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ABSTRACT

A major component of many cloud services is query process-
ing on data stored in the underlying cloud cluster. The tradi-
tional techniques for query processing on a cluster are those
offered by parallel DBMS. These techniques, however, can-
not guarantee high performance for cloud; parallel DBMS
lack adequate fault tolerance mechanisms in order to deal
with non-negligible software and hardware failures. MapRe-
duce, on the other hand, allows query processing solutions
that are fault tolerant, but imposes substantial overheads.
In this paper, we propose an adaptive software architecture,
which can effortlessly switch between MapReduce and par-
allel DBMS in order to efficiently process queries regardless
of their response times. Switching between the two archi-
tectures is performed in a transparent manner based on an
intuitive cost model, which computes the expected execution
time in presence of failures. The experimental results show
that the adaptive architecture achieves the lowest possible
query execution time for various scenarios.
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General Terms

Design, Performance
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1. INTRODUCTION

Today we have an explosion of data collected from a wide
range of applications. Traditional data warehouses have al-
ready reached Peta-byte scale and are now being dwarfed
by data collected in scientific applications [9,20] or by the
content generated online. For instance, eBay, a popular on-
line auction and shopping website, uses 6.5 PB of data [10].
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Similarly Facebook, a social website, has reached 2.5PB of
data, and growing at the rate of 15TB/day [11].

Running parallel DBMS on multiple hardware nodes is the
traditional approach to address the above-mentioned chal-
lenge. As early as the 1980s, several research prototypes
such as Gamma [6] and Bubba [2], and several commercial
products from Teradata [15] and Tandem [14] pioneered
this approach. Parallel DBMS are highly optimized for per-
formance and have been shown to scale up to one hundred
nodes (e.g., eBay, the largest known database warehouse
uses 96 nodes [10]). They, however, have several limitations.
First, their fault tolerance mechanism is not adequate for the
high failure rates on thousand node clusters based on com-
modity hardware. Second, they enforce the relational data
model, which can be too strict for modern data collections
where 80% of the data is estimated to be unstructured or
semi-structured [8].

As data continues to grow, new alternatives for data man-
agement have emerged. Among them, MapReduce [5] and
its open-source implementation Hadoop [16] have become
popular. Unlike parallel DBMS, these systems scale to thou-
sands of commodity nodes. MapReduce treats availability
and fault tolerance as first class citizens with an architecture
designed to resist multiple node failures, under-performing
nodes, and hot spots. A growing number of enterprises scale
their data analysis by using MapReduce. For example, Face-
book uses Hadoop for managing its data warehouse [21,22].

Parallel DBMS provide good performance and low latency,
but do not scale to thousands of machines, and do not pro-
vide elasticity. MapReduce on the other hand, provides
scalability and elasticity, but has very high latency. It is
desirable, therefore, to have a system that simultaneously
provides scalability, elasticity, high performance and low la-
tency.

Researchers proposed several such hybrid systems [1,18],
typically using MapReduce at the core of their technique to
achieve the elasticity and scalability. We show that using
MapReduce immediately adds overhead in the range of 10
to 20 seconds per query. While this is negligible for long-
running queries which have response times of minutes or
more, it significantly reduces the performance for the faster
queries which need be answered within seconds.

A representative hybrid system is HadoopDB [1], which
targets query performance comparable to parallel DBMS,
and the fault tolerance and scalability of MapReduce. The
main idea is to deploy a traditional DBMS across all the
processing nodes and use MapReduce as the communication
layer between them. HadoopDB achieves high performance



by pushing a large fraction of work into the DBMS layer and
achieves fault tolerance by using MapReduce to parallelize
query computation across DBMS nodes. HadoopDB is un-
suitable for short-running queries for several reasons. First,
HadoopDB uses MapReduce as its communication layer in-
dependent of how much query work is pushed into the DBMS
layer. Therefore, HadoopDB always pays the MapReduce
overhead. As shown in Section 2, this overhead becomes
significant for short-running queries. Second, HadoopDB ar-
chitecture uses traditional DBMS that usually do not match
the fault tolerance and elasticity properties of today’s cloud
storage engines. Specifically, the lack of elasticity does not
allow the DBMS to adapt to addition or removal of process-
ing nodes — a common operation for any cloud system.

