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ABSTRACT
In the field of e-science stream data processing is common
place facilitating sensor networks, in particular for predic-
tion and supporting decision making. However, sensor data
may be erroneous, like e.g. due to measurement errors (out-
liers) or changes of the environment. While it can be fore-
seen that there will be outliers, there are a lot of environmen-
tal changes which are not foreseen by scientists and therefore
are not considered in the data processing. However, these
unforeseen semantic changes - represented as annotations -
have to be propagated through the processing. Since the an-
notations represent an unforeseen, hence un-understandable,
annotation, the propagation has to be independent of the
annotation semantics. It nevertheless has to preserve the
significance of the annotation on the data despite structural
and temporal transformations. And should remain meaning-
ful for a user at the end of the data processing. In this paper,
we identify the relevant research questions.In particular, the
propagation of annotations is based on structural, temporal,
and significance contribution. While the consumption of the
annotation by the user is focusing on clustering information
to ease accessibility.

Categories and Subject Descriptors
J.2 [Earth and atmospheric sciences]: Miscellaneous;
H.2.m [Information Systems]: Database management—
Stream data processing

General Terms
Annotations

Keywords
Sensor networks, Streaming, Semantics, Annotations

∗PhD Student
†Supervisor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PIKM’10, October 30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0385-9/10/10 ...$10.00.

1. INTRODUCTION
Sensor networks are used to gather information about en-

vironmental, or industrial processes usually resulting in large
data volumes. Sensor data are processed as a stream sup-
porting warning, decision support and forecasting applica-
tions [18]. The characteristics of streaming applications are
often that (1) data elements are monotonically organized by
order of arrival, (2) each element is seen at most once by the
processing algorithm, (3) results have to be available with
the least amount of delay [5]. Thus, stream processing con-
sists of processing elements. A stream processing element
continuously processes new sensor data of incoming streams
resulting in an outgoing stream of processed data. The out-
put stream can be an input for further processing elements.

The designer of a stream processing knows the semantics
of the input streams and the processing algorithm, which
results in the semantics of the output stream. These se-
mantic relations are often maintained as provenance infor-
mation [17]. However, the intended semantics of data tuples
in a stream might be changed by unforeseen events e.g. in
the environment. However, provenance information is not
intended to handle these dynamic changes of semantics. As
a consequence, semantic change of data tuples contained in
a stream and consumed by an application might result in
wrong decisions or predictions.

2. RELATED WORK
The various streaming systems, such as e.g. Borealis [1],

System S processing core [3], Global Sensor Network [2],
STREAM [4], or TelegraphCQ [8] address continuous queries
and support scenarios as described in Section 3, however,
they do not provide any notion of annotation or any propa-
gation mechanism as addressed in this paper.

Alternatively initiatives such as the Sensor Web Enable-
ment [7] define standards for sensor interoperability which
include the interaction of systems as well as the descrip-
tion of metadata. However, the associated standards of the
initiative focus on a description of a fixed set of metadata in-
stead of propagation of metadata along the processing chain.

Another kind of metadata is data provenance. Provenance
data as defined in [17] is data ”[enabling e-science users] to
reproduce their results by replaying previous computations,
understand why two seemingly identical runs with the same
inputs produce different results, and determine which data
sets, algorithms, or services were involved in their deriva-
tion.”

Data provenance on workflow level has been addressed in
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many different flavors especially in the e-science community.
An overview and a taxonomy of provenance is provided by
[20].

Example infrastructures are Karma2 [21] and Tupelo [13]
implementing the Open Provenance Model [10] for the cap-
ture and query of provenance data. However some differ-
ences exist amongst them. Karma2 enables provenance data
to be communicated as updates in a de-coupled and asyn-
chronous publish subscribe model. Tupelo libraries however
enable the deferral of the sending of the provenance data
until after the operation is finished in order to minimise the
impact of proveance on the workflow operations. Tupelo
also enables agregation from external data sources in order
to infer semantic facts as part of querying. In order to sup-
port this query functionality Tupelo is configurable with on-
tologies, and understands queries specified in semantic web
languages such as RDF and SPARQL.

