
Low Cost Multicast Authentication via Validity Voting in
Time-Triggered Embedded Control Networks

Chris Szilagyi
ECE Department

Carnegie Mellon University

szilagyi@cmu.edu

Philip Koopman
ECE Department

Carnegie Mellon University

koopman@cmu.edu

Abstract
Wired embedded networks must include multicast authentication
to prevent masquerade attacks within the network. However,
unique constraints for these networks make most existing multi-
cast authentication techniques impractical. Our previous work
provides multicast authentication for time-triggered applications
on embedded networks by validating truncated message authenti-
cation codes across multiple packets. In this work, we improve
overall bandwidth efficiency and reduce authentication latency by
using unanimous voting on message value and validity amongst a
group of nodes. This technique decreases the probability of suc-
cessful per-packet forgery by using one extra bit per additional
voter, regardless of the number of total receivers. This can permit
using fewer authentication bits per receiver. We derive an upper
bound on the probability of successful forgery and experimentally
verify it using simulated attacks. For example, we show that with
two authentication bits per receiver, adding four additional bits
per message to vote amongst four nodes reduces the probability of
per-packet forgery by a factor of more than 100. When integrated
with our prior work on time-triggered authentication, this tech-
nique reduces the number of authentication message rounds re-
quired for this example by a factor of three. Model-checking with
AVISPA confirms data integrity and data origin authenticity for
this approach.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security and
Protection

General Terms
Design, Reliability, Security.

Keywords
Embedded, Networks, Security, Voting, Multicast, Authentica-
tion, Controller Area Network, CAN, FlexRay, Time-Triggered
Protocol, TTP, In-vehicle, Real-time.

1. Introduction
Embedded control networks are increasingly connected to exter-
nal media and networks [16] (e.g., wireless and Internet), but do
not support secure authentication to prevent manipulation of in-
ternal message traffic. In the event that an attacker accesses the
internal embedded control network, whether through physical
manipulation or via a compromised network connection, they can
trivially inject messages to disrupt system operation and subse-
quently violate safety requirements. Koscher et. al. demonstrated
that the brake controller in a modern automobile can be remotely
manipulated using a wireless-enabled MP3 player connected to
the embedded control network [18]. An attacker might access the
embedded control network through such a connection to engage
an emergency brake in a car while it is traveling on a highway,
unlock doors and start the engine, or shut off headlights while
traveling at night.
Common embedded network protocols, such as Controller Area
Network (CAN) [2], FlexRAY [8], and Time-triggered Protocol
(TTP) [24], do not support secure cryptographic mechanisms to
prove that a message originated from the node that claims to have
sent it. Thus, these protocols are vulnerable to masquerade and
replay attacks. Masquerade attacks occur when a node sends a
message in which it claims to be a node other than itself. This
attack can be performed by broadcasting during another node's
Time-Division Multiple Access (TDMA) slot or by changing a
message identifier. Similarly, replay attacks occur when a previ-
ously sent message is recorded and retransmitted by an attacker.
Values are typically multicast over a broadcast bus, requiring
simultaneous authentication of messages to multiple receivers.
While many methods for multicast authentication exist, embedded
network constraints make them impractical. Resource-limited
nodes must authenticate short periodic messages within tight real-
time deadlines and tolerate potentially high packet losses. A rea-
sonable size for an authenticator in an eight byte packet might be
two to four bytes (similar in size to current error detection codes).
However, existing multicast authentication schemes require tens
to hundreds of bytes per packet.
This paper builds on our previous work for authentication in stati-
cally scheduled time-triggered applications. Our previous work
amortizes authentication bandwidth costs over multiple time-
triggered packets, using truncated Message Authentication Codes
(MACs). This approach allowed us to provide secure authentica-
tion for time-triggered applications. However, using one MAC tag
per receiver introduces unused redundancy because each receiver
only benefits from a single MAC tag. If limited to a few bytes
per-packet to authenticate to a large number of receivers, a sender
may have to amortize authentication over too many packets to
meet real-time deadlines.

In this work, we integrate voting to improve the bandwidth effi-
ciency and subsequently reduce the latency of our approach for
time-triggered authentication. We take advantage of the redundant
MACs in our previous approach to allow a group of nodes to
cross-check the validity of a packet. Using the redundant MACs
as secondary confirmation channels to validate a packet requires
an attacker to forge multiple authenticators rather than just one
per packet. We provide a conservative upper bound on the prob-
ability of successful per-packet forgery and verify this bound
experimentally using simulated attacks. Using this upper bound,
we also demonstrate that this combined approach can reduce ap-
plication level latency to just a few message rounds using a few
bits per receiver. We discuss tradeoffs among probability of per-
packet forgery success, packet loss, and tolerance to node com-
promise. Additionally, we use the model-checker AVISPA [1] to
verify that this approach provides data integrity and data origin
authenticity to prevent masquerade and replay attacks.
In this paper, Section 2 describes our assumptions for embedded
control networks. Section 3 surveys related work. Section 4 pre-
sents our attacker model. Section 5 reviews our baseline multicast
authentication and time-triggered authentication approaches. Sec-
tion 6 introduces our voting technique. Section 7 describes our
verification of the security of this approach using AVISPA. Sec-
tion 8 provides an upper bound on the probability of successful
forgery and experimental verification of this bound. Section 9
discusses some limitations of our approach. Finally, section 10
states our conclusions and future work.

2. Embedded network assumptions
We focus on embedded control networks composed of a set of
hardware Electronic Control Units (ECUs) connected to a single-
hop broadcast bus. These ECUs communicate via a network using
a protocol such as CAN, FlexRay, or TTP to accomplish time-
triggered communications. This work assumes an embedded con-
trol network has the following characteristics:

Time-triggered - We consider only time-triggered applications
where communications are defined by a static TDMA schedule. A
real-time system is time-triggered if all communications and proc-
essing activities are initiated at predetermined points in time from
an a priori designated clock tick [17]. Each node periodically
broadcasts current values for a set of predefined message types
during designated time slots. While protocols like CAN are not
TDMA, our techniques can be applied to statically scheduled
variations such as Time-Triggered CAN (TTCAN) [10].

Multicast communications - Most distributed embedded net-
works are inherently multicast. All nodes connected to the net-
work can receive every packet. Each packet includes the sender's
identity, often implicitly through a message identifier (CAN;
FlexRay) or time slot (TTP), but usually no explicit destination
information.

