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Abstract 
Wired embedded networks must include multicast authentication 
to prevent masquerade attacks within the network. However, 
unique constraints for these networks make most existing multi-
cast authentication techniques impractical. Our previous work 
provides multicast authentication for time-triggered applications 
on embedded networks by validating truncated message authenti-
cation codes across multiple packets. In this work, we improve 
overall bandwidth efficiency and reduce authentication latency by 
using unanimous voting on message value and validity amongst a 
group of nodes. This technique decreases the probability of suc-
cessful per-packet forgery by using one extra bit per additional 
voter, regardless of the number of total receivers. This can permit 
using fewer authentication bits per receiver. We derive an upper 
bound on the probability of successful forgery and experimentally 
verify it using simulated attacks. For example, we show that with 
two authentication bits per receiver, adding four additional bits 
per message to vote amongst four nodes reduces the probability of 
per-packet forgery by a factor of more than 100. When integrated 
with our prior work on time-triggered authentication, this tech-
nique reduces the number of authentication message rounds re-
quired for this example by a factor of three. Model-checking with 
AVISPA confirms data integrity and data origin authenticity for 
this approach.   

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: Security and 
Protection 

General Terms 
Design, Reliability, Security. 

Keywords 
Embedded, Networks, Security, Voting, Multicast, Authentica-
tion, Controller Area Network, CAN, FlexRay, Time-Triggered 
Protocol, TTP, In-vehicle, Real-time. 

 

 

 

 

 

 

1. Introduction 
Embedded control networks are increasingly connected to exter-
nal media and networks [16] (e.g., wireless and Internet), but do 
not support secure authentication to prevent manipulation of in-
ternal message traffic. In the event that an attacker accesses the 
internal embedded control network, whether through physical 
manipulation or via a compromised network connection, they can 
trivially inject messages to disrupt system operation and subse-
quently violate safety requirements. Koscher et. al. demonstrated 
that the brake controller in a modern automobile can be remotely 
manipulated using a wireless-enabled MP3 player connected to 
the embedded control network [18]. An attacker might access the 
embedded control network through such a connection to engage 
an emergency brake in a car while it is traveling on a highway, 
unlock doors and start the engine, or shut off headlights while 
traveling at night. 
Common embedded network protocols, such as Controller Area 
Network (CAN) [2], FlexRAY [8], and Time-triggered Protocol 
(TTP) [24], do not support secure cryptographic mechanisms to 
prove that a message originated from the node that claims to have 
sent it. Thus, these protocols are vulnerable to masquerade and 
replay attacks. Masquerade attacks occur when a node sends a 
message in which it claims to be a node other than itself. This 
attack can be performed by broadcasting during another node's 
Time-Division Multiple Access (TDMA) slot or by changing a 
message identifier. Similarly, replay attacks occur when a previ-
ously sent message is recorded and retransmitted by an attacker.  
Values are typically multicast over a broadcast bus, requiring 
simultaneous authentication of messages to multiple receivers. 
While many methods for multicast authentication exist, embedded 
network constraints make them impractical. Resource-limited 
nodes must authenticate short periodic messages within tight real-
time deadlines and tolerate potentially high packet losses. A rea-
sonable size for an authenticator in an eight byte packet might be 
two to four bytes (similar in size to current error detection codes). 
However, existing multicast authentication schemes require tens 
to hundreds of bytes per packet.  
This paper builds on our previous work for authentication in stati-
cally scheduled time-triggered applications. Our previous work 
amortizes authentication bandwidth costs over multiple time-
triggered packets, using truncated Message Authentication Codes 
(MACs). This approach allowed us to provide secure authentica-
tion for time-triggered applications. However, using one MAC tag 
per receiver introduces unused redundancy because each receiver 
only benefits from a single MAC tag. If limited to a few bytes 
per-packet to authenticate to a large number of receivers, a sender 
may have to amortize authentication over too many packets to 
meet real-time deadlines.  

 



In this work, we integrate voting to improve the bandwidth effi-
ciency and subsequently reduce the latency of our approach for 
time-triggered authentication. We take advantage of the redundant 
MACs in our previous approach to allow a group of nodes to 
cross-check the validity of a packet. Using the redundant MACs 
as secondary confirmation channels to validate a packet requires 
an attacker to forge multiple authenticators rather than just one 
per packet. We provide a conservative upper bound on the prob-
ability of successful per-packet forgery and verify this bound 
experimentally using simulated attacks. Using this upper bound, 
we also demonstrate that this combined approach can reduce ap-
plication level latency to just a few message rounds using a few 
bits per receiver. We discuss tradeoffs among probability of per-
packet forgery success, packet loss, and tolerance to node com-
promise. Additionally, we use the model-checker AVISPA [1] to 
verify that this approach provides data integrity and data origin 
authenticity to prevent masquerade and replay attacks. 
In this paper, Section 2 describes our assumptions for embedded 
control networks. Section 3 surveys related work. Section 4 pre-
sents our attacker model. Section 5 reviews our baseline multicast 
authentication and time-triggered authentication approaches. Sec-
tion 6 introduces our voting technique. Section 7 describes our 
verification of the security of this approach using AVISPA. Sec-
tion 8 provides an upper bound on the probability of successful 
forgery and experimental verification of this bound. Section 9 
discusses some limitations of our approach. Finally, section 10 
states our conclusions and future work. 

2. Embedded network assumptions 
We focus on embedded control networks composed of a set of 
hardware Electronic Control Units (ECUs) connected to a single-
hop broadcast bus. These ECUs communicate via a network using 
a protocol such as CAN, FlexRay, or TTP to accomplish time-
triggered communications. This work assumes an embedded con-
trol network has the following characteristics: 

Time-triggered - We consider only time-triggered applications 
where communications are defined by a static TDMA schedule. A 
real-time system is time-triggered if all communications and proc-
essing activities are initiated at predetermined points in time from 
an a priori designated clock tick [17]. Each node periodically 
broadcasts current values for a set of predefined message types 
during designated time slots. While protocols like CAN are not 
TDMA, our techniques can be applied to statically scheduled 
variations such as Time-Triggered CAN (TTCAN) [10]. 