A more infrastructure oriented example has been proposed
in [23] describing a method for recording and reasoning over
data provenance in web and grid services. In particular, it
describes which services have been used, what kind of data
has been passed between those services and what results
have been generated by the services. The e-science commu-
nity has developed the Open Provenance Model [10] as a
result of three provenance challenges. It gives a good idea
on the kind of information addressed by provenance systems.
However, the type of unforeseen annotations as addressed in
this paper are not contained. Provenance information is col-
lected and not propagated. Further, provenance information
does not change over time, but is recorded when a processing
element is executed.

Special annotations which are propagated along the work-
flow are technical data quality measures. In literature there
are several approaches described. Most of them are based
around the notion of fitness for purpose [15, 16, 19] describ-
ing how well the actual data represent the intended purpose,
i.e., semantics. Some of them rely on ground truth [19] oth-
ers rely on method specific assumptions[15, 16].

The semantic element for the data fitness can only be
found in frameworks for identifying quality data attributes
[6, 22]. The 5WH (why, when, where, what, who, how)
framework as introduced by Bisdikian in [6] aims to support
decision in the compatibility of an element of data with an
application, using two axis in the evaluation, semantic suit-
ability and accuracy constraints. The 5WH framework is
used for identifying which data quality measurements should
be part of the application. Conversely the work introduced
by Strong in [22] introduces in a business setting four dimen-
sions of data quality. The four dimensions are: (1) intrinsic,
(2) accesibility, (3) contextual and (4) representational. For
each dimension several values are defined. The values are
then used to identify shortcomings in the data quality, or
data quality defects. Not all of the values can be easily
quantified but intrinsic data quality values such as accuracy
or contextual data quality values such as timeliness, com-
pleteness, and amount of data can be useful in workflow
data processing.

However, the quality measurements are comparable to
foreseen annotations in this paper. While annotations are
boolean - there is either an annotation or not - data qual-
ity measures can be gradual - the accuracy is ±0.23◦C for
a temperature sensor. This difference has implications on
the complexity of the required propagation mechanism. As

a consequence, unforeseen non boolean annotations to our
understanding can not be propagated.

There is quite some literature on storing annotations. An-
notations are in particular often used in biological applica-
tions [12]. However, the propagation of these annotations
is not considered. In the BDBMS system [11] the authors
propose an annotation management based on a relational
storage model supporting annotations at various granularity
levels (table, tuple, column, cell). Mondrian [14] supports
to annotate both single value and the associations between
multiple values. The both cases the focus is on optimizing
storage structures of annotations.

The DBNotes approach [9] proposes a ’post-it note’ sys-
tem for relational data allowing to annotate each tuple ele-
ment in a relation. The annotations stick to the tuple ele-
ments, thus if a tuple is queried and the tuple element is in
the result set, then also the annotation is in the result set.
The support query language seem not to support aggrega-
tion. Thus, annotation propagation can not be represented
along temporal aggregations, and structural changes are lim-
ited to one-to-one mappings of tuple elements ignoring the
effects of the data transformation.

3. USE CASE
The use case is a simplified climate forecasting application

which has been modified to capture all issues addressed in
this paper. The use case is based on weather stations placed
in different locations of a know region in the Alps. The
weather stations contain amongst others temperature sen-
sors. Sensor data is made available in a streaming system
by a processing element represented in the upper part of Fig
1 as hexagons. The three temperature sensors used in this
use case are temp@S1, temp@S2 and temp@S3 Since sen-
sors do not have an input stream and the output cannot be
determined on the input stream, the processing element is
called time variant. The temperature sensors measure tem-
perature every 10 minutes. Sample measurements of the
three sensors are depicted in the lower part of Fig 1.

To get an idea of the temperature distribution over the
mountains, the temperature sensor data are used as input
for an interpolation processing step represented in the up-
per part of Fig 1 as a rectangle. The interpolation is a time
invariant processing element, since its output solely depends
on the data of the input streams. The interpolation is per-
formed for every new sensor measurement using the cur-
rent temperature measurements. The interpolation results
in a matrix of temperature measurements corresponding to
a grid spanned over the Alps. An example matrix is depicted
in the lower part of Fig 1.