Static network configuration - We assume the network configu-
ration is fixed at design time, with no run-time reconfiguration.
Usually only a few nodes are attached to any network (commonly
32 or fewer), as opposed to enterprise networks which may have
hundreds or thousands of potential receivers.

Resource limited nodes - Processing and storage capabilities of
nodes are often limited due to cost considerations. Authentication
mechanisms which require large amounts of processing power or

storage in RAM may not be feasible. More powerful ECUs are
impractical for most nodes in the system, and many nodes are 8-
bit ECUs with significantly smaller memories due to cost and
power considerations.

Small packet sizes - Packet sizes are small in embedded network
protocols when compared to those in enterprise networks. Packets
have maximum data payload sizes as small as eight bytes in the
case of CAN, while payloads for FlexRay and TTP can be 254
bytes and 236 bytes respectively. Authentication should incur
minimal bandwidth overhead. Our goal is to produce authentica-
tors similar in size to current error detection codes (two to four
bytes in size).

Tolerance to packet loss - Embedded networks are subject to
message blackouts from environmental disturbances such as inter-
ference from large electric motors. As such, authentication
schemes must tolerate packet losses as part of normal system
operation.

Real-time deadlines - In real-time systems, processes must com-
plete within specified deadlines. Authentication of nodes must
occur within a known time bound, with that bound being fast
enough to match the physical time constants of the system being
controlled (as fast as tens of milliseconds).

3. Related work
Several authors have shown the vulnerability of embedded net-
works protocols to masquerade attacks. Wolf et al. [25] provide
an overview of the security vulnerabilities of in-vehicle network
protocols, and identify the need for multicast authentication to
prevent masquerade attacks. Koscher et. al. [18] demonstrate the
ease with which spoofed messages allow an attacker to control
safety critical actuators in a live automobile. This section surveys
related work in multicast authentication, embedded network secu-
rity, and fault tolerance methods similar to our voting approach.

3.1 Existing multicast authentication
The multicast nature of embedded network protocols makes au-
thentication particularly challenging. A single point-to-point
cryptographic authenticator does not provide adequate security in
a multicast setting. Multicast authentication requires some form of
key asymmetry, so that no node can masquerade as a different
node.
Many approaches for multicast authentication exist, however
most cannot be applied with our target bandwidth overhead of two
to four bytes per packet and resource constrained nodes. Most
require tens or hundreds of bytes per packet or rely on computa-
tionally expensive digital signatures.
Digital signatures provide strong source authentication using pub-
lic and private keys, but the processing overhead makes it imprac-
tical for a resource constrained device to compute digital signa-
tures for each message for real-time control. For example, pagers
and Palm Pilots can take several seconds to compute a 512 bit
RSA signature in resource constrained nodes [3]. Amortizing a
digital signature (e.g., Wong and Lam [26]) reduces per-packet
bandwidth overhead, but waiting to authenticate tens or hundreds
of time-triggered samples at once would make these approaches
unsuitable for real-time operations.
One-time digital signature schemes [12] allow senders to sign
messages faster than traditional digital signatures, but can incur

several kilobytes of authentication data per message. Amortizing
these costs makes them impractical for the same reasons as tradi-
tional digital signatures.
Canetti et al. [4] suggest a multi-MAC scheme which appends k
one-bit MACs to each message, computed using k different keys.
The keys are distributed amongst receivers such that at least w
receivers must collude to forge a message. However, mitigating
collusion can require hundreds or thousands of authentication bits
per message. Our work also uses truncated MACs and assumes a
fixed number of compromised nodes, but still fits within two to
four bytes of per-packet bandwidth overhead.
TESLA [22] uses time-delayed release of keys to provide asym-
metry. By releasing keys at a pre-specified interval after a MAC
is released, receivers can confirm the authenticity of the data from
a sender. The released keys are computed using one-way hash
chains. Storing the entire chain of keys is prohibitive, so tech-
niques are used to reduce memory overhead at the expense of a
small recomputation cost. While TESLA sends a single MAC per
interval, it also requires the sender to include a key for each inter-
val of messages to be authenticated. The authenticator could be
truncated using our approach for time-triggered authentication
[23], but the key cannot. Truncating the key exponentially re-
duces the security of this approach. Hu et. al. propose a variation
on one-way hash chains, called sandwich chains, which allows
smaller keys to be released per message by regularly initializing
new key chains [13]. However, this technique assumes the at-
tacker does not have the computational resources to break the
current key before the next is released. This technique does not
seem feasible with a target per-packet bandwidth overhead of two
to four bytes.
Chan and Perrig propose a multi-MAC approach using secure
aggregation [5] over multiple rounds. Each node initally authenti-
cates their value to a base station node. The base station then re-
leases a combined authenticator for the group. Finally, each node
releases its portion of the combined authenticator. Once all nodes
have transmitted, all nodes can "unlock" the authenticator. How-
ever, this approach assumes reliable point-to-point communica-
tions, which may not be available in most embedded networks.
This approach also requires a base station, which might act as a
single point of failure.

3.2 Embedded network security
This work builds upon our proposed technique for time-triggered
multicast authentication [23]. Our technique takes advantage of
the existing temporal redundancy of message values and system
inertia in embedded control networks to authenticate messages
over multiple packets. We improve our time-triggered authentica-
tion technique in this work by integrating voting techniques.
Other approaches such as SPINS [21] and TinySec [14] apply
security to resource constrained wireless sensor networks. How-
ever, those approaches are specifically designed for use in wire-
less networks, which do not typically have real-time deadlines.
Morris and Koopman [19] identify the potential for masquerade
failures to cause accidental or malicious failures, via non-critical
nodes masquerading as higher criticality nodes. They propose
counter-measures of varying strengths to prevent masquerading
failures between nodes of varying criticality. Their approach as-
sumes non-malicious software faults or attacks from a cryptologi-

cally unsophisticated attacker. Fault tolerance mechanisms are not
necessarily secure against malicious masquerade or replay at-
tacks. Masquerade prevention for safety-based systems typically
uses bus guardians or a symmetric key shared among all trusted
nodes. Compromise of a single node would permit an attacker to
masquerade as any system node.

3.3 Fault tolerance
Voting techniques and redundancy are a classic approach to im-
prove system reliability [20]. These techniques enable fault detec-
tion and handling to prevent fault propagation in a system. Typi-
cally system designers assume each input to a voter or comparator
mechanism fails randomly and independently of others. In our
approach, nodes detect differing views of message authenticity by
voting on the validity of MAC tags from other nodes. We assume
the outputs of each MAC function can only be successfully forged
randomly and independently of other MAC functions.