Multicast communications - Most distributed embedded net-
works are inherently multicast. All  nodes connected to the net-
work can receive every packet. Each packet includes the sender's 
identity, often implicitly through a message identifier (CAN; 
FlexRay) or time slot (TTP), but usually no explicit destination 
information.  

Static network configuration - We assume the network configu-
ration is fixed at design time, with no run-time reconfiguration. 
Usually only a few nodes are attached to any network (commonly 
32 or fewer), as opposed to enterprise networks which may have 
hundreds or thousands of potential receivers. 

Resource limited nodes - Processing and storage capabilities of 
nodes are often limited due to cost considerations. Authentication 
mechanisms which require large amounts of processing power or 

storage in RAM may not be feasible. More powerful ECUs are 
impractical for most nodes in the system, and many nodes are 8-
bit ECUs with significantly smaller memories due to cost and 
power considerations. 

Small packet sizes - Packet sizes are small in embedded network 
protocols when compared to those in enterprise networks. Packets 
have maximum data payload sizes as small as eight bytes in the 
case of CAN, while payloads for FlexRay and TTP can be 254 
bytes and 236 bytes respectively. Authentication should incur 
minimal bandwidth overhead. Our goal is to produce authentica-
tors similar in size to current error detection codes (two to four 
bytes in size). 

Tolerance to packet loss - Embedded networks are subject to 
message blackouts from environmental disturbances such as inter-
ference from large electric motors. As such, authentication 
schemes must tolerate packet losses as part of normal system 
operation. 

Real-time deadlines - In real-time systems, processes must com-
plete within specified deadlines. Authentication of nodes must 
occur within a known time bound, with that bound being fast 
enough to match the physical time constants of the system being 
controlled (as fast as tens of milliseconds). 

3. Related work 
Several authors have shown the vulnerability of embedded net-
works protocols to masquerade attacks. Wolf et al. [25] provide 
an overview of the security vulnerabilities of in-vehicle network 
protocols, and identify the need for multicast authentication to 
prevent masquerade attacks. Koscher et. al. [18] demonstrate the 
ease with which spoofed messages allow an attacker to control 
safety critical actuators in a live automobile. This section surveys 
related work in multicast authentication, embedded network secu-
rity, and fault tolerance methods similar to our voting approach. 

3.1 Existing multicast authentication 
The multicast nature of embedded network protocols makes au-
thentication particularly challenging. A single point-to-point 
cryptographic authenticator does not provide adequate security in 
a multicast setting. Multicast authentication requires some form of 
key asymmetry, so that no node can masquerade as a different 
node.  
Many approaches for multicast authentication exist, however 
most cannot be applied with our target bandwidth overhead of two 
to four bytes per packet and resource constrained nodes. Most 
require tens or hundreds of bytes per packet or rely on computa-
tionally expensive digital signatures.   
Digital signatures provide strong source authentication using pub-
lic and private keys, but the processing overhead makes it imprac-
tical for a resource constrained device to compute digital signa-
tures for each message for real-time control. For example, pagers 
and Palm Pilots can take several seconds to compute a 512 bit 
RSA signature in resource constrained nodes [3]. Amortizing a 
digital signature (e.g., Wong and Lam [26]) reduces per-packet 
bandwidth overhead, but waiting to authenticate tens or hundreds 
of time-triggered samples at once would make these approaches 
unsuitable for real-time operations. 
One-time digital signature schemes [12] allow senders to sign 
messages faster than traditional digital signatures, but can incur 

 



several kilobytes of authentication data per message. Amortizing 
these costs makes them impractical for the same reasons as tradi-
tional digital signatures. 
Canetti et al. [4] suggest a multi-MAC scheme which appends k 
one-bit MACs to each message, computed using k different keys. 
The keys are distributed amongst receivers such that at least w 
receivers must collude to forge a message. However, mitigating 
collusion can require hundreds or thousands of authentication bits 
per message. Our work also uses truncated MACs and assumes a 
fixed number of compromised nodes, but still fits within two to 
four bytes of per-packet bandwidth overhead. 
TESLA [22] uses time-delayed release of keys to provide asym-
metry. By releasing keys at a pre-specified interval after a MAC 
is released, receivers can confirm the authenticity of the data from 
a sender. The released keys are computed using one-way hash 
chains. Storing the entire chain of keys is prohibitive, so tech-
niques are used to reduce memory overhead at the expense of a 
small recomputation cost. While TESLA sends a single MAC per 
interval, it also requires the sender to include a key for each inter-
val of messages to be authenticated. The authenticator could be 
truncated using our approach for time-triggered authentication 
[23], but the key cannot. Truncating the key exponentially re-
duces the security of this approach. Hu et. al. propose a variation 
on one-way hash chains, called sandwich chains, which allows 
smaller keys to be released per message by regularly initializing 
new key chains [13]. However, this technique assumes the at-
tacker does not have the computational resources to break the 
current key before the next is released. This technique does not 
seem feasible with a target per-packet bandwidth overhead of two 
to four bytes.  
Chan and Perrig propose a multi-MAC approach using secure 
aggregation [5] over multiple rounds. Each node initally authenti-
cates their value to a base station node. The base station then re-
leases a combined authenticator for the group. Finally, each node 
releases its portion of the combined authenticator. Once all nodes 
have transmitted, all nodes can "unlock" the authenticator. How-
ever, this approach assumes reliable point-to-point communica-
tions, which may not be available in most embedded networks. 
This approach also requires a base station, which might act as a 
single point of failure. 