In this paper, we propose a hybrid approach that per-
forms well for both short-running and long-running queries.
We achieve this by building a cost model on top of a parallel
DBMS and MapReduce to determine the best possible exe-
cution model for a given query. We also leverage a scalable
and elastic storage engine-HBase [17], in order to provide
the desired elasticity at all levels of the framework. HBase
is also more suitable for the semi-structured data than the
relational DBMS.

Compared to the state of the art hybrid approaches, our
proposed solution makes the following contributions:

e An architecture for a cloud DBMS, all components of
which are fault-tolerant, scalable, and elastic.

e An adaptive scheme capable of deciding where to exe-
cute a query based on its estimated running time, the
number of processing nodes and the failure rate of the
processing nodes.

e A set of representative experiments showing the bene-
fits of the adaptive scheme for a range of queries.

The rest of the paper is organized as follows. Section 2
introduces the background and the motivation for our work.
Section 3 presents the software architecture. Section 4 in-
troduces our proposed adaptive scheme. Section 5 presents
the experimental setup. Section 6 presents a set of repre-
sentative results. Section 7 continues with related work and
finally, Section 8 concludes.

2. BACKGROUND AND MOTIVATION

In this section, we discuss (at a high-level) parallel DBMS,
then MapReduce, and finally illustrate with an example the
overhead of the MapReduce tasks for short-running queries.
In the rest of the paper we define a query as a “long-running
query” if its execution time is comparable to or higher than
the overhead of MapReduce. A query with lower execution
time is defined as a “short-running query”.

2.1 Parallel DBMS

The subject of extensive research in the 80s; parallel DBMS
execute queries by dividing the work and running concur-
rently on multiple processing nodes. Among several pro-
posal towards designing the architecture of parallel DBMS,
shared-nothing has been the most successful [12] as shown in
the Bubba and Gamma parallel architectures. In this execu-
tion model, the data is partitioned across several data nodes.
A scheduler receives the query which is further scheduled

for execution on the nodes containing the data. If the query
touches multiple data nodes, then the data is transferred
across the network to the appropriate processing nodes.

Since fault tolerance was not that important during the
development of these systems, the data is always streamed
across different nodes and operators in the query. The stream-
ing implies that, in case a node fails, the query has to be
restarted from the very beginning. When failures become
more frequent, this can lead to very low query throughput
and very high response times.

2.2 MapReduce

MapReduce follows the shared-nothing approach, but with
several key differences from the parallel DBMS approach.
Firstly, the data is partitioned across the nodes, however,
a file system is designed to provide a unified view of the
data [7]. Moreover, the data is replicated several times to
ensure reliability and locality on the processing nodes which
need it. This implementation of the filesystem keeps the
popular shared-nothing architecture but provides a shared-
disk view to the client of the data.

A query in MapReduce is split into two types of tasks:
map tasks and reduce tasks. The map tasks process one
relation at a time and transform the input data (e.g., fil-
ter, project); the reduce tasks collect the output data from
the map tasks to do further processing such as join or ag-
gregation. There can be several stages of such map and
reduce tasks to process complex queries. Several systems
that translate SQL queries into such map and reduce tasks
automatically were introduced [3,18,19]. The crucial differ-
ence between MapReduce and parallel DBMS is that each
time part of the computation is done by the map or the
reduce tasks they are checkpointed on the disk. In case of
processing node failure, the computation can be restarted by
collecting the saved results from the disk and restarting the
pending tasks. The on-disk checkpoints allow MapReduce
to handle node failures well, at the expense of performance.
Furthermore, MapReduce-based systems have been focus-
ing on the large batch oriented queries running from hours
to days, ignoring the queries taking milliseconds to tens of
seconds.

2.3 Need for a Hybrid Approach

In this paper we argue that a cloud DBMS should run
long-running queries efficiently, while not sacrificing the per-
formance of the short-running queries. The long-running
queries are required to run large-scale data analysis. The
short-running queries are required to enable interactive anal-
ysis of the data, and provide real-time feedback. We now
discuss a use case for both types of queries.