Our voting approach also has similarities to the TTP group mem-
bership service [24]. This service provides agreement on current
operating mode and set of nodes believed to be correct and alive.
In TTP, nodes encode membership information into packet error
detection codes. Disagreeing error codes indicate either the sender
or receiver failed, and nodes take appropriate action to segregate
out the failed node. We use a similar technique, computing a
MAC function over a previous set of values seen from the net-
work and a bit vector indicating each value's validity. In our ap-
proach, disagreeing authenticators indicate that an attacker may
have fooled one or more receivers. Nodes then reject potential
forgeries.

4. Attacker model
This work uses an active attacker model that controls the network.
An attacker may modify, inject, drop, or eavesdrop upon network
traffic. However, an attacker cannot successfully forge packets
unless they have access to the appropriate key or can randomly
guess the authenticator correctly.
An attacker must not be able to masquerade as any critical node
they do not already control to induce a system failure, except with
some acceptably low probability. We do not address how an at-
tacker gains access to a network, but rather how to prevent mas-
querade and replay attacks from succeeding in the event that they
do gain access (e.g., through a compromised node or physical
access). Attackers accessing the network through compromised
nodes will have access to the key material in those nodes and can
send messages from those nodes.
This work assumes an attacker is aware of existing error detection
mechanisms along with the network schedule, and is capable of
injecting well-formed packets in valid time slots. We constrain
the attacker to one forgery attempt per valid time slot in a TDMA
network such as TTP or FlexRay, since transmitters are only per-
mitted to transmit a single packet per time slot in a time-triggered
application.

5. Background
This section describes our baseline approach for multicast authen-
tication and summarizes our previous work on time-triggered
authentication [23].

5.1 Baseline - one MAC per receiver
Our techniques use one MAC per receiver as a baseline multicast
authentication mechanism. When transmitting a packet, the sender
computes one MAC per receiver and appends the outputs to the
data payload. We assume each pair of communicating nodes se-
curely establishes symmetric keys during node installation or
replacement (e.g., Diffie-Helman key exchange [6]). This pre-
vents masquerade attacks because no more than two nodes share
the same key. Further, to prevent replay attacks and limit the rate
at which attackers may attempt forgeries we assume nodes have
securely synchronized to a common time base (current time or
TDMA round number) at system start up (e.g., Secure Pairwise
Synchronization [11]).
Bandwidth constraints do not permit the full output of a MAC
function for each receiver in a packet (potentially hundreds of
authentication bits per packet). Thus, we modify this baseline
mechanism to amortize the authentication bandwidth costs over
multiple time-triggered packets.

5.2 Time-triggered authentication overview
Our previous work on time-triggered authentication uses the tem-
poral redundancy present in most time-triggered system designs
to amortize authentication bandwidth overhead across multiple
time-triggered packets [23]. In time-triggered applications, nodes
periodically broadcast current values of state variables and sensor
inputs to the rest of the network. Receivers then update outputs
and actuators based on the most current system state. This infor-
mation is typically sampled faster than the time constraints of
control stability requirements. As a rule of thumb, ten or more
samples are sent within the rise time of a control system or prior
to a system deadline [9][17]. Choosing such a sample rate reduces
the delay between a command and the system response, smoothes
outputs to steps in control input, and tolerates lost messages.

5.2.1 Time-triggered message generation
When transmitting, the sender generates one MAC tag for each
distinct receiver of the packet. The sender computes each MAC
over the packet header, message value, shared secret key, and
synchronized time. The sender truncates each tag to just a few bits
and appends the tags to the message value. We assume there are
fewer receivers for any particular message than available bits in
the data payload, allowing one truncated MAC tag per receiver to
be placed into each packet.

5.2.2 Time-triggered message verification
To reduce the rate at which masquerade attacks induce system
failures to occur no more often than acceptable failure rates,
nodes verify a message over multiple time-triggered packets.
For state-changing messages, which cause state machine transi-
tions or discrete actuations (e.g., locking car doors if vehicle
speed exceeds some threshold), nodes wait until a sufficient frac-
tion of the most recently received packets for that message type
are valid and have consistent values. The receiver then commits to
the transition triggered by those values.
For reactive control message types, which update continuous or
ordered values in nodes running feedback control loops (e.g.,
updating vehicle speed in automatic cruise control), we rely on
system inertia to damp the response to individual packets. The

damped response to messages requires an adversary to success-
fully forge multiple packets within some period of time to com-
promise system operation.

6. Voting on message authenticity
In this section, we introduce a new technique in which nodes
cross-check message values to increase bandwidth efficiency
when using one MAC per receiver. This reduces the probability of
successful per-packet forgery while increasing bandwidth con-
sumption by one bit per voting node. A group of nodes exchanges
indications of the received value and validity of each packet. Dur-
ing each time slot, nodes update the validity of their most recently
received messages, rejecting any value the group disagrees upon
or indicates as invalid. Any disagreement indicates a masquerade
attempt, whereas unanimous agreement indicates no such attempt.

6.1 Enabling properties
We use secure MAC functions to enable voting on message valid-
ity and detect disagreement on message values. Without knowl-
edge of the key, an attacker can at best guess the MAC tags for
any message value it injects or modifies. Further, because nodes
compute each tag with different keys, successfully forging one
MAC tag does not assist the attacker in forging another tag.
In our approach, a group of nodes attests to the validity of each
other's message values. A sender transmits its value and directly
authenticates it to each group member. In subsequent time slots,
each member attests to the validity of a previous sender's value by
computing their MACs over that sender's value in addition to its
own transmitted value. Group members accept a previous sender's
value if the sender's packet contained a valid MAC tag, all pack-
ets attesting to that value also had valid MAC tags, and all attest-
ing packets indicated the previous sender's value was valid.
This attestation process creates a series of indirect secondary con-
firmation channels from the sender to each receiver, and from
each receiver to all other receivers. Because an attacker can only
forge each authenticator randomly and independently of each
other, each receiver in the group can vote on the results of these
channels to reduce the probability of successful forgery.
We also take advantage of the collision resistance of secure MAC
functions so that nodes do not have to explicitly retransmit values
being compared using these secondary indirect channels. By
computing the MAC function over the current value, previous
values, and their validity, the MAC tags should only be valid if
the sender and receiver agree on the values and validity of all
packets.