3.2 Embedded network security 
This work builds upon our proposed technique for time-triggered 
multicast authentication [23]. Our technique takes advantage of 
the existing temporal redundancy of message values and system 
inertia in embedded control networks to authenticate messages 
over multiple packets. We improve our time-triggered authentica-
tion technique in this work by integrating voting techniques. 
Other approaches such as SPINS [21] and TinySec [14] apply 
security to resource constrained wireless sensor networks. How-
ever, those approaches are specifically designed for use in wire-
less networks, which do not typically have real-time deadlines.  
Morris and Koopman [19] identify the potential for masquerade 
failures to cause accidental or malicious failures, via non-critical 
nodes masquerading as higher criticality nodes. They propose 
counter-measures of varying strengths to prevent masquerading 
failures between nodes of varying criticality. Their approach as-
sumes non-malicious software faults or attacks from a cryptologi-

cally unsophisticated attacker. Fault tolerance mechanisms are not 
necessarily secure against malicious masquerade or replay at-
tacks. Masquerade prevention for safety-based systems typically 
uses bus guardians or a symmetric key shared among all trusted 
nodes. Compromise of a single node would permit an attacker to 
masquerade as any system node. 

3.3 Fault tolerance 
Voting techniques and redundancy are a classic approach to im-
prove system reliability [20]. These techniques enable fault detec-
tion and handling to prevent fault propagation in a system. Typi-
cally system designers assume each input to a voter or comparator 
mechanism fails randomly and independently of others. In our 
approach, nodes detect differing views of message authenticity by 
voting on the validity of MAC tags from other nodes. We assume 
the outputs of each MAC function can only be successfully forged 
randomly and independently of other MAC functions. 

Our voting approach also has similarities to the TTP group mem-
bership service [24]. This service provides agreement on current 
operating mode and set of nodes believed to be correct and alive. 
In TTP, nodes encode membership information into packet error 
detection codes. Disagreeing error codes indicate either the sender 
or receiver failed, and nodes take appropriate action to segregate 
out the failed node. We use a similar technique, computing a 
MAC function over a previous set of values seen from the net-
work and a bit vector indicating each value's validity. In our ap-
proach, disagreeing authenticators indicate that an attacker may 
have fooled one or more receivers. Nodes then reject potential 
forgeries. 

4. Attacker model 
This work uses an active attacker model that controls the network. 
An attacker may modify, inject, drop, or eavesdrop upon network 
traffic. However, an attacker cannot successfully forge packets 
unless they have access to the appropriate key or can randomly 
guess the authenticator correctly.  
An attacker must not be able to masquerade as any critical node 
they do not already control to induce a system failure, except with 
some acceptably low probability. We do not address how an at-
tacker gains access to a network, but rather how to prevent mas-
querade and replay attacks from succeeding in the event that they 
do gain access (e.g., through a compromised node or physical 
access). Attackers accessing the network through compromised 
nodes will have access to the key material in those nodes and can 
send messages from those nodes.  
This work assumes an attacker is aware of existing error detection 
mechanisms along with the network schedule, and is capable of 
injecting well-formed packets in valid time slots. We constrain 
the attacker to one forgery attempt per valid time slot in a TDMA 
network such as TTP or FlexRay, since transmitters are only per-
mitted to transmit a single packet per time slot in a time-triggered 
application. 

5. Background 
This section describes our baseline approach for multicast authen-
tication and summarizes our previous work on time-triggered 
authentication [23]. 

 



5.1 Baseline - one MAC per receiver 
Our techniques use one MAC per receiver as a baseline  multicast 
authentication mechanism. When transmitting a packet, the sender 
computes one MAC per receiver and appends the outputs to the 
data payload. We assume each pair of communicating nodes se-
curely establishes symmetric keys during node installation or 
replacement (e.g., Diffie-Helman key exchange [6]). This pre-
vents masquerade attacks because no more than two nodes share 
the same key. Further, to prevent replay attacks and limit the rate 
at which attackers may attempt forgeries we assume nodes have 
securely synchronized to a common time base (current time or 
TDMA round number) at system start up (e.g., Secure Pairwise 
Synchronization [11]).  
Bandwidth constraints do not permit the full output of a MAC 
function for each receiver in a packet (potentially hundreds of 
authentication bits per packet). Thus, we modify this baseline 
mechanism to amortize the authentication bandwidth costs over 
multiple  time-triggered  packets. 

5.2 Time-triggered authentication overview 
Our previous work on time-triggered authentication uses the tem-
poral redundancy present in most time-triggered system designs 
to amortize authentication bandwidth overhead across multiple 
time-triggered packets [23]. In time-triggered applications, nodes 
periodically broadcast current values of state variables and sensor 
inputs to the rest of the network. Receivers then update outputs 
and actuators based on the most current system state. This infor-
mation is typically sampled faster than the time constraints of 
control stability requirements. As a rule of thumb, ten or more 
samples are sent within the rise time of a control system or prior 
to a system deadline [9][17]. Choosing such a sample rate reduces 
the delay between a command and the system response, smoothes 
outputs to steps in control input, and tolerates lost messages. 

5.2.1 Time-triggered message generation 
When transmitting, the sender generates one MAC tag for each 
distinct receiver of the packet. The sender computes each MAC 
over the packet header, message value, shared secret key, and 
synchronized time. The sender truncates each tag to just a few bits 
and appends the tags to the message value. We assume there are 
fewer receivers for any particular message than available bits in 
the data payload, allowing one truncated MAC tag per receiver to 
be placed into each packet. 