For climate research time spans of several years are rele-
vant, thus, the interpolation results are further aggregated
to monthly temperature interpolations represented as the
avg/mth processing element in the upper part of Fig 1. The
processing element provides again a matrix of measurements
as depicted in the lower part of Fig 1.

Finally, to visualize the monthly temperature interpola-
tions, a visualization processing step is added (see upper
part Fig 1). This processing element consumes the stream-
ing data, also known as data sink, since it does not provide
any output stream. The visualization results in a contour
plot, which is directly displayed in an application (see lower
part of Fig 1).
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temp@S1 interpolate

temp matrix
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avg/mth

temp matrix (avg)

Figure 1: Temperature contour map workflow

3.1 Semantic Change
Stream semantics may change over time, i.e., the mean-

ing of the data tuple in the stream is no longer the intended
meaning. The new meaning of the data tuple can be repre-
sented as an annotation of the changed semantics on data
tuples. Annotations are hence metadata tokens associated
with a data tuple on the stream. The tokens consists of an
arbitrarily small text, which represents a unique description
of the semantic change. The text has to be both human
and machine readable. Further several annotations can be
associated with one data tuple.

Based on the use case (see Sect 3), the three weather sta-
tions may function correctly and send the data for processing
in a timely fashion. Thus, the measurement has the intended
semantics. Besides of the intended semantics three cases of
changing semantics can be distinguished:

• One weather station measures a temperature of 40 de-
gree Celsius, which is obviously a faulty measurement
in an Alpine scenario. The semantics of the measure-
ment changes from temperature measurement to mea-
surement error. These kind of semantic changes can be
detected algorithmically and therefore the detection of
these changes can be added to the stream processing
by automatically adding an outlier annotation to data
tuples. Thus, represents a foreseen semantic change.

• Another foreseen semantic change is at the end of the
month to go manually over the temperature data and
annotate additional data tuples with outlier based on
the knowledge of the deployment of the sensors and ex-
perience of the human doing the assessment. Although
this is a manual annotation done after the data have
been processed in the stream processing, the semantic
change is foreseen, since all consumers of the stream
are aware that an outlier annotation can be used on
the particular stream.

• The weather stations produce reasonable measurements
(see Fig 2 at time T1 and T2). During a routine in-
spection of the stations it is noticed that one of the
three stations is covered in snow, as depicted in Figure
2 at time T3. Thus, the measurement is the tempera-
ture of air under an unknown or varying depth of snow.
This semantic change is not indicated by the data. The
scientists deploying the weather stations were not ex-
pecting that a station could be snowed in. Thus, the
snowed in station is an unforeseen semantic change.

Foreseen semantic changes, like e.g. detected outliers, may
be integrated in the stream processing. As a consequence,

user consuming a certain stream are aware of possible anno-
tations of data tuples before they actually use the stream.
Due to this knowledge the user of the stream can decide
whether and if so how she wants to handle annotations.
Possible actions are: ignore the outlier annotation, since
it is not relevant for the application, remove the annotated
data tuples, or propagate the annotation and let subsequent
processing elements deal with the annotation.

In case of unforeseen semantic changes, like e.g. an unex-
pected change in the environment of the sensor, annotations
are not expected and therefore can only be propagated. It is
characteristic for unforeseen semantic changes that the an-
notation is associated manually, with a significant delay and
for a time interval of data tuples, where the lower bound of
the time interval is unclear. In the use case introduced in
section 3 a scientist performs a visual inspection (see Fig 2
T3) of the station and finds it covered in snow. The station
is then dug out of the snow and this incident logged in the log
book of the scientist. When returning to the lab the lower
bound of the annotation is estimated based on additional
information like snowfall, snow height, and wind speed and
direction as well as knowledge of the terrain. The scientist
then reviews the previously captured data and attaches a
snowed in annotation to it. Hence the starting point of the
annotation is estimated to be T2(see Fig 2), in the current
example. The end of the annotation is clear since the scien-
tists dig out the weather station when they observed that it
is snowed in.
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Figure 2: Annotation of the temperature data for
S1 after a visual inspection

4. ANALYSIS
Semantic changes observed in a workflow and explicated

by annotations have to be handled in the workflow. With
regard to the input and output behavior processing elements
can be classified as

• source: a time-invariant processing element without
any input streams, e.g. a temperature sensor,

• sink : a processing element without any output streams,
e.g. a visualization component,

• transform: a processing element with input and output
streams, e.g. an interpolation processing element.