6.2 State variables and functions
To check for discrepancies in packet value or validity, each node
n maintains three state vectors: a value vector Rn, validity vector
Vn, and confirmation vector Cn. We use a subscript to denote the
identity of the node that produces a variable (e.g., Rn is the value
vector produced by node n). Nodes initialize all vectors to zeros.
The value vector Rn stores the most recently received value (valid
or not) for each message type defined in the TDMA schedule that
node n consumes or participates in voting on. Receivers record
lost packets as a predefined error code 'lost' if they detect a trans-
mission error (indicated by an incorrect error checking code or no
packet broadcast in a scheduled time-slot).
The validity vector Vn contains the authentication results of each

entry in the value vector. A node stores a '1' value if the most
recent value for the corresponding message type was valid and a
'0' value if invalid.
Finally, the confirmation vector Cn contains a counter of positive
secondary confirmations of validity for each message type in Rn.
We define a function getMostRecent(z, Rn, Vn, Cn) to obtain a
subset of received values, their validity, and confirmations. This
function produces a triple <rn, vn, cn> of vectors; where rn is a
chronologically ordered subset of Rn containing z values recently
received by node n, vn is a subset of Vn containing the validity bits
for each element in rn, and cn is a subset of Cn containing confir-
mation counters for each element in rn. We require that z be suffi-
ciently small, such that rn does not contain more than one sample
of any message type broadcast by any node (e.g., if node X broad-
casts most frequently, sending any of its message types at most
once every eight time slots, then z can be no greater than seven).
This allows each time-triggered sample of a message type to be
authenticated independently of another sample of the same mes-
sage type. Two nodes executing getMostRecent during the same
time slot will obtain the same ordering of message types, because
they share the same TDMA schedule.
The function setNewest(msg, validity, Rn, Vn, Cn) replaces the
element of Rn for the message type broadcast in the current time
slot with value msg. The corresponding element in Vn is set to '1'
if validity is 'valid', and '0' if validity is 'invalid'. The correspond-
ing element in Cn is set to zero.
The functions updateValidity(z, vn, Vn) and updateConfirma-
tions(z, cn, Cn) overwrite the z elements in Vn or Cn with the ele-
ments of vn or cn respectively, using the inverse of the mapping
used in function getMostRecent.

6.3 Message generation for voting
We modify the sending process for time-triggered packets (Sec-
tion 5.2.1) to allow senders to attest to the validity of z recently
received message values in addition to authenticating the current
message value (Figure 1).

Figure 1 - Example of message generation process for 32 bits
of data and three 8-bit MACs, using unique shared keys and
synchronized times for three receivers. This packet includes
three validity bits, attesting to three prior message values.

For each receiver i, a sender S computes the MAC function over
the current header and message value, shared secret key ki, syn-
chronized time t, and vectors rS and vS produced by getMostRe-

cent(z, RS, VS, CS). Before computing the MAC functions, the
sender replaces any element of rS with an 'invalid' value if the
validity vector vS indicates the that value's packet contained an
invalid authenticator. We use MMAC as a short hand notation for
a function that computes an array of MAC tags (one per receiver)
and truncates each MAC tag to just a few bits.
The sender includes the array of truncated MAC tags in the data
payload as before, but also includes the validity vector vS. This
allows receivers to recompute the MAC function over the same
values as the sender, replacing values with 'invalid' for those indi-
cated by vS. After broadcasting their packet, the sender optimisti-
cally sets its own validity vector assuming its packet is received
correctly with a valid authenticator. Figure 2 provides pseudo-
code for the send process.

6.4 Message verification and voting
Receivers use each authenticator to confirm that the current
packet and the most recently seen packets are valid. We break
down the message verification into two processes. During each
time slot, each receiver executes the Receive process, followed by
the Final Verification process (Figure 2).

6.4.1 Receive process
If a transmission error occurs, the receiver i records a 'lost' value
for the received message type, marks it as valid, and exits the
receive process without incrementing any confirmation counters.
Otherwise, the receiver executes getMostRecent to obtain the
most recent set of message values ri received from the network,
corresponding validity vector vi, and confirmation vector ci. The
receiver replaces any element of ri with an 'invalid' value if the
sender's transmitted validity vector vS indicates the sender be-
lieves that value's packet contained an invalid authenticator. The
receiver recomputes the MAC function, and compares the MAC
tags.
The MAC tags will only be equal if the sender and receiver agree
on the current and prior values (with the infrequent exception of
MAC collisions). If they match, the receiver accepts the current
value as valid. If the tags do not match, the receiver rejects the
current value and all prior values that the sender is attesting to.
Because the attested values are sent implicitly as inputs to the
MAC function, the receiver cannot determine which value caused
the disagreement and conservatively rejects all attested values.
For a valid packet, receivers execute a vote on the authenticity of
attested values. Receivers reject an attested value as invalid if
either the sender's valid packet indicated it was invalid or the
receiver originally saw that value as invalid. To perform the vote,
we perform a bitwise logical And operation on the vi and vS vec-
tors. For any value in ri that is still considered valid in vi after the
vote, the receiver increments the corresponding counter in the
confirmation vector ci.
Once this process is complete, the results are committed to the
complete vectors Ri, Vi, and Ci.

6.4.2 Final Verification process
Once the Receive process is completed during a time slot, the
receiver checks any packets for which all secondary confirma-
tions should have been received. There are three possible out-
comes for a value: invalid, lost, and valid. First, if the bit in the
validity vector Vi is '0', then the receiver rejects the value as inva-
lid, because at least one voting node claimed that the packet was a

Send process, performed by node S:

• Ready to send message value mS to all nodes
• <rS, vS, cS> ← getMostRecent(z, RS, VS, CS)
• For any element of vS that is '0', replace the corresponding ele-

ment of rS with 'invalid'
• tag_arrayS ← MMAC(mS | t | rS | vS)
• Broadcast {mS | vS | tag_arrayS}
• setNewest(mS, 'valid', RS, VS, CS)

Receive process, performed by node i:

• Receive {mS | vS | tag_arrayS}
• If transmission error occurs

• setNewest('lost', 'valid', Ri, Vi, Ci)
• Return from receive process

• <ri, vi, ci > ← getMostRecent(z, Ri, Vi, Ci)
• For any element of sender's vS that is '0', replace the corre-

sponding element of receiver's ri with 'invalid'
• tagi ← MACki(mS | t | ri | vS)
• If (tagi = tag_arrayS[i])

Accept new value as valid
• setNewest(mS, 'valid', Ri, Vi, Ci)
• vi ← bitwiseAnd(vi, vS)
• updateValidity(z, vi, Vi)
• For each element in vi that is '1', increment ci counters
• updateConfirmations(z, ci, Ci)

• Else,
Reject previous values the current MAC tag included
• setNewest(mS, 'invalid', Ri, Vi, Ci)
• Set all elements in vi to '0'
• updateValidity(z, vi, Vi)

Final Verification process, performed by receiver i:
After Receive process is completed, perform final verification
step for each message type that node i has received all z secon-
dary confirmations:
• Reject value as masquerade attempt if bit in Vi is '0'
• Accept value as lost if bit in Vi is '1' and (value from Ri is "lost"

or confirmations in Ci < z-1)
• Accept value (valid and not lost) if the corresponding bit from

Vi is '1' and number of confirmations in Ci equals z-1.