5.2.2 Time-triggered message verification 
To reduce the rate at which masquerade attacks induce system 
failures to occur no more often than acceptable failure rates, 
nodes verify a message over multiple time-triggered packets.  
For state-changing messages, which cause state machine transi-
tions or discrete actuations (e.g., locking car doors if vehicle 
speed exceeds some threshold), nodes wait until a sufficient frac-
tion of the most recently received packets for that message type 
are valid and have consistent values. The receiver then commits to 
the transition triggered by those values. 
For reactive control message types, which update continuous or 
ordered values in nodes running feedback control loops (e.g., 
updating vehicle speed in automatic cruise control), we rely on 
system inertia to damp the response to individual packets. The 

damped response to messages requires an adversary to success-
fully forge multiple packets within some period of time to com-
promise system operation. 

6. Voting on message authenticity 
In this section, we introduce a new technique in which nodes 
cross-check message values to increase bandwidth efficiency 
when using one MAC per receiver. This reduces the probability of 
successful per-packet forgery while increasing bandwidth con-
sumption by one bit per voting node. A group of nodes exchanges 
indications of the received value and validity of each packet. Dur-
ing each time slot, nodes update the validity of their most recently 
received messages, rejecting any value the group disagrees upon 
or indicates as invalid. Any disagreement indicates a masquerade 
attempt, whereas unanimous agreement indicates no such attempt. 

6.1 Enabling properties 
We use secure MAC functions to enable voting on message valid-
ity and detect disagreement on message values. Without knowl-
edge of the key, an attacker can at best guess the MAC tags for 
any message value it injects or modifies. Further, because nodes 
compute each tag with different keys, successfully forging one 
MAC tag does not assist the attacker in forging another tag.  
In our approach, a group of nodes attests to the validity of each 
other's message values. A sender transmits its value and directly 
authenticates it to each group member. In subsequent time slots, 
each member attests to the validity of a previous sender's value by 
computing their MACs over that sender's value in addition to its 
own transmitted value. Group members accept a previous sender's 
value if the sender's packet contained a valid MAC tag, all pack-
ets attesting to that value also had valid MAC tags, and all attest-
ing packets indicated the previous sender's value was valid.   
This attestation process creates a series of indirect secondary con-
firmation channels from the sender to each receiver, and from 
each receiver to all other receivers. Because an attacker can only 
forge each authenticator randomly and independently of each 
other, each receiver in the group can vote on the results of these 
channels to reduce the probability of successful forgery.    
We also take advantage of the collision resistance of secure MAC 
functions so that nodes do not have to explicitly retransmit values 
being compared using these secondary indirect channels. By 
computing the MAC function over the current value, previous 
values, and their validity, the MAC tags should only be valid if 
the sender and receiver agree on the values and validity of all 
packets. 

6.2 State variables and functions 
To check for discrepancies in packet value or validity, each node 
n maintains three state vectors: a value vector Rn, validity vector 
Vn, and confirmation vector Cn. We use a subscript to denote the 
identity of the node that produces a variable (e.g., Rn is the value 
vector produced by node n). Nodes initialize all vectors to zeros. 
The value vector Rn stores the most recently received value (valid 
or not) for each message type defined in the TDMA schedule that 
node n consumes or participates in voting on. Receivers record 
lost packets as a predefined error code 'lost' if they detect a trans-
mission error (indicated by an incorrect error checking code or no 
packet broadcast in a scheduled time-slot). 
The validity vector Vn contains the authentication results of each 

 



entry in the value vector. A node stores a '1' value if the most 
recent value for the corresponding message type was valid and a 
'0' value if invalid. 
Finally, the confirmation vector Cn contains a counter of positive 
secondary confirmations of validity for each message type in Rn.  
We define a function getMostRecent(z, Rn, Vn, Cn) to obtain a 
subset of received values, their validity, and confirmations. This 
function produces a triple <rn, vn, cn> of vectors; where rn is a 
chronologically ordered subset of Rn containing z values recently 
received by node n, vn is a subset of Vn containing the validity bits 
for each element in rn, and cn is a subset of Cn containing confir-
mation counters for each element in rn. We require that z be suffi-
ciently small, such that rn does not contain more than one sample 
of any message type broadcast by any node (e.g., if node X broad-
casts most frequently, sending any of its message types at most 
once every eight time slots, then z can be no greater than seven). 
This allows each time-triggered sample of a message type to be 
authenticated independently of another sample of the same mes-
sage type. Two nodes executing getMostRecent during the same 
time slot will obtain the same ordering of message types, because 
they share the same TDMA schedule.  
The function setNewest(msg, validity, Rn, Vn, Cn) replaces the 
element of Rn for the message type broadcast in the current time 
slot with value msg. The corresponding element in Vn is set to '1' 
if validity is 'valid', and '0' if validity is 'invalid'. The correspond-
ing element in Cn is set to zero. 
The functions updateValidity(z, vn, Vn) and updateConfirma-
tions(z, cn, Cn) overwrite the z elements in Vn or Cn with the ele-
ments of vn or cn respectively, using the inverse of the mapping 
used in function getMostRecent. 

6.3 Message generation for voting 
We modify the sending process for time-triggered packets (Sec-
tion 5.2.1) to allow senders to attest to the validity of z recently 
received message values in addition to authenticating the current 
message value (Figure 1).  

 
Figure 1 - Example of message generation process for 32 bits 
of data and three 8-bit MACs, using unique shared keys and 
synchronized times for three receivers. This packet includes 
three validity bits, attesting to three prior message values. 

For each receiver i, a sender S computes the MAC function over 
the current header and message value, shared secret key ki, syn-
chronized time t, and vectors rS and vS produced by getMostRe-

cent(z, RS, VS, CS). Before computing the MAC functions, the 
sender replaces any element of rS with an 'invalid' value if the 
validity vector vS indicates the that value's packet contained an 
invalid authenticator. We use MMAC as a short hand notation for 
a function that computes an array of MAC tags (one per receiver) 
and truncates each MAC tag to just a few bits. 
The sender includes the array of truncated MAC tags in the data 
payload as before, but also includes the validity vector vS. This 
allows receivers to recompute the MAC function over the same 
values as the sender, replacing values with 'invalid' for those indi-
cated by vS. After broadcasting their packet, the sender optimisti-
cally sets its own validity vector assuming its packet is received 
correctly with a valid authenticator. Figure 2 provides pseudo-
code for the send process. 