Many astronomers use the data repository provided by
the SDSS skyserver [13] to conduct their research. The data
is stored in locations around the world, and thousands of
astronomers access them. Although the data size is large
(7 TB), each astronomer typically focuses on a small cor-
ner of the sky and poses queries, which are executed within
2 seconds on average [24]. Significantly slowing down such
short-running queries would affect the research negatively,
as they are mostly interactive exploratory queries. The as-
tronomers also pose large queries, which take hours to com-
plete, for example when they validate the models over large
patches of the sky. Therefore, if the service were to be moved
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Figure 1: The software architecture of the hybrid
approach. Based on the query type, the number of
processing nodes and the failure rate of the process-
ing nodes, HBaseSQL or MapReduce is chosen to
execute the query.

to a cloud, it has to answer both the short-running and the
long-running queries efficiently.

Neither MapReduce nor parallel DBMS provide the best
solution for both types of queries. MapReduce provides bet-
ter fault tolerance, scalability and elasticity, while parallel
DBMS provides better performance. Long-running queries
are executed more efficiently using MapReduce due to their
higher probability of failure. On the other hand, short-
running queries have much lower probability to fail; there-
fore, they are executed more efficiently using parallel DBMS.
Therefore, we seek to develop a hybrid system capable of si-
multaneously exploiting the benefits of both.

As an example, we use a point select query that runs on
top of an index table with 1.5 million rows with a very low
selectivity (1 out of 1.5 million). Only one map task is used
for this query which does not output any intermediate results
and hence the reduce task is avoided. The complete exper-
imental setup and methodology can be found in Section 5.
MapReduce approach takes about 21 seconds to complete
this query.

The time breakdown for MapReduce is as follows: the
scheduling overhead (3 seconds), the overhead of running
the map task (12 seconds), and the actual work — a filtered
scan operation (6 seconds). In total, MapReduce has a 15
second overhead which is significant compared to the ac-
tual filtered scan operation. Therefore, we argue that short
queries should be executed outside MapReduce; since they
run in a short amount of time, the effect of node failure is
not as important as for long running queries.

3. SYSTEM ARCHITECTURE

The system architecture is designed to satisfy both short-
running and long-running queries efficiently. When a query

enters into the system, the query planner decides where to
execute it, i.e. in parallel DBMS or in MapReduce. A key
characteristic of the system is that the same storage layer
is used for both query execution models. This design choice
reduces the overhead of managing the data twice. Figure 1
shows the high-level architecture. In what follows, we ex-
plain each software component in detail.

Distributed File System: Our software infrastructure
is deployed on a cluster where each machine acts both as a
storage and as a processing node. Even though we adopt
a shared nothing architecture, where each machine has its
own memory, disk and processing resources, we develop our
system on top of a distributed file system [7] which is opti-
mized for fault tolerance, availability, and elasticity. We use
Hadoop Distributed File System (HDFS), an open source
implementation included in the Hadoop software distribu-
tion. The data is partitioned and replicated across several
nodes in the system, allowing easy node additions or re-
movals. Additionally, the distributed file system presents
a simple interface to applications, removing the burden of
replicating data at the higher layers in the software stack.

HBase: HBase is the storage manager component in charge
of managing the data. HBase allows the execution of basic
CRUD (Create, Read, Update, Delete) operations, but it
does not support the execution of complex query operators
(e.g., joins, aggregations) common in analytical applications.
Therefore, a query execution layer is needed above the stor-
age layer.

HBase has several advantages over traditional storage sys-
tems. Firstly, HBase supports both structured and semi-
structured data through a flexible data layout that relaxes
the schema constraints from the traditional row stores. Sec-
ondly, HBase trades-off strong consistency guarantees for
weaker consistency models that allow for better availability.
In analytical workloads where most of the queries are reads,
paying the additional cost for ensuring strong consistency
is not justified. Thirdly, HBase is built on top of Hadoop’s
Distributed File System; thus, it shares the same level of
fault tolerance and elasticity as Hadoop.

To achieve scalability on the input data, HBase partitions
relations based on a row key. Each partition (or region)
is assigned to a server node in the cluster, called the re-
gion server. A master node coordinates region allocations
to region servers based on data locality, and also performs
relocation of regions in the case a region server fails. When
a query requires data from a particular region, the client
queries the master node for the region location, and directly
contacts the region server to access the data.