Figure 2 - Pseudo-code for message generation and verifica-
tion processes using voting, during time slot t.
masquerade attempt. Second, if the bit in Vi is '1', and the value is
'lost', then the receiver accepts that the packet suffered a transmis-
sion error and no other receivers claimed it to be a masquerade
attempt. Similarly, receivers accept a value as lost if it is valid,
but an insufficient number of positive confirmations were re-
ceived. Finally, if Vi indicates the value is valid, the value is not
'lost', and the counter in the confirmation vector Ci indicates a
sufficient number of positive confirmations from other voting
nodes, then the value is accepted as valid.
For a received packet to be accepted as valid, there must be a
unanimous vote among the z voting nodes that the packet con-
tained a valid authenticator. To fool a single receiver into accept-
ing an injected value, an attacker must successfully forge not only

the MAC tag for that receiver, but must also successfully forge
the z-1 other tags to or from the rest of the voting nodes.
We emphasize that successfully forging one or two packets, then
provoking receivers to drop the attestation packets does not in-
crease an attacker's chance of forging a message. By dropping any
attesting packets, the packets targeted for forgery will also be
dropped by receivers.

6.5 Integrating time-triggered authentication
To amortize the bandwidth cost of authentication, we integrate
our voting technique with our prior work on time-triggered au-
thentication. Time-triggered authentication validates a message or
actuation command over a set of independent samples.
To accomplish this, our voting technique must validate each time-
triggered sample of a message type independently of other sam-
ples of the same message type. In our voting process, each packet
can only attest to prior packets, preventing interference with fu-
ture packets of the same type. To prevent interference with prior
packets of the same type we limit the number of confirmations
such that a packet does not attest to more than one sample of any
message type broadcast from a single node, nor does the current
packet attest to any previous message broadcast from the same
sender. Thus, by the time the current value of a message type is
broadcast, all nodes have completed the final verification process
for the previous value of that message type. For example, in Fig-
ure 3, three nodes each broadcast message types m1, m2, and m3
respectively. Packets of message types m2 and m3 attest to those
of type m1, but by the time the current sample of type m1 is
broadcast, the two confirmations of the previous sample of m1
have already been broadcast and processed.
This independent verification of each sample also enables quick
recovery from transient faults or masquerade attacks. As soon as
the source of transmission interference or attack ceases, receivers
simply resume authenticating over new values. Old corrupted
values cannot interfere with authentication of future values. How-
ever, a single loss will affect a few previous packets.

Figure 3 - Example TDMA schedule with non-overlapping

attestations. Receivers complete verification of m1 values us-
ing m2 and m3 by the time the next value of type m1 is sent.

6.6 Potential complications and tradeoffs
6.6.1 Packet loss
This approach introduces a design tradeoff between loss tolerance
and probability of successful packet forgery. By requiring more
secondary confirmations, we reduce the probability that an at-
tacker successfully forges individual packets. However, this also
increases the number of packets lost by a single transmission er-
ror. If a packet is lost by all nodes due to a symmetric fault, the
number of positive confirmations for the values attested to by the
lost packet will not be high enough for those values to be ac-
cepted. Nodes will drop all packets attested to by the lost packet.
One minor issue with our approach is that an asymmetric packet
loss (some receivers see a well-formed packet, while others drop

the packet) will be interpreted as invalid. MAC tags will disagree
because two nodes observed and recorded a different set of val-
ues. To resolve this, an additional bit vector (similar to the valid-
ity vector) can be transmitted to allow voting nodes to indicate
which packets were lost. While this modification is beyond the
scope of this paper, we plan to incorporate this in future work.
Lastly, while our approach recovers once transient faults cease,
permanent node failure might cause the same set of packets to be
repeatedly lost. We also plan to address this in future work.

6.6.2 Tolerating compromised nodes
Relying on secondary confirmations from other nodes introduces
a tradeoff between tolerance to compromised nodes and probabil-
ity of successful per-packet forgery. Compromised nodes could
assist in forgery attempts, attesting that a forged packet from an
attacker is valid. The probability that this secondary confirmation
is successfully forged is equal to one. To tolerate a fixed number
of compromised nodes w, a node must receive a total of z+w-1
total positive confirmations before finally accepting a value. Sys-
tem designers may trade tolerance to node compromise for in-
creased probability of successful forgery. We assume the number
of compromised nodes is limited to one or two nodes. If an at-
tacker controls multiple critical nodes participating in voting, then
the attacker can likely cause the system to fail without resorting to
masquerade attacks.

7. Model-checking
To confirm that this voting technique for authentication is secure,
we implemented and model-checked this technique using the
Automated Validation of Internet Security Protocols and Applica-
tions (AVISPA) framework [1]. Model-checking is a formal
method based technique for verifying properties of concurrent
finite-state systems. Model-checking security protocols allows
designers to identify flaws which allow an attacker to circumvent
the protocol. Our goal is to use model-checking to ensure an at-
tacker cannot successfully forge a packet despite full control over
the network, and control over some nodes. This requires verifica-
tion that our protocol provides data origin authenticity and data
integrity. In AVISPA, when testing for data origin authenticity,
data integrity is implicitly verified as well.
AVISPA uses a Dolev Yao attacker model [7], giving the attacker
full control over the network. This is similar to our attacker model
in Section 4. However, the Dolev Yao model assumes that all
cryptographic primitives are unforgeable unless the attacker ob-
tains the correct key material. We address the probability the
attacker successfully guesses authenticators in Section 8.