Algorithmic or manual annotations at a processing element
are annotation sources. If an annotation is understood by a
processing element one or several annotations may be con-
sumed, thus the processing element acts as an annotation
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sink. If an annotation is not understood the only option
is to propagate the annotation, thus the processing element
acts as an annotation transform.

Unforeseen annotations are not understood by the pro-
cessing elements, because otherwise they are foreseen anno-
tations. In particular, the change of semantics expressed
in unforeseen annotations are only intelligible by the end
user. Thus, unforeseen annotations have to be transformed
by transform processing elements and have to be communi-
cated to the user by sink processing elements.

With regard to the example (see Sect 3) the processing
element temp@S1 is an annotation source, the processing
elements interpolation and avg/mth are annotation trans-
forms, and visualize is an annotation sink.

The propagation and communication of unforeseen anno-
tations introduces a series of issues discussed in the following
subsections.

4.1 Annotation propagation
The issues related to propagation of unforeseen annota-

tions are the effect of annotations on changing data struc-
tures or temporal resolution of streaming data, and the sig-
nificance of annotations due to structural and/or temporal
resolution changes.

4.1.1 Data structures

temp@S1 interpolate

temp@S2

temp@S3

temp values

temp matrix
(interpolate)

28.0

25.0

27.0

processing element (time variant) processing element (time-invariant) view

S
3x scalar

D
Temperature

A
Snowed in

S'
2d array

D'
Interpolated
Temperature

A'
Snowed in

TS

TD

δS

 - annotation; A - annotation; D - data; S- data structure 

Figure 3: Annotation data structure transform

The use case introduced in Section 3 is based on three
sensors each producing a temperature reading ( see Fig 3
temp values). The processing element interpolate performs a
spatial interpolation of the point temperature measurements
resulting in a grid (two dimensional matrix) of interpolated
temperature measurements (see Fig 1).

The processing element interpolate accepts scalar values
as input data and produces a two dimensional matrix as out-
put (see Fig 3 temp matrix (interpolate)). Thus, the process-
ing element contains a structural transformation TS : S →
S′ of the input structure S to the output structure S′. The
structural transformation requires extra information such as
the relative position of each sensor with regards to the oth-
ers.

Based on the structural transformation of input and out-
put a transformation TD : D → D′ of the data values can be
defined. In particular, the input data out of D adhering to

structure S are transformed into data out of D′ adhering to
structure S′. In the interpolate processing element the out-
put array is determined using an inverse distance weighting
algorithm based on the three temperature values 28.0 from
temp@S1, 27.0 from temp@S2 and 25.0 from temp@S3 (see
Fig 1).

The observed change in semantics after a visual inspection
of the weather stations (see T3 in Fig 2) results in an anno-
tation snowed in of the temperature value from temp@S1.
I.e., the sensor measurements observed in the time span of
the annotation are associated with the annotation. In Fig-
ure 3 the processing of the interpolate processing element is
depicted for an example set of sensor data. The data of sen-
sor S1 is annotated, where the annotation is represented as
a star. Since this sensor is an input of processing element in-
terpolate, the output of processing element interpolate may
also contain the annotation. The annotation of the temp
matrix in Figure 3 is again represented as a star. Thus, an-
notations also have to be transformed. However, since the
annotation is unforeseen, the implementer of the processing
element interpolate cannot specify how to transform anno-
tation snowed in.