MapReduce: MapReduce is one of the software compo-
nents that we use to parallelize query execution. Running
MapReduce tasks on top of a semi-structured storage engine
such as HBase ensures better query performance than the
“raw” MapReduce. Using HBase avoids the parsing over-
head of “raw” MapReduce. Furthermore, query operators
(such as scans or filters) and query optimization techniques
(such as indexes) are available in HBase. MapReduce en-
sures fault tolerance and load balancing across the process-
ing nodes, but as presented in Section 2, it reduces perfor-
mance for short-running queries due to the overheads in-
duced by its scalable infrastructure. For running complex



analytical queries using MapReduce, we use Hive [18] to
translate the input SQL query into the optimal query plan
expressed as a set of MapReduce jobs.

MySQL: MySQL is the execution engine used to paral-
lelize query execution for the short-running queries. When
a query is sent to MySQL execution engine, the engine pro-
cesses the query as follows. First, it determines the location
of all the HBase region servers that hold the input relation.
Then, it distributes parts of the query computation (i.e.,
scans, filters operators) to the HBase region servers that
hold the data. Finally, it collects the data from the HBase
region servers on a master node and executes the complex
query operators inside the MySQL execution engine.

The combination of MySQL execution engine with HBase
storage, in short HBaseSQL, has several advantages. First,
it uses a traditional DBMS execution engine that does not
have the same overhead as MapReduce. Second, it has the
potential of improving the query performance by employing
a dedicated query optimizer for choosing the best query plan.
Finally, it offers more usability to the user who otherwise
would need to implement complex query operators at the
application layer.

We design and implement HBaseSQL as a plug-in that
can be loaded at run-time inside MySQL server in a similar
manner to other storage engines (e.g., MyISAM, InnoDB).
Requests to HBaseSQL are triggered directly by MySQL
server when the user queries a table that defines HBaseSQL
as its storage engine. HBaseSQL communicates with HBase
through a connector interface that allows calling HBase na-
tive code (Java) from C++. For this purpose, we use the
JNI interface. JNT allows Java code that runs inside a Java
Virtual Machine to call or to be called by other languages,
such as C or C++.

Query Planner: The last component of our system is the
query planner, which takes the decision on where to execute
the query: HBaseSQL or MapReduce. This decision is taken
based on a cost model that uses query characteristics and the
node failure rate to compute the estimated cost of the query
in the presence of failures. Then, the approach with the
lower estimated cost is chosen to execute the query; details
of the cost model are described in the next section.

4. ADAPTIVE QUERY EXECUTION

Since MapReduce performs better than HBaseSQL under
failure, the choice of using either of these frameworks de-
pends on the query failure probability. The query failure
probability depends on the following factors: failure rate of
the individual processing nodes, the total work required by
the query, and the number of nodes which process the query.
As all of these parameters affect the query failure probabil-
ity, none of them considered in isolation can provide the
best decision regarding what query execution engine to use.
Therefore, we introduce a cost model which estimates the
expected cost of the query in the presence of failure for both
frameworks. This cost model enables direct comparison of
the efficiency of the two approaches and allows us to com-
pare them directly.

Intuitively, short running queries that are processed on a
small set of nodes have a low probability of failure. Thus,
processing the query in HBaseSQL is more efficient, as it
avoids the overhead of the fault tolerance mechanism in

MapReduce. On the other hand, long-running queries that
run for several hours to complete their execution and that
use hundreds to thousands of nodes have a high probability
of failure. Therefore, they are executed as MapReduce jobs
which have the advantage of dividing the query work into
several sub-tasks that checkpoint their intermediate results
on disk. Hence, a complete query restart is avoided in the
case the query fails. This allows MapReduce to finish the
query execution faster than traditional database approaches
which always re-start the query in the case one of the pro-
cessing nodes fails.

4.1 Cost Model

Upon receiving a query, the planner computes its expected
cost in the following two cases: first, when the query is ex-
ecuted in HBaseSQL layer and, second, when the query is
executed on top of MapReduce. The infrastructure provid-
ing the lowest execution cost runs the query.

4.1.1 Query Execution in HBaseSQL

We assume the following execution model for the query
in HBaseSQL. The optimizer receives the query ¢, and dis-
tributes the computation among n HBase nodes. Data is
then collected from the HBase nodes on a master node which
runs the join and aggregation to answer the query. Let
tqi,i = 1,...,n be the time taken by each of the HBase nodes,
Omnp be the scheduling time taken by the master node to
distribute the computation among the HBase nodes. Since
the scheduling overhead depends on the failure rate, and the
number of nodes, ox p is a function of these two factors. Let
tqm be the time taken by the master node doing the join and
aggregation operations.