7.1 Model description
We implement a simple network (Figure 4) consisting of three
nodes N1, N2, and N3, broadcasting message types m1, m2, and m3
respectively. Each node is modeled as an independent process,
broadcasting and receiving according to a fixed schedule. We
model the broadcast bus using point-to-point channels, sending a
copy of every message simultaneously on each channel. However,
all messages in AVISPA are passed through the attacker [1] re-
gardless of channel definitions, resulting in a bus-like topology.

Nodes communicate according to a round-robin TDMA schedule,
in which each node takes a turn broadcasting, then the cycle re-
peats (as per Figure 3). We split the model of each node into five

time slots, allowing each node to complete our protocol on one
value of each message type (Figure 5). In each slot, one node
sends while the other two receive and vote. In this model, nodes
transmit the current value of their message type, and attest to the
validity of the most recent value of the other two (as per Section
6) Nodes compute MAC functions over the current value of their
message type, the two previous values transmitted by the other
nodes, and the validity of those two other message types. Each
node receives a direct authenticator and one indirect secondary
confirmation of validity for each message type.

Figure 4. Model of three nodes authenticating message type

m1. Node N1 directly authenticates m1 to N2 and N3. In subse-
quent time slots, N2 and N3 exchange indirect confirmations of

m1's validity and vote on the results.

Figure 5. Our model executes over five time slots, allowing

each node to cross-check each of three message types.
Assume valid m2 and m3 values have been previously transmitted
without attacker interference (for simplicity, nodes in our model
do not vote on these previous values). During time slot one, N1
sends m1 with authenticators for N2 and N3, attesting to the valid-
ity of prior values of m2 and m3. Nodes N2 and N3 receive m1 and
check its authenticity. If m1 is valid, N2 updates its value and
validity vectors for m1 and m3, while N3 updates its own vectors
for m1 and m2. If m1 is invalid, N2 and N3 reject m1 and the previ-
ous values of m2 and m3 as invalid. In time slot two, N2 broad-
casts m2 and attests to whether m1 and m3 were valid. N1 and N3
update their vectors accordingly. At the conclusion of time slot
two, N3 has received both its direct authenticator for m1 and the
secondary confirmation from N2. N3 performs a unanimous vote
on its validity vector entry for m1 and the validity included in N2's
transmission. N3 accepts the value of m1 if both the direct authen-
ticator was valid, the packet containing the secondary confirma-
tion was valid and indicated m1 was valid, and the value of m1
was not received as 'lost.' This process continues over the next

three time slots, each node voting once it has received the direct
authenticator and secondary confirmation for each message type.

7.2 Properties and results
We verified the data origin authenticity property for each message
type for all receivers using OFMC and Cl-Atse, backend compo-
nents of AVISPA that check this property [1]. To test a transmit-
ted variable for data origin authenticity, AVISPA uses a pair of
functions: witness and request. These functions also implicitly test
for data integrity. For each transmitted message, the sender exe-
cutes the witness function. This indicates to the model-checker a
node with a specific identity transmitted that value. Upon voting
and accepting a message as valid, a receiver executes the request
function. This function tests that the identity of the supposed
sender and the value itself are the same as the ones specified in
the corresponding witness function. If not, then the attacker has
managed to successfully forge a packet.
AVISPA detected one trivial attack using parallel sessions starting
in the same message round. This attack requires nodes the execute
the same protocol twice simultaneously, accepting two values in
each time slot. However, existing protocols do not allow trans-
mission of multiple packets over a bus within a time slot.
After modifying the model to disallow multiple parallel sessions,
AVISPA reported that the protocol was safe. AVISPA was not
able to find any masquerade attacks, including tests where the
attacker controlled one of the three nodes. While this model exe-
cutes among only three nodes over one message round, it demon-
strates that adding an indirect secondary confirmation from an-
other receiver does not permit an attacker successfully forge val-
ues. This confirms our expectations, as we assume an attacker
must successfully forge each MAC tag independently of others
and a receiver only accepts a value if all direct and indirect au-
thenticators agree on the value of a valid packet. However, be-
cause AVISPA assumes MAC tags are unforgeable unless an
attacker holds the key, AVISPA cannot analyze the probability
that an attacker successfully guesses truncated authenticators. We
analyze our technique against simulated attack in Section 8.

8. Probability analysis
To spoof an individual packet to a single receiver, an attacker
must successfully forge the authenticator designated for that re-
ceiver in the packet and all subsequent confirmations of validity.
The probability of successfully forging a single secure MAC tag
of b bits in length is 2-b. When attempting to forge a subsequent
confirmation, the attacker has two opportunities to succeed. First,
the attacker may succeed in forging the z other MAC tags in the
initial packet. For each initial attempt that fails (indicated by va-
lidity vectors in packets), the attacker must attempt to forge each
subsequent confirmation. The first confirmation can be forged
with probability 2-b + 2-b (1-2-b). The probability of successfully
forging each confirmation beyond the first decreases slightly with
each confirmation, because each attesting node performs a
unanimous vote on its validity vector and each previous attester's
validity vector. We do not attempt to assign an exact probability
based on these tertiary interactions; instead we use 2-b + 2-b (1-2-b)
as a conservative upper bound for each confirmation.
The probability Pp of successfully forging an individual packet
with z subsequent confirmations and at most w compromised
nodes is bounded by:

()() - - 1
2 2 2 1 2

z wb b b b
pP − − − −≤ + − (1)

Using time-triggered authentication, receivers validate state-
changing and reactive control messages over multiple packets for
each message type they consume. In prior work, we have shown
that the upper bound on the probability PA of successful masquer-
ade attack requiring k out of n valid time-triggered packets is [23]:

() (1)
n

i
p pA

i k

n
P P P

i
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ n i (2)