Since the processing element interpolate is executed for
each new sensor measurement, the annotation transforma-
tion can be described solely as a structural transformation,
further called δS . In the above example, the structural trans-
formation δS specifies how the annotation of a single tem-
perature value is transformed into annotations of cells in the
output matrix. This transformation depends on the used
interpolation algorithm and its parametrization TD and the
definition of the data structure transformation TS .

In particular, the data structure transformation contains
information about the size of the matrix and the data types
of the cells. Further the data transformation TD contains the
interpolation algorithm and its parametrization. In partic-
ular, the distance of cells in the output structure from the
cell representing the sensor observation indicates whether
or not the cell should be annotated. The parametrization of
the influence of distance on the cell data also influences the
structural annotation transformation δS .

Since the structural annotation transform δS is indepen-
dent of the annotation, it can be provided by the imple-
menter of the transform. The basic assumption is that an-
notated data are either used and therefore the annotation
is ignored or the annotation is acknowledged and thus the
data are ignored.

Research question 1. How to build the structural an-
notation transform δS based on data structure and data trans-
forms Ts and TD?

An initial idea is to identify a finite set of data structures
often used in e-science applications and to investigate their
structural transformations. In particular, we plan to use
weighing models to express whether an element of a data
structure should be annotated or not. The ideas will be
evaluated in several case studies.

4.1.2 Temporal resolution
Following the weather monitoring application introduced

in section 3 the next step is to compute the monthly av-
erage of the previously interpolated values as discussed in
the previous section (see Fig 3). This is performed in the
average per month (avg/mth) processing element (see Fig
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Figure 4: Annotation temporal resolution transform

4). The processing element performs an average over all the
temp matrix(interpolate) arrays of one month at midnight of
the first day of a month. The predicate of using one month
of data temp matrix(interpolate) arrays is called the buffer
predicate B selecting the relevant data from a view, and the
predicate when to execute a processing element is called the
trigger predicate Trigger. The specification of the buffer B
and the Trigger predicates are part of the specification of
the processing element avg/mth (See Fig 4).

The input and output data structures, temperature ma-
trices, of the (avg/mth) processing element are identical.

Thus, the structural transformation Ts is the identity trans-
form S being identical to S′. Therefore the annotation trans-
form δS is also the identity transform, hence can be neglected
in further discussion.

The data transformation TD is based on all matrices se-
lected by the buffer predicate B using a weighted average
calculation per cell. Thus, a cell of the output array is given
by the weighted average of the cell in all arrays contained in
the buffer.

As a consequence, the transformation TA of annotation A
into annotation A′ depends on the buffer predicate B and
the data transform TD. These effects are covered by a tem-
poral annotation transform δτ . In particular, the temporal
annotation transform δτ provides a weight of having an an-
notation per element of the output structure S′, in case of
the example this is per cell of the temp matrix (avg) array.

The weight is influenced by the amount of annotations per
cell in the buffer. I.e., the more annotations on a cell per
array the higher the weight of having an annotation at the
corresponding cell of the output array.

Further, dependent on the data transformation TD the
contribution of each input array to the calculation of the
weight varies. If the weighted average calculation is based on
a constant weight, then all arrays contribute equally, while a
progressive weighting favors the latest temperature arrays.

We have hence identified the two elements contributing to
the temporal annotation transform δτ : (1) the data trans-
form TD and (2) the buffer predicate B. Also δτ like δS is
an annotation independent transform and therefore can be
provided by the implementer of the transform.

Research question 2. How to build the temporal anno-

tation transform δτ based on the data transform TD and the
buffer predicate B?

The initial idea is to identify a set of aggregation func-
tions often used in e-science applications and to investigate
their relationship to the temporal annotation transform δτ .
While average and sum aggregations appear rather straight
forward, extrema aggregation functions like min and max
appear to be more challenging. Since extrema operations
only select a single value the temporal annotation transform
intuitively is binary. However, we expect that the uniformity
of the data influences the weight of the temporal annotation
transform. More complex or general aggregation functions
like convolution require further investigation.