The total time to run the query is:

ty = tgm +onn(f, n) +I?§1thi

And the total work done to answer the query is:

Wq = tan + OHB(fyn) + thz
i=1

Since the HBaseSQL implementation is straightforward,
we incur very low overhead for scheduling the queries. There-
fore, we assume that ogp(f,n) = 0. We also assume that
the nodes in the cluster are homogeneous, and have the same
rate of failure f per unit time. We consider f to be the ag-
gregated failure rate of all the hardware and software com-
ponents of a node used in the query execution. As for the
model of running queries on HBaseSQL, if any of the nodes
fail, then the entire query needs to be re-executed.

Therefore, the probability of restarting the query:

fa=1-(1=p)" (1)

The expected cost of running the query ¢ on the DBMS
becomes:

C’ostHB(q,f):qu X ;_1 :17"_07(1}0
i=1 q
Wq
K .

The intuition behind the equation is as follows. If the
query does not fail then we pay the cost wgy. If however it



fails, which is a function of probability f,, then we pay the
cost w, again. This continues until the query executes to
completion.

4.1.2  Query Execution in MapReduce

The MapReduce scheduler receives the query and splits it
into m map tasks and r reduce tasks. If any of these tasks
fails, then only the failed task is re-executed. The reduce
tasks wait for the map tasks to complete before starting the
processing. Once more, we assume the cluster is homoge-
neous, with a node failing rate of f per unit of time.

Let ¢,,; be the cost of running the 5" map task, and t,
be the cost of running the k" reduce task. As shown in
Section 2, the MapReduce jobs also carry some overhead,
and we denote the overhead as Oy r. In absence of any
failures, the total cost of running the MapReduce job is:

Omr + Ztmj + Ztrk
j=1 k=1

In the presence of failures, the map and the reduce tasks
should be restarted. Using the failure rate f, and equations
similar to the cost for running the query in the DBMS, the
cost becomes:

m T

tmj tr
Costrr(q, f) =omr(f,m,r) +ZW -I-Z ,
j=1 k=1

®3)

The first term, oprr(f, m, 1), is the overhead of the MapRe-
duce job as a function of the failure rate f, the number of
map tasks m, and the number of reduce tasks r. In our em-
pirical model we approximate onr(f, m,r) with Oag, the
job overhead in the absence of failures, as the best case for
the MapReduce approach. We are currently investigating a
more accurate definition for the MapReduce overhead when
failures occur.

4.2 Examples

In what follows, we give two examples to show the advan-
tages of each of the above two approaches.

Example 1: Let us assume a query that runs on 1000 ma-
chines and performs an aggregation on a selected attribute.
Further, consider that the query’s work is uniformly split
across all the machines and that ¢4; = 10 minutes, t4m = 10
minutes. Therefore, the total work done to answer the query
is wg=167 machine-hours. Let f be 0.0007 per minute,
which corresponds to the failure rate of a MapReduce job
as reported in [5]. According to Equation 1, the probabil-
ity that the query fails during its execution in HBaseSQL is
99.90%. Using Equation 2, we obtain the estimated cost of
the query to be about 21 machine-years. This result shows
the query will never finish if it is executed in HbaseSQL.

Similarly, we compute the cost of the query for MapRe-
duce. In this case, we assume m = 1000 and » = 1. Fi-
nally, we assume that ¢,,;=11 minutes and that ¢,,=11 min-
utes, which includes a checkpointing cost of 1 minute. The
MapReduce overhead Oprr is in the order of seconds and
hence negligible for this example. The map tasks scan the
input table and generate intermediate aggregation results,
while the reduce task merges the intermediate results pro-
ducing the final result. Using Equation 3, the total cost of
running the query in MapReduce is 185 machine-hours. We

= f)e

clearly observe that MapReduce incurs a much lower cost
than HBaseSQL in this example.