8.1 Experimental results
We have experimentally confirmed the probability of successful
forgery attacks against our approach using a embedded CAN
network simulator written in Java [15]. We have modified the
simulator to support TDMA scheduling and masquerade attacks.
As per our attacker model, the simulated attacker may examine,
modify, or replace any transmitted packet, so long as they obey
the network schedule.
The simulated network consists of a set of nodes, broadcasting
according to a round-robin schedule. Each node takes a turn send-
ing, then the cycle repeats. The attacker selects one message type
to forge, and attempts to fool a single receiver. After attempting to
forge the initial packet, the attacker examines subsequent packets
which attest to their forged packet. The attacker modifies any
packets that indicate the initial forgery failed (visible to the at-
tacker in the validity vector in packets). If the targeted receiver
completes the Final Verification process and accepts the forged
packet as valid and not lost, the simulator increments a counter
for successful packet forgeries.
We measured the number of successful packet forgeries over a
period of time long enough to record at least one hundred success-
ful attack events per data point. We computed the successful for-
gery rate as average successful packet forgeries per message
round and compared this rate to the probability of successful at-
tack defined in equation 1.
Figure 6 shows the successful attack rate and the expected rate
given by equation 1, varying the number of indirect secondary
confirmations from zero to four and using two bits per receiver in
each packet. Using only four confirmations decreases the prob-
ability of per-packet forgery by over two orders of magnitude,
requiring four bits in the packet for the validity vector. To achieve
a similar probability using only one MAC per receiver with zero
confirmations, each MAC tag would need to be at least eleven
bits. By using our voting mechanism, we only need three bits per
receiver and four bits for the validity vector if we use four secon-
dary confirmations, reducing authentication bandwidth costs by
eight bits per receiver.
Figure 6 also shows the experimental results initially match the
upper bound, then diverge from the upper bound as the number of
confirmations increases. This is due to nodes performing unani-
mous votes with prior attesters and passing along the result, rather
than simply sending whether they saw the initial authenticator as
valid or not. We also carried out experiments using one to four
bits per receiver, varying confirmations from zero to four, with
results that similarly support equation 1. These experiments as-
sumed zero compromised nodes.

Total secondary confirmations

0 1 2 3 4

A
ve

ra
ge

 p
ac

ke
t f

or
ge

rie
s

pe
r m

es
sa

ge
 ro

un
d

10-4

10-3

10-2

10-1

100

Upper bound (Equ. 1)
Experimental

Figure 6. Simulated per-packet forgery rates using three bits
per receiver, varying the number of secondary confirmations.

We also tested the effect of compromised nodes on the probability
of successful forgery. Figure 7 shows the effect of increasing the
number of compromised nodes on average attack events per mes-
sage round. These experiments used three bits per receiver with a
total of four secondary confirmations. The resulting successful
packet forgery rates correspond to the same rates as those shown
in Figure 6. Increasing the number of compromised nodes has the
same effect on the probability of successful packet forgery as
removing the same number of confirmations.

Compromised nodes (out of
four secondary confirmations)

0 1 2 3 4

A
ve

ra
ge

 p
ac

ke
t f

or
ge

rie
s

pe
r m

es
sa

ge
 ro

un
d

10-4

10-3

10-2

10-1

100

Upper bound (Equ. 1)
Experimental

Figure 7. Simulated per-packet forgery rates using three bits
per receiver and four total secondary confirmations, varying

the number of compromised nodes participating in voting.
Figure 8 illustrates the effect of integrating our voting technique
with our time-triggered authentication approach. Typical required
failure rates for safety-critical systems might be defined at 10-3/hr,
10-6/hr, or 10-9/hr. Figure 8 shows the number of authentication
bits per packet and number of valid time-triggered packets to
achieve a failure rate of 10-9/hr using our time-triggered authenti-
cation approach alone (zero confirmations) and when combined
with our voting technique (one, four, and eight confirmations).
The number of packets and bits were obtained using the 10-9/hr as
an expected value for one forgery attempt per millisecond over
the course of an hour, each succeeding with probability given by
equations 1 and 2. For example, given four secondary confirma-
tions, we can achieve an induced failure rate of 10-9/hr using 3
bits per receiver over five time-triggered packets.

Authentication bits per packet
2 3 4 5 6 7 8

P
ac

ke
ts

 to
 a

ut
he

nt
ic

at
e

ov
er

0

5

10

15

20

25

Zero confirmations
(No voting)
One confirmation
Four confirmations
Eight confirmations

Figure 8. Authentication bits per packet and total packets to
authenticate over required to achieve induced failure rate of
10-9/hr on one message type broadcast once per millisecond.

9. Limitations
While this approach allows more efficient use of authentication
bandwidth, it does have several limitations.
First, like our approach for time-triggered authentication, the per-
packet bandwidth overhead scales nearly linearly with the number
of receivers, limiting the maximum number of receivers in prac-
tice. With limited bandwidth for authentication, this approach
cannot scale to hundreds or thousands of receivers. However,
embedded networks typically have only tens of receivers.
Also, for simplicity this work assumes a statically scheduled
TDMA network. Nodes must all have received the same set of
message values by a particular time. This allows nodes to recom-
pute authenticators over the same set of message values without
explicitly retransmitting all values. Further, we rely on the peri-
odic broadcasts of message types in time-triggered networks. Our
voting technique partially alleviates this issue by significantly
reducing the number of time-triggered samples required, even if
only one secondary confirmation is used, as shown in Figure 8.
We also limit the number of secondary confirmations. First, the
number of confirmations must be less than the number of initial
receivers of a value. If a node did not receive a direct authentica-
tor, they cannot attest to whether the value in a packet was valid
or not. Second, for simplicity this work assumes that the confir-
mation packets of one sample of any message type does not over-
lap with the confirmation packets for any other sample for any
message type broadcast by any node.
This approach also assumes a fixed number of compromised
nodes to tolerate when determining the number of authentication
bits, history buffer size, and secondary confirmations. If the num-
ber of compromised nodes exceeds this assumed number, no
guarantees can be made about induced failure rates. However, in
an embedded network containing critical nodes, if the attacker
compromises more than one or two critical nodes they can likely
cause the system to fail without resorting to masquerade attacks.
Lastly, this work does not address permanent faults (i.e., node
failure) that permanently disrupt authentication of multiple mes-
sage types. We plan to address this in future work. Also, we do
not consider full DoS attacks intended to prevent delivery of all

network traffic. Because as discussed by Wolfe et al. [25], there
are numerous existing vulnerabilities in these networks to that
type of attack (e.g., a node can prevent all traffic by simply
broadcasting garbage values on the bus), and our scheme does not
attempt to address DoS attacks.

10. Conclusions
In this paper, we present a new technique based on voting to im-
prove overall bandwidth efficiency and reduce authentication
latency. Specifically, we take advantage of the properties of se-
cure MAC functions to vote on message value and validity
amongst multiple nodes to reduce the probability of successful
per-packet forgery, requiring only one extra bit per additional
voter in each packet. We provide a conservative upper bound on
per-packet forgery success and verify this bound through simu-
lated attack. The model-checker AVISPA confirms data integrity
and data origin authenticity of the voting mechanism. We leave a
formal security analysis for future work. However, based on the
results from model-checking, we do not anticipate this to reveal
any vulnerabilities. Combining this voting mechanism with our
prior work in time-triggered authentication allows system design-
ers to reduce the per-packet bandwidth authentication costs or
reduce application level latency while continuing to meet re-
quirements for maliciously induced failure. While our scheme
automatically recovers from transient faults with no additional
overhead, in future work we plan to improve tolerance to packet
losses due to permanent node failure.