4.1.3 Annotation significance

Figure 5: δτ contour plot

One question that has not been examined so far with re-
gards to unforeseen annotations is their significance. So far
we have looked to the contributions of the annotation trans-
form TA from the structural δS (Sect 4.1.1) and the temporal
perspective δτ (Sect 4.1.2). Both contributions δS and δτ can
be combined for each output cell of the transform in order
to obtain the combined weight of the annotation transform.
However the combined value forming TA does not enable to
decide if the annotation is to be propagated or not.

The interpolation transform present in our sample appli-
cation (See Fig 3 interpolate) requires interpolation weights
for each one of the three sensors to be built. The weights re-
flect the contribution of the data from a given sensor to the
output values. Hence also the contribution to the propaga-
tion of the annotation. Figure 5 represents a contour plot of
the propagation weights of sensor temp@S1, from our sam-
ple application introduced in Section 3 (See Fig 1). However
annotations are boolean and there is the need to decide if an
annotation is propagated or not. The decision can be made
by transforming the weights array (See Fig 5) into a binary
array specifying which are the cells that get annotated on
output for a given sensor containing the input. To create the
binary array all that is required is to threshold the weights
array (See Fig 5). A thresholding value, which constitutes
the point from which an annotation is significant enough to
be propagated, has to be chosen basing the decision on the
interpolation weights. Several techniques exist for selecting
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such a thresholding value. However, the desired technique
has to be applicable to all forms of TA not only those in
which the structural component δS is prevalent.

Further the same occurs in the monthly average step (see
Fig 4 avg/mth) in our use case weather monitoring appli-
cation introduced in Section 3. In the case of an annota-
tion transform TA in which the temporal component δτ is
the only contribution to the transform the weights originate
from the weighting function associated with the elements
of the input buffer (See Fig 4 B), as introduced in Section
4.1.2. In such a scenario in order to warrant propagation of
the weighted sum of all the annotations has to be greater
than or equal than the chosen significance threshold. Here
too the technique for selecting the threshold value has to
be general purpose and avoid local effects such as prevent-
ing annotations from being propagated or propagating too
many annotations which would then render the interpreta-
tion of the data with the annotation difficult.

Besides avoiding local effects in the propagation of the
annotations, It is desirable for the technique to be transform,
annotation, and data independent. Transform independence
would ensure the usability of the same decision technique
for all steps in a workflow. Annotation independence would
enable the development by the transform developer. Data
independence ensures stability of the propagation for a given
transform regardless of the data being processed.

This brings us to the following research questions.

Research question 3. Are δS and δτ sufficient for war-
ranting annotation propagation?

Research question 4. Can a propagation threshold be
found whilst minimizing undesirable local effects?

The initial idea is to investigate different techniques such
as adaptive thresholding, or clustering in order to determine
which is the best technique for selecting the propagation
threshold of an annotation. Several metrics have to be de-
veloped in order to asses the suitability and compare the
different techniques.

4.2 Annotation processing
The final step of the weather monitoring application in-

troduced in Section 3 is the visualization step (See Fig 1
visualize). During the step the output of the the monthly
interpolation operation (See Fig 4 avg/mth) is ranked and
each of the ranks is then assigned a colour. Each of the cells
of the output array (See Fig 4 temp matrix (avg)) is mapped
to a surface area (Surfacecell(i, j)) in the output image (See
Fig 4 contour plot). The assigned area is then painted with
the colour associated to the rank corresponding the data
value. The process so far provides a plain contour map (See
Fig 6 i)) depicting only the data.

The annotations are then displayed over the data following
the same cell to image area mapping (Surfacecell(i, j)). In
the current case the snowed in annotation attached to the
S1 sensor is displayed over the monthly average temperature
contour map (See Fig 6 ii)).

This method of representing the annotation is perfectly
suited for cases in which the number of annotations is rela-
tively small. For example it is not too difficult to visualize
the data if a full system re-calibration annotation is present
(See Fig 6 iii)). The annotation covers all the area but since
there is only one uniform annotation the data can still be
visualized correctly.

Further in the case of the same annotation originating
from two different sources, i.e. two sensors (S1 and S3)
get snowed in, the potential areas of overlap render more
difficult the visualization of the data (See Fig 6 iv)).