6.4 Message verification and voting 
Receivers use each authenticator to confirm that the current 
packet and the most recently seen packets are valid. We break 
down the message verification into two processes. During each 
time slot, each receiver executes the Receive process, followed by 
the Final Verification process (Figure 2). 

6.4.1 Receive process 
If a transmission error occurs, the receiver i records a 'lost' value 
for the received message type, marks it as valid, and exits the 
receive process without incrementing any confirmation counters. 
Otherwise, the receiver executes getMostRecent to obtain the 
most recent set of message values ri received from the network, 
corresponding validity vector vi, and confirmation vector ci. The 
receiver replaces any element of ri with an 'invalid' value if the 
sender's transmitted validity vector vS indicates the sender be-
lieves that value's packet contained an invalid authenticator. The 
receiver recomputes the MAC function, and compares the MAC 
tags.  
The MAC tags will only be equal if the sender and receiver agree 
on the current and prior values (with the infrequent exception of 
MAC collisions). If they match, the receiver accepts the current 
value as valid. If the tags do not match, the receiver rejects the 
current value and all prior values that the sender is attesting to. 
Because the attested values are sent implicitly as inputs to the 
MAC function, the receiver cannot determine which value caused 
the disagreement and conservatively rejects all attested values. 
For a valid packet, receivers execute a vote on the authenticity of 
attested values. Receivers reject an attested value as invalid if 
either the sender's valid packet indicated it was invalid or the 
receiver originally saw that value as invalid. To perform the vote, 
we perform a bitwise logical And operation on the vi and vS vec-
tors. For any value in ri that is still considered valid in vi after the 
vote, the receiver increments the corresponding counter in the 
confirmation vector ci. 
Once this process is complete, the results are committed to the 
complete vectors Ri, Vi, and Ci. 

6.4.2 Final Verification process 
Once the Receive process is completed during a time slot, the 
receiver checks any packets for which all secondary confirma-
tions should have been received. There are three possible out-
comes for a value: invalid, lost, and valid. First, if the bit in the 
validity vector Vi is '0', then the receiver rejects the value as inva-
lid, because at least one voting node claimed that the packet was a  

 



 
Send process, performed by node S: 

• Ready to send message value mS to all nodes 
• <rS, vS, cS> ← getMostRecent(z, RS, VS, CS) 
• For any element of vS that is '0', replace the corresponding ele-

ment of rS with 'invalid' 
• tag_arrayS ← MMAC(mS | t | rS | vS) 
• Broadcast {mS | vS | tag_arrayS} 
• setNewest(mS, 'valid', RS, VS, CS) 

 
Receive process, performed by node i: 

• Receive {mS | vS | tag_arrayS} 
• If transmission error occurs 

• setNewest('lost', 'valid', Ri, Vi, Ci) 
• Return from receive process 

• <ri, vi, ci > ← getMostRecent(z, Ri, Vi, Ci) 
• For any element of sender's vS that is '0', replace the corre-

sponding element of receiver's ri with 'invalid'  
• tagi ← MACki(mS | t | ri | vS) 
• If (tagi = tag_arrayS[i]) 

Accept new value as valid  
• setNewest(mS, 'valid', Ri, Vi, Ci) 
• vi ← bitwiseAnd(vi, vS) 
• updateValidity(z, vi, Vi) 
• For each element in vi that is '1', increment ci counters 
• updateConfirmations(z, ci, Ci) 

• Else,   
Reject previous values the current MAC tag included 
• setNewest(mS, 'invalid', Ri, Vi, Ci) 
• Set all elements in vi to '0' 
• updateValidity(z, vi, Vi) 

 
Final Verification process, performed by receiver i: 
After Receive process is completed, perform final verification 
step for each message type that node i has received all z secon-
dary confirmations:  
• Reject value as masquerade attempt if bit in Vi is '0' 
• Accept value as lost if bit in Vi is '1' and (value from Ri is "lost" 

or confirmations in Ci < z-1)  
• Accept value (valid and not lost) if the corresponding bit from 

Vi is '1' and number of confirmations in Ci equals z-1.  
 

Figure 2 - Pseudo-code for message generation and verifica-
tion processes using voting, during time slot t. 
masquerade attempt. Second, if the bit in Vi is '1', and the value is 
'lost', then the receiver accepts that the packet suffered a transmis-
sion error and no other receivers claimed it to be a masquerade 
attempt. Similarly, receivers accept a value as lost if it is valid, 
but an insufficient number of positive confirmations were re-
ceived. Finally, if Vi indicates the value is valid, the value is not 
'lost', and the counter in the confirmation vector Ci indicates a 
sufficient number of positive confirmations from other voting 
nodes, then the value is accepted as valid.  
For a received packet to be accepted as valid, there must be a 
unanimous vote among the z voting nodes that the packet con-
tained a valid authenticator. To fool a single receiver into accept-
ing an injected value, an attacker must successfully forge not only 

the MAC tag for that receiver, but must also successfully forge 
the z-1 other tags to or from the rest of the voting nodes. 
We emphasize that successfully forging one or two packets, then 
provoking receivers to drop the attestation packets does not in-
crease an attacker's chance of forging a message. By dropping any 
attesting packets, the packets targeted for forgery will also be 
dropped by receivers.  