Example 2: In this example, we consider a shorter query
that runs only on 100 machines and that t;; = 1 minute,
tym = 1 minute leading to a total work time for answering
the query of wy = 101 machine-minutes. For HBaseSQL,
the probability that the query fails is 6%, therefore, the
overall cost for running the query is estimated to be 108
machine-minutes. Conversely, using MapReduce with the
same checkpointing cost of 1 minute as in Example 1, we
have t,,;=2 minutes, t,,=2 minutes. As a result we obtain
an overall cost of 202 machine-minutes. In this case, the
expected cost of executing the query in MapReduce is higher
than the cost in HBaseSQL. Therefore, our adaptive scheme
chooses to execute the query in HBaseSQL.

4.3 Discussion

In order to make the decision about which framework to
run the query, the planner requires query statistics (such as
tqgis tgms tmj, trk, OB, Ompr) and the failure rate of the
processing nodes (f). We assume that all these parameters
can be determined using a statistics module built on top
of MySQL’s optimizer. Additionally, the statistics module
can be extended with a feedback-loop mechanism capable of
adjusting the query parameters based on recently measured
values. For failure rates, we consider them constant and that
all the machines are homogeneous having the same failure
rates. Even for cases when the nodes have heterogeneous
failure rates, we can easily adjust our formulas to take them
into consideration. We are currently working on the design
and implementation of such a statistics module.

S. EXPERIMENTAL SETUP

Software Configuration: We use Hadoop version 0.20.2
and HBase version 0.20.3. We allocate 1GB of memory for
Hadoop and 4GB of memory for HBase out of which 1.6 GB
is allocated for caching the data. We use MySQL version
9.5.1 to build HBaseSQL, and use Hive query engine to ex-
ecute queries on MapReduce. Hive also uses the underlying
HBase storage engine, instead of using a separate storage.

Hardware Configuration: We use 5 hardware machines,
each of which is an X4140 Sun Machine with 2 quad CPUs
AMD Opteron 64-bit @ 2700 MHz, 32 GB RAM, 1 Gb net-
work connection, 8 SAS disk drives at 10,000 RPM with 1.2
TB of data allocated for the Hadoop File System. The OS
that we use is Linux Ubuntu 9.04.

Methodology: We use two different methodologies to
perform our evaluation. Firstly, we validate our adaptive
query execution scheme by generating failures in the sys-
tem and measuring the query execution cost for the two
approaches: MapReduce and HBaseSQL. Secondly, we eval-
uate the performance benefits of HBaseSQL for running
queries in the cloud.

Data Set: In our experiments we use the orders and
lineitem tables from the TPCH benchmark [23]. Unless
otherwise stated, we load a lineitem data file of 6 million
rows and an orders data file of 1.5 million rows in HBase.
Each row has an approximate size of 100 bytes. The data
is stored in HBase using a row store data layout. This data
layout translates to a storage size of 6 GB for lineitem table
and 900 MB for orders table. To speed up the joins we



No of rows | wq[s] | tqls] | tm(s] | Onmrl[s]
5 0.1 0.02 | 3 14
1 mil. 37 7 12 11
3.5 mil. 124 24 33 12
15 mil. 678 136 | 137 12
30 mil. 1466 | 293 | 310 12

Table 2: Measured query parameters required in
validating our adaptive query execution scheme.

Machine M1 | M2 | M3 | M4 | M5

Failing Time Interval [min] | 16 | 3 - 7 10

Table 3: A failure distribution instance correspond-
ing to a failing rate of f = 1/30 min (1 failure in 30
minutes).

build indexes on [_orderkey, and on o_orderkey fields of the
lineitem and orders tables respectively.

Benchmarks: We use synthetic benchmarks to evaluate
the performance of our adaptive approach. We evaluate the
performance of queries containing table scans, point selects,
and joins. Table 1 shows the list of queries that we use in
our experiments.

Metrics: For the purpose of this evaluation we use re-
sponse time and query cost as our metrics of interest. The
latency is the actual query execution time, while the query
cost is the aggregated query work performed by each node
processing the query, as defined in Section 4.

Running Experiments: Our data set can fit in the
memory easily. Hence, in the case of each of the experiments
we start with cleaned OS caches. Moreover, we also clean the
MySQL and HBase caches by killing and re-starting them
before each experiment. Each experiment is run at least five
times and we report the averages.