With a larger number of annotations being displayed over
the data it becomes more difficult to visualize the data. In
the case of two different annotations, (See fig 6 v)) a different
colour is used to represent each annotation. The annotation-
to-colour mapping CA is responsible of supplying a unique
colour for each annotation. This mapping enables the user to
decide which annotations to display, and which annotations
to ignore. However the annotation-to-colour mapping CA
alone is not sufficient to ensure correct visualization of the
data and annotations. Since due to the unforeseen nature
of the annotations, they may be potentially infinite.

There is then the need to provide a mechanism to orga-
nize the annotations and assist the user in selecting which
annotations are to be displayed. Such a classification or
clustering mechanism is hard to define for unforeseen hence
not understandable annotations.

i) original contour map

ii) S1 snowed in 

iii) re-calibration

iv) S1 & S3 snowed in

Annotation 1 Annotation 2

v) S1 snowed in  &
     S3 loss of communication

Figure 6: Incomplete understanding of annotations

Research question 5. How can unforeseen annotations,
hence not understood, be organized enabling the end use to
choose which annotations to be visualized for their applica-
tion?

The initial idea for the classification of the annotations
would be to use the combination of the annotation trans-
forms TA across the whole workflow and the significance
values. These two values combined can then be used to clus-
ter and separate annotations based on their origin, different
weights in the annotation transform TA or their significance,
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closer or further away from the thresholding value. User sup-
plied weights can also be attached to each of the annotations
to assist the ranking algorithm.

4.3 Global annotation propagation
So far we have only considered the local propagation of

annotations, that is the propagation of annotations across
a single processing element. However there is the need to
control the propagation of the annotations at a workflow
level.

The local solution is based on the annotation transform
TA which facilitates making the decision based on the anno-
tation significance as introduced in Section 4.1.3. However
this mechanism depends on the structural and temporal con-
tributions of a transform δS and δτ which have dependen-
cies on the local transform and not on global propagation
parameters. Such a propagation technique may need to be
enhanced in order to accommodate for global parameters.
It may be suitable for the number or annotations not to de-
crease or increase more than a certain percent. This would
enable for the cumulative effect of all the annotation trans-
forms to deliver a suitable amount of annotations to the
visualization step.

The global propagation mechanism described here does
however introduce a series of issues.

Research question 6. Can a suitable local metric be
found that warranties suitable global results?

Research question 7. Can the local metric be achieved
without the need of back propagation?

The initial idea is to build a metric which would assist
in adjusting the significance level of the annotations being
propagated trying to maintain constant the number of an-
notations before and after a transform. Since the transform
T can modify the number of output data points through an
aggregation or an interpolation the number of annotations
is not a suitable metric. However the number of annota-
tions per data point or annotation density ρA may be more
suitable.

5. CONCLUSION
In stream data processing applications, notably for e-science,

unforeseen semantic changes can occur leading to wrong de-
cisions or predictions. An example of unforeseen semantic
changes are temperature sensors in an alpine environment,
which get snowed in (see Sect 3). The semantic change is
explicated by an annotation after the change has been de-
tected in order to provide awareness of the semantic change
to the end user via the data processing.

Annotations are propagated alongside the data as part
of the data processing. Hence propagating the semantic
change through the workflow. The propagation of the an-
notation occurs across varying data structures, and varying
time granularities in the workflow.

Whether an annotation gets propagated or not, depends
on three factors: (1) structural contribution, (2) temporal
contribution, and (3) annotation significance. The struc-
tural and temporal contribution factors are identified to de-
pend on the data transformation algorithms used in the
data processing, and are found to be annotation indepen-
dent. This independence enables the implementation of the

annotation propagation, but also implies limitations on the
properties of the propagation. Annotation propagation is
locally controlled but also requires stability on a workflow,
application, level.

Based on the provided research questions, several case
studies will be conducted to get further insides in the spe-
cific issues and to experiment with the indicated approaches.
The case studies will be taken from different data processing
of meteorological and hydrological data.
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