6.5 Integrating time-triggered authentication 
To amortize the bandwidth cost of authentication, we integrate 
our voting technique with our prior work on time-triggered au-
thentication. Time-triggered authentication validates a message or 
actuation command over a set of independent samples.  
To accomplish this, our voting technique must validate each time-
triggered sample of a message type independently of other sam-
ples of the same message type. In our voting process, each packet 
can only attest to prior packets, preventing interference with fu-
ture packets of the same type. To prevent interference with prior 
packets of the same type we limit the number of confirmations 
such that a packet does not attest to more than one sample of any 
message type broadcast from a single node, nor does the current 
packet attest to any previous message broadcast from the same 
sender. Thus, by the time the current value of a message type is 
broadcast, all nodes have completed the final verification process 
for the previous value of that message type. For example, in Fig-
ure 3, three nodes each broadcast message types m1, m2, and m3 
respectively. Packets of message types m2 and m3 attest to those 
of type m1, but by the time the current sample of type m1 is 
broadcast, the two confirmations of the previous sample of m1 
have already been broadcast and processed. 
This independent verification of each sample also enables quick 
recovery from transient faults or masquerade attacks. As soon as 
the source of transmission interference or attack ceases, receivers 
simply resume authenticating over new values. Old corrupted 
values cannot interfere with authentication of future values. How-
ever, a single loss will affect a few previous packets. 

 
Figure 3 - Example TDMA schedule with non-overlapping 

attestations. Receivers complete verification of m1 values us-
ing m2 and m3 by the time the next value of type m1 is sent. 

6.6 Potential complications and tradeoffs 
6.6.1 Packet loss 
This approach introduces a design tradeoff between loss tolerance 
and probability of successful packet forgery. By requiring more 
secondary confirmations, we reduce the probability that an at-
tacker successfully forges individual packets. However, this also 
increases the number of packets lost by a single transmission er-
ror. If a packet is lost by all nodes due to a symmetric fault, the 
number of positive confirmations for the values attested to by the 
lost packet will not be high enough for those values to be ac-
cepted. Nodes will drop all packets attested to by the lost packet.  
One minor issue with our approach is that an asymmetric packet 
loss (some receivers see a well-formed packet, while others drop 

 



the packet) will be interpreted as invalid. MAC tags will disagree 
because two nodes observed and recorded a different set of val-
ues. To resolve this, an additional bit vector (similar to the valid-
ity vector) can be transmitted to allow voting nodes to indicate 
which packets were lost. While this modification is beyond the 
scope of this paper, we plan to incorporate this in future work. 
Lastly, while our approach recovers once transient faults cease, 
permanent node failure might cause the same set of packets to be 
repeatedly lost. We also plan to address this in future work.  

6.6.2 Tolerating compromised nodes 
Relying on secondary confirmations from other nodes introduces 
a tradeoff between tolerance to compromised nodes and probabil-
ity of successful per-packet forgery. Compromised nodes could 
assist in forgery attempts, attesting that a forged packet from an 
attacker is valid. The probability that this secondary confirmation 
is successfully forged is equal to one. To tolerate a fixed number 
of compromised nodes w, a node must receive a total of z+w-1 
total positive confirmations before finally accepting a value. Sys-
tem designers may trade tolerance to node compromise for in-
creased probability of successful forgery. We assume the number 
of compromised nodes is limited to one or two nodes. If an at-
tacker controls multiple critical nodes participating in voting, then 
the attacker can likely cause the system to fail without resorting to 
masquerade attacks. 

7. Model-checking 
To confirm that this voting technique for authentication is secure, 
we implemented and model-checked this technique using the 
Automated Validation of Internet Security Protocols and Applica-
tions (AVISPA) framework [1]. Model-checking is a formal 
method based technique for verifying properties of concurrent 
finite-state systems. Model-checking security protocols allows 
designers to identify flaws which allow an attacker to circumvent 
the protocol. Our goal is to use model-checking to ensure an at-
tacker cannot successfully forge a packet despite full control over 
the network, and control over some nodes. This requires verifica-
tion that our protocol provides data origin authenticity and data 
integrity. In AVISPA, when testing for data origin authenticity, 
data integrity is implicitly verified as well. 
AVISPA uses a Dolev Yao attacker model [7], giving the attacker 
full control over the network. This is similar to our attacker model 
in Section 4. However, the Dolev Yao model assumes that all 
cryptographic primitives are unforgeable unless the attacker ob-
tains the correct key material. We address the probability the 
attacker successfully guesses authenticators in Section 8. 

7.1 Model description 
We implement a simple network (Figure 4) consisting of three 
nodes N1, N2, and N3, broadcasting message types m1, m2, and m3 
respectively. Each node is modeled as an independent process, 
broadcasting and receiving according to a fixed schedule. We 
model the broadcast bus using point-to-point channels, sending a 
copy of every message simultaneously on each channel. However, 
all messages in AVISPA are passed through the attacker [1] re-
gardless of channel definitions, resulting in a bus-like topology.  

Nodes communicate according to a round-robin TDMA schedule, 
in which each node takes a turn broadcasting, then the cycle re-
peats (as per Figure 3). We split the model of each node into five 

time slots, allowing each node to complete our protocol on one 
value of each message type (Figure 5). In each slot, one node 
sends while the other two receive and vote. In this model, nodes 
transmit the current value of their message type, and attest to the 
validity of the most recent value of the other two (as per Section 
6) Nodes compute MAC functions over the current value of their 
message type, the two previous values transmitted by the other 
nodes, and the validity of those two other message types. Each 
node receives a direct authenticator and one indirect secondary 
confirmation of validity for each message type. 

 
Figure 4. Model of three nodes authenticating message type 

m1. Node N1 directly authenticates m1 to N2 and N3. In subse-
quent time slots, N2 and N3 exchange indirect confirmations of 

m1's validity and vote on the results.  