6. EVALUATION

In this section we present a set of experiments that show
the benefits of our adaptive query execution scheme for a
variety of queries. First, the analytical formulas introduced
in Section 4 are validated, then a set of experiments demon-
strates the benefits of using HBaseSQL.

6.1 Adaptive Query Execution Scheme

To verify our formulas from Section 4, we use a scan
query on the orders table for several input table sizes. As
we consider a simple selection operation that reads the in-
put table without storing or generating any result on disk,
the corresponding MapReduce job does not require a reduce
job. Therefore, the relative performance difference between
MapReduce and HBaseSQL is the best possible for MapRe-
duce. In our experiments, we do not use a statistics module.
Therefore, we obtain the query parameters provided in Sec-
tion 4 by sampling real executions of the queries when no
failures occur. Table 2 shows all these parameters for a fail-
ure rate of f = 1/30 min (1 failure in 30 minutes). As the
selection query does not perform any additional work, we
have t4m = 0 and ¢, = 0.

We use a failure rate of f = 1/30 min, in proportion
to our small cluster setup. We use a uniform distribution
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for generating the time points of failure corresponding to
the failure rate f by dividing the lifespan of a machine into
several discrete intervals of one minute each and associating
to each interval a uniform probability of failure. Table 3
shows an instance for the failure distribution justifying the
decisions taken by our adaptive query execution scheme.

Figure 2 illustrates the actual query execution cost for four
different input table sizes. Our algorithm selects HBaseSQL
for short running queries because the aggregated failure rate
is low enough to keep the query cost below the corresponding
cost of MapReduce. For longer running queries (e.g., the
one that reads 30 million rows) our algorithm chooses to use
MapReduce because the duration of the query approaches
the machine failure interval, thus increasing the probability
of failure (according to Equation 1). MapReduce is efficient
in this case, having a total query cost of more than four
times lower than the corresponding cost in HBaseSQL; this
can be explained by observing the query in HBaseSQL fails
three times in a row, and is followed each time by a complete
query restart.



| Type | Query

Scan lineitem | SELECT * from lineitem

Scan orders SELECT * from orders

Point Select

SELECT Lorderkey from lineitem where l_orderkey="value’

Join SELECT o_orderkey from orders, lineitem WHERE o_orderkey=I_orderkey

Table 1: Micro-benchmark queries used for evaluating HBaseSQL with MapReduce.

To validate our formulas on several different failure rate
parameters, in the following experiment we keep the input
table size constant and we vary the failure rate parameter.
We fix the table input size to 15 million rows and we vary
the failure rate between 1 in 3 minutes to 1 in 20 minutes.
The corresponding query parameters are presented in Table
2. As with the previous experiment, we use a uniform fail-
ure distribution to obtain the time points of failure for each
hardware machine.

Figure 3 shows the measured query execution costs. As ex-
pected, at high failure rates, running the query in HBaseSQL
is expensive as it resorts to re-starting it over and over again
until eventually completes. This is exactly what happens for
f=1/3 min and f =1/5 min (1 failure in 3 minutes, and
5 minutes respectively), where the query is re-started 7 and
5 times, respectively. As the failure rate decreases, the dif-
ference in performance reduces. At f = 1/10 min we have
only one query restart and at f = 1/20 min the query does
not fail at all. We observe that for all cases our adaptive al-
gorithm chooses to run the query using MapReduce due to
the fact that the estimated query cost (of about 2 minutes)
combined with the number of machines on which the query
executes (i.e., 5) contributes to a high aggregated failure
rate.

Since our algorithm is probabilistic in nature, it can make
mistakes. Specifically, it can make wrong choices when the
aggregated failure rate interval is relatively close to the query
running time, but failures do not occur during this inter-
val. We can notice such a point for the failure rate of
f = 1/20 min. But the difference in the query execution
time for MapReduce and HBaseSQL is low in such cases;
therefore, the error in the model does not affect the perfor-
mance of the queries.

6.2 Comparing HBaseSQL Performance with
MapReduce

In this set of experiments, we evaluate the performance
of scan, point select, and join operations for HBaseSQL and
MapReduce, in absence of any failures. Table 4 shows the
execution times for the queries defined earlier.