11. Acknowledgements
This work is supported in part by the General Motors Collabora-
tive Research Laboratory at Carnegie Mellon University.

12. References
[1] The AVISPA Project. Retrieved February 2010 from

http://avispa-project.org/.
[2] R. Bosch GmbH, CAN Specification, Version 2, Sept. 1991.
[3] M. Brown, D. Cheung, D. Hankerson, J. L. Hernandez, M.

Kirkup, and A. Menezes. PGP in constrained wireless de-
vices. In SSYM’00: Proc. of the 9th Conf. on USENIX Secu-
rity Symposium, pp. 19–34, 2000.

[4] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas. Multicast security: a taxonomy and some efficient
constructions. In INFOCOM ’99: Proc. 18th Annual Joint
Conf. of the IEEE Computer and Communications Societies,
vol. 2, pp. 708–716. IEEE, 1999.

[5] H. Chan and A. Perrig, “Efficient security primitives derived
from a secure aggregation algorithm,” in Proc. ACM Conf.
on Computer and Communications Security, pp. 521–534,
2008.

[6] W. Diffie and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, vol. 22, pp. 644–
654, 1976.

[7] D. Dolev and A. C. Yao. On the security of public key pro-
tocols. In SFCS ’81: Proc. of the 22nd Annual Symp. on
Foundations of Computer Science, pp. 350–357. IEEE, 1981.

[8] FlexRay Consortium. FlexRay Communications System
Protocol Specification, Version 2.1, Revision A, December
2005.

[9] G. Franklin, J. Powell, and A. Emami-Naeini. Feedback
Control of Dynamic Systems. Prentice Hall, Upper Saddle

River, NJ, USA, 2002.
[10] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel and

M.Walther. Time Triggered Communication on CAN (Time
Triggered CAN - TTCAN). 7th International CAN Confer-
ence (ICC), 2000.

[11] S. Ganeriwal, S Capkun, C.-C. Han, and M. B. Srivastava.
Secure time synchronization service for sensor networks. In
WiSe ’05: Proc. of the 4th ACM workshop on Wireless secu-
rity, pp. 97–106. ACM, 2005.

[12] R. Gennaro and P. Rohatgi. How to Sign Digital Streams. In
CRYPTO ’97: Proc. of the 17th Annual Int’l Cryptology
Conf. on Advances in Cryptology, pp. 180–197. Springer-
Verlag, 1997.

[13] Y. Hu, M. Jakobsson, and A. Perrig. Efficient constructions
for one-way hash chains. In Applied Cryptography and Net-
work Security, pp. 423–441, 2003.

[14] C. Karlof, N. Sastry, and D. Wagner. TinySec: a link layer
security architecture for wireless sensor networks. In SenSys
’04: Proc. of the 2nd Int’l Conf. on Embedded Networked
Sensor Systems, pp. 162–175. ACM, 2004.

[15] P. Koopman. Carnegie Mellon University. 18-649 Distrib-
uted Embedded Systems. Retrieved February 2010 from
http://www.ece.cmu.edu/ ece649/.

[16] P. Koopman, J. Morris, and P. Narasimhan. Challenges in
Deeply Networked System Survivability. NATO Advanced
Research Workshop on Security and Embedded Systems, pp.
57–64, 2005.

[17] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publish-
ers, Norwell, MA, USA, 1997.

[18] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S.
Checkoway, D. McCoy, B. Kantor, D. Anderson, H.
Shacham, S. Savage. Experimental Security Analysis of a
Modern Automobile, In Proc. of the IEEE Symposium on Se-
curity and Privacy, pp.447-462, 2010.

[19] J. Morris and P. Koopman. Critical Message Integrity Over
A Shared Network. 5th IFAC Int’l Conf. on Fieldbus Systems
and their Applications, pp. 145-151, 2003.

[20] J. von Neumann. Probabilistic Logic and the Synthesis of
Reliable Organisms from Unreliable Components. In Auto-
mata Studies (Annals of Mathematics Studies, no. 34), pp.
43-99. Princeton Univ. Press, Princeton NJ, USA, 1956.

[21] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E.
Culler. SPINS: security protocols for sensor networks. Wire-
less Networks, vol. 8(no. 5):pp. 521–534, 2002.

[22] A. Perrig, J. D. Tygar, D. Song, and R. Canetti. Efficient
Authentication and Signing of Multicast Streams over Lossy
Channels. In SP ’00: Proc. of the 2000 IEEE Symposium on
Security and Privacy, pp. 56–73. IEEE, 2000.

[23] C. Szilagyi and P. Koopman. Flexible multicast authentica-
tion for time-triggered embedded control network applica-
tions. In DSN ’09: Proc. of the Int’l Conference on Depend-
able Systems and Networks, pp. 165–174, 2009.

[24] TTTech. Time-Triggered Protocol Specification TTP/C,
Version 1.1, November 2003.

[25] M. Wolf, A. Weimerskirch, and C. Paar. Security in Auto-
motive Bus Systems. Workshop on Embedded Security in
Cars, 2004.

[26] C. K. Wong and S. S. Lam. Digital Signatures for Flows and
Multicasts. In ICNP ’98: Proc. of the 6th Int’l Conf. on Net-
work Protocols, pp. 198–209. IEEE, 1998.

	1. Introduction
	2. Embedded network assumptions
	3. Related work
	3.1 Existing multicast authentication
	3.2 Embedded network security
	3.3 Fault tolerance

	4. Attacker model
	5. Background
	5.1 Baseline - one MAC per receiver
	5.2 Time-triggered authentication overview
	5.2.1 Time-triggered message generation
	5.2.2 Time-triggered message verification

	6. Voting on message authenticity
	6.1 Enabling properties
	6.2 State variables and functions
	6.3 Message generation for voting
	6.4 Message verification and voting
	6.4.1 Receive process
	6.4.2 Final Verification process

	6.5 Integrating time-triggered authentication
	6.6 Potential complications and tradeoffs
	6.6.1 Packet loss
	6.6.2 Tolerating compromised nodes

	7. Model-checking
	7.1 Model description
	7.2 Properties and results

	8. Probability analysis
	8.1 Experimental results

	9. Limitations
	10. Conclusions
	11. Acknowledgements
	12. References