 
Figure 5. Our model executes over five time slots, allowing 

each node to cross-check each of three message types. 
Assume valid m2 and m3 values have been previously transmitted 
without attacker interference (for simplicity, nodes in our model 
do not vote on these previous values). During time slot one, N1 
sends m1 with authenticators for N2 and N3, attesting to the valid-
ity of prior values of m2 and m3. Nodes N2 and N3 receive m1 and 
check its authenticity. If m1 is valid, N2 updates its value and 
validity vectors for m1 and m3, while N3 updates its own vectors 
for m1 and m2. If m1 is invalid, N2 and N3 reject m1 and the previ-
ous values of m2 and m3 as invalid. In time slot two, N2 broad-
casts m2 and attests to whether m1 and m3 were valid. N1 and N3 
update their vectors accordingly. At the conclusion of time slot 
two, N3 has received both its direct authenticator for m1 and the 
secondary confirmation from N2. N3 performs a unanimous vote 
on its validity vector entry for m1 and the validity included in N2's 
transmission. N3 accepts the value of m1 if both the direct authen-
ticator was valid, the packet containing the secondary confirma-
tion was valid and indicated m1 was valid, and the value of m1 
was not received as 'lost.' This process continues over the next 

 



three time slots, each node voting once it has received the direct 
authenticator and secondary confirmation for each message type. 

7.2 Properties and results 
We verified the data origin authenticity property for each message 
type for all receivers using OFMC and Cl-Atse, backend compo-
nents of AVISPA that check this property [1]. To test a transmit-
ted variable for data origin authenticity, AVISPA uses a pair of 
functions: witness and request. These functions also implicitly test 
for data integrity. For each transmitted message, the sender exe-
cutes the witness function. This indicates to the model-checker a 
node with a specific identity transmitted that value. Upon voting 
and accepting a message as valid, a receiver executes the request 
function. This function tests that the identity of the supposed 
sender and the value itself are the same as the ones specified in 
the corresponding witness function. If not, then the attacker has 
managed to successfully forge a packet. 
AVISPA detected one trivial attack using parallel sessions starting 
in the same message round. This attack requires nodes the execute 
the same protocol twice simultaneously, accepting two values in 
each time slot. However, existing protocols do not allow trans-
mission of multiple packets over a bus within a time slot. 
After modifying the model to disallow multiple parallel sessions, 
AVISPA reported that the protocol was safe. AVISPA was not 
able to find any masquerade attacks, including tests where the 
attacker controlled one of the three nodes. While this model exe-
cutes among only three nodes over one message round, it demon-
strates that adding an indirect secondary confirmation from an-
other receiver does not permit an attacker successfully forge val-
ues. This confirms our expectations, as we assume an attacker 
must successfully forge each MAC tag independently of others 
and a receiver only accepts a value if all direct and indirect au-
thenticators agree on the value of a valid packet. However, be-
cause AVISPA assumes MAC tags are unforgeable unless an 
attacker holds the key, AVISPA cannot analyze the probability 
that an attacker successfully guesses truncated authenticators. We 
analyze our technique against simulated attack in Section 8.  

8. Probability analysis 
To spoof an individual packet to a single receiver, an attacker 
must successfully forge the authenticator designated for that re-
ceiver in the packet and all subsequent confirmations of validity. 
The probability of successfully forging a single secure MAC tag 
of b bits in length is 2-b.  When attempting to forge a subsequent 
confirmation, the attacker has two opportunities to succeed. First, 
the attacker may succeed in forging the z other MAC tags in the 
initial packet. For each initial attempt that fails (indicated by va-
lidity vectors in packets), the attacker must attempt to forge each 
subsequent confirmation. The first confirmation can be forged 
with probability 2-b + 2-b (1-2-b). The probability of successfully 
forging each confirmation beyond the first decreases slightly with 
each confirmation, because each attesting node performs a 
unanimous vote on its validity vector and each previous attester's 
validity vector. We do not attempt to assign an exact probability 
based on these tertiary interactions; instead we use 2-b + 2-b (1-2-b) 
as a conservative upper bound for each confirmation. 
The probability Pp of successfully forging an individual packet 
with z subsequent confirmations and at most w compromised 
nodes is bounded by:   

( )( )  -  - 1
2 2 2 1 2

z wb b b b
pP − − − −≤ + −  (1) 

Using time-triggered authentication, receivers validate state-
changing and reactive control messages over multiple packets for 
each message type they consume. In prior work, we have shown 
that the upper bound on the probability PA of successful masquer-
ade attack requiring k out of n valid time-triggered packets is [23]: 
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8.1 Experimental results 
We have experimentally confirmed the probability of successful 
forgery attacks against our approach using a embedded CAN 
network simulator written in Java [15]. We have modified the 
simulator to support TDMA scheduling and masquerade attacks. 
As per our attacker model, the simulated attacker may examine, 
modify, or replace any transmitted packet, so long as they obey 
the network schedule.  
The simulated network consists of a set of nodes, broadcasting 
according to a round-robin schedule. Each node takes a turn send-
ing, then the cycle repeats. The attacker selects one message type 
to forge, and attempts to fool a single receiver. After attempting to 
forge the initial packet, the attacker examines subsequent packets 
which attest to their forged packet. The attacker modifies any 
packets that indicate the initial forgery failed (visible to the at-
tacker in the validity vector in packets). If the targeted receiver 
completes the Final Verification process and accepts the forged 
packet as valid and not lost, the simulator increments a counter 
for successful packet forgeries. 
We measured the number of successful packet forgeries over a 
period of time long enough to record at least one hundred success-
ful attack events per data point. We computed the successful for-
gery rate as average successful packet forgeries per message 
round and compared this rate to the probability of successful at-
tack defined in equation 1.  
Figure 6 shows the successful attack rate and the expected rate 
given by equation 1, varying the number of indirect secondary 
confirmations from zero to four and using two bits per receiver in 
each packet. Using only four confirmations decreases the prob-
ability of per-packet forgery by over two orders of magnitude, 
requiring four bits in the packet for the validity vector. To achieve 
a similar probability using only one MAC per receiver with zero 
confirmations, each MAC tag would need to be at least eleven 
bits. By using our voting mechanism, we only need three bits per 
receiver and four bits for the validity vector if we use four secon-
dary confirmations, reducing authentication bandwidth costs by 
eight bits per receiver.  
Figure 6 also shows the experimental results initially match the 
upper bound, then diverge from the upper bound as the number of 
confirmations increases. This is due to nodes performing unani-
mous votes with prior attesters and passing along the result, rather 
than simply sending whether they saw the initial authenticator as 
valid or not. We also carried out experiments using one to four 
bits per receiver, varying confirmations from zero to four, with 
results that similarly support equation 1. These experiments as-
sumed zero compromised nodes. 
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Figure 6. Simulated per-packet forgery rates using three bits 
per receiver, varying the number of secondary confirmations. 