Scan: In terms of scan operations, the performance of
HBaseSQL is 20% better than MapReduce. This result is
encouraging for us showing that the overheads of HBaseSQL
are lower than that of the established MapReduce implemen-
tation in Hive.

Point Select: For point select queries HBaseSQL per-
forms much better than MapReduce. Hive’s MapReduce
implementation performs poorly, as it does not exploit the
indexes. Hence, whenever selecting a single row for a par-
ticular column value, a full table scan operation is required.

Join: Finally, in the case of the join query, orders and
lineitem tables are joined on the o_orderkey and [_orderkey
attributes, respectively. Since these columns are already in-

| Query type | HBaseSQL[s] | MapReducels] |

Scan 1056 1270
Point Select | 0.9 440
Join 1753 598

Table 4: Micro-Benchmark results for HBaseSQL
for scan, point select and join operations.

dexed, the main table is never touched. The results show
that HBaseSQL performs about 3 times worse than MapRe-
duce due to the use of two different joining algorithms for
MySQL (nested-loops), and Hive (sort-merge). MySQL ex-
ecution engine uses nested-loops as the default join algo-
rithm for tables that are indexed on the matching field and
block-nested loops otherwise. In this case, lineitem table is
indexed on [_orderkey attribute, therefore the nested-loops
algorithm is chosen. Hive, on the other hand, uses a repar-
titioning sort-merge algorithm that proves to be more ef-
ficient than the nested-loop algorithm. Currently we are
implementing better joining algorithms for HBaseSQL.

7. RELATED WORK

MapReduce [6] have been introduced to scale indexing
operations. Although it generated a lot of interest among
many users, MapReduce has its own drawbacks that make
its adoption as a simple replacement for traditional parallel
DBMS disputable. The work of Pavlo et al. [5] argues in
favor of traditional parallel DBMS and shows MapReduce is
more expensive for complex query operators because not all
of the query operators can be efficiently translated into the
MapReduce programming model. In our approach, query
execution is performed either entirely inside the database
layer or on top of MapReduce, depending on the input query
type and the failure rate of the processing nodes.

A precursor of HadoopDB [1], Hive [18] is a hybrid ap-
proach that allows for the execution of SQL queries on top
of the MapReduce infrastructure. Hive stores relations as
files inside a distributed file system and automatically trans-
lates HiveQL queries, a variant of SQL, into MapReduce
jobs. The produced MapReduce jobs are further processed
traditionally on top of the MapReduce infrastructure. In
addition to similar approaches that translate SQL queries
into MapReduce jobs [3,19], Hive adopts a query optimizer
that selects the most efficient query plans. A disadvantage
of Hive is that it always executes SQL queries as MapRe-
duce jobs. As already explained, MapReduce is inefficient
for short queries that should execute rapidly.

The work of Condie et al. [4] introduces MapReduce On-
line, a modified MapReduce architecture that achieves bet-
ter performance for MapReduce jobs by pipelining data across
Map/Reduce tasks rather than materializing them on disk.



This optimization enables MapReduce to work for online
queries, but it does not affect the MapReduce scheduling
overheads.

The work of Yang et al. [25] introduces Osprey, a system
which implements MapReduce-style fault tolerance for a dis-
tributed DBMS. In Osprey, each query is split into several
subqueries, which are executed on different processing nodes
such that if a node fails the amount of work lost is at most
one subquery’s work. Therefore, failing queries do not have
to be restarted from the ground up. As compared with our
work, Osprey is not designed to optimize performance for
short running queries, which needlessly pay the additional
cost of check-pointing.

8. CONCLUSIONS

In this paper we motivate the case for “short-running”
queries that suffer performance on popular data analysis
techniques such as MapReduce. In order to process both
short-running queries and long-running queries efficiently,
we introduce an adaptive query execution scheme that makes
the scheduling decision either for MapReduce or for parallel
DBMS based on a cost model. The model takes as the input
the query and the probability of node failures and outputs
the decision on where to execute the query. We have seen
that MapReduce is preferred for long-running queries that
have a higher probability to fail. Conversely, parallel DBMS
is more efficient for short-running queries as it removes the
scheduling and checkpointing overheads of MapReduce. Our
experiments show that the adaptive scheme provides two
orders of magnitude speedup compared to MapReduce for
short-running queries, while it preserves the advantages of
MapReduce for long-running queries.
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