaly
detection, and behavior understanding. In particular, the vi-
sualization enables visual clustering of events. Experiments
show that the proposed MPCA-based method gives much
better visualization of challenging PETS 2009 crowd video
sequences and produces more visible clusters of events than
three existing methods.
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