We also tested the effect of compromised nodes on the probability 
of successful forgery. Figure 7 shows the effect of increasing the 
number of compromised nodes on average attack events per mes-
sage round. These experiments used three bits per receiver with a 
total of four secondary confirmations. The resulting successful 
packet forgery rates correspond to the same rates as those shown 
in Figure 6. Increasing the number of compromised nodes has the 
same effect on the probability of successful packet forgery as 
removing the same number of confirmations.  
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Figure 7. Simulated per-packet forgery rates using three bits 
per receiver and four total secondary confirmations, varying 

the number of compromised nodes participating in voting. 
Figure 8 illustrates the effect of integrating our voting technique 
with our time-triggered authentication approach. Typical required 
failure rates for safety-critical systems might be defined at 10-3/hr, 
10-6/hr, or 10-9/hr. Figure 8 shows the number of authentication 
bits per packet and number of valid time-triggered packets to 
achieve a failure rate of 10-9/hr using our time-triggered authenti-
cation approach alone (zero confirmations) and when combined 
with our voting technique (one, four, and eight confirmations). 
The number of packets and bits were obtained using the 10-9/hr as 
an expected value for one forgery attempt per millisecond over 
the course of an hour, each succeeding with probability given by 
equations 1 and 2. For example, given four secondary confirma-
tions, we can achieve an induced failure rate of 10-9/hr using 3 
bits per receiver over five time-triggered packets.  
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Figure 8. Authentication bits per packet and total packets to 
authenticate over required to achieve induced failure rate of 
10-9/hr on one message type broadcast once per millisecond. 

9. Limitations 
While this approach allows more efficient use of authentication 
bandwidth, it does have several limitations. 
First, like our approach for time-triggered authentication, the per-
packet bandwidth overhead scales nearly linearly with the number 
of receivers, limiting the maximum number of receivers in prac-
tice. With limited bandwidth for authentication, this approach 
cannot scale to hundreds or thousands of receivers. However, 
embedded networks typically have only tens of receivers. 
Also, for simplicity this work assumes a statically scheduled 
TDMA network. Nodes must all have received the same set of 
message values by a particular time. This allows nodes to recom-
pute authenticators over the same set of message values without 
explicitly retransmitting all values. Further, we rely on the peri-
odic broadcasts of message types in time-triggered networks. Our 
voting technique partially alleviates this issue by significantly 
reducing the number of time-triggered samples required, even if 
only one secondary confirmation is used, as shown in Figure 8. 
We also limit the number of secondary confirmations. First, the 
number of confirmations must be less than the number of initial 
receivers of a value. If a node did not receive a direct authentica-
tor, they cannot attest to whether the value in a packet was valid 
or not. Second, for simplicity this work assumes that the confir-
mation packets of one sample of any message type does not over-
lap with the confirmation packets for any other sample for any 
message type broadcast by any node.  
This approach also assumes a fixed number of compromised 
nodes to tolerate when determining the number of authentication 
bits, history buffer size, and secondary confirmations. If the num-
ber of compromised nodes exceeds this assumed number, no 
guarantees can be made about induced failure rates. However, in 
an embedded network containing critical nodes, if the attacker 
compromises more than one or two critical nodes they can likely 
cause the system to fail without resorting to masquerade attacks. 
Lastly, this work does not address permanent faults (i.e., node 
failure) that permanently disrupt authentication of multiple mes-
sage types. We plan to address this in future work. Also, we do 
not consider full DoS attacks intended to prevent delivery of all 

 



network traffic. Because as discussed by Wolfe et al. [25], there 
are numerous existing vulnerabilities in these networks to that 
type of attack (e.g., a node can prevent all traffic by simply 
broadcasting garbage values on the bus), and our scheme does not 
attempt to address DoS attacks.  

10. Conclusions 
In this paper, we present a new technique based on voting to im-
prove overall bandwidth efficiency and reduce authentication 
latency. Specifically, we take advantage of the properties of se-
cure MAC functions to vote on message value and validity 
amongst multiple nodes to reduce the probability of successful 
per-packet forgery, requiring only one extra bit per additional 
voter in each packet. We provide a conservative upper bound on 
per-packet forgery success and verify this bound through simu-
lated attack. The model-checker AVISPA confirms data integrity 
and data origin authenticity of the voting mechanism. We leave a 
formal security analysis for future work. However, based on the 
results from model-checking, we do not anticipate this to reveal 
any vulnerabilities. Combining this voting mechanism with our 
prior work in time-triggered authentication allows system design-
ers to reduce the per-packet bandwidth authentication costs or 
reduce application level latency while continuing to meet re-
quirements for maliciously induced failure. While our scheme 
automatically recovers from transient faults with no additional 
overhead, in future work we plan to improve tolerance to packet 
losses due to permanent node failure. 
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