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ABSTRACT
In this paper, we present a novel concept named seman-
tic component for 3D object search which describes a key
component that semantically defines a 3D object. In most
cases, the semantic component is intra-category stable and
therefore can be used to construct an efficient 3D object re-
trieval scheme. By segmenting an object into segments and
learning the similar segments shared by all the objects in
the same category, we can summarize what human uses for
object recognition, from the analysis of which we develop
a method to find the semantic component of an object. In
our experiments, the proposed method is justified and the
effectiveness of our algorithm is also demonstrated.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering

General Terms
Algorithms, Design
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1. INTRODUCTION
Effective representation and visualization of an object in

3D are of great importance in current multimedia applica-
tions. Though we can obtain 3D raw data1 much more eas-
ier due to the advance of technology, machine understanding
and characterization of the data are still challenging tasks.
Some basic concepts, such as how similar one object is to
the other, are still hard to define mathematically such that

1Here 3D raw data mean the data of an object represented
by meshes, voxels, or range values, etc.
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Figure 1: Recognition of objects by learning resem-
blance and dissimilarity.

they can match our visual perception. These difficulties re-
sult in deficiency in content based searching, indexing, and
classification of 3D objects.

By tackling 3D objects from different aspects, many de-
scription features and similarity measures have been pro-
posed in the literature. Some applications can be tried online
(such as Princeton 3D model search engine2). Regarding the
characteristics used, most methods that handle 3D objects
can be categorized into five groups: (i) tackling an object as
a whole [9, 10], (ii) local features [1, 11], (iii) spatial maps
and distributions [12, 8, 13], (iv) structures [7, 2, 16], and (v)
2D view based [3, 14]. To deal with more shape variations
and to achieve better performance, a mixture of methods
from different groups is a reasonable approach often used by
researchers.

In a common scenario, a feature is extracted from an ob-
ject and then is used in a specific application, such as ob-
ject retrieval, to justify its effectiveness. In this application,
usually the features from two 3D objects are compared by a
similarity measure. This procedure has been followed many
years with some fundamental flaws ignored. In these flaws,
the most inconspicuous is that an extracted feature depends
on its corresponding object in some specific shape/pose. The
feature extraction in this way is far from the approach in-
volving in human recognition of 3D objects.

Take the recognition of the objects in Figure 1 as an exam-
ple. By giving a feature f and feature data fa, fb, fc, and fd
extracted from the four objects. Machine takes two feature
data as input and then gives a similarity estimation. Con-
sider the same horse with different poses shown in (a) and
(b). Ideally, fa and fb should be exactly the same. However,
they usually should exhibit some difference if we want the
feature f has more discriminative power, such that in the
case of comparing (c) and (d), fc and fd can be separated
from each other. Therefore, a proper tradeoff between in-
variance and discriminativity has to be carefully considered
when we design a feature. Unfortunately, determining such

2http://shape.cs.princeton.edu/search.html
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Figure 2: Examples of semantic components (the
blue bodies).

a tradeoff is a very tricky task. However, human can easily
overcome the difficulty by learning from given objects, per-
ceiving different and similar components between objects
and then pay distinct attentions to various aspects of ob-
jects. Can machine learn in a similar manner?
Notice that the objects from (a) to (d) in Figure 1 share

some very similar components — their limbs. They are not
distinctive among the objects and play a minor role in the
recognition of these objects, i.e., we may not notice the dif-
ference of limbs but still can easily conclude that both (a)
and (b) are horses, and at the same time distinguish (c)
from (d). Ignoring components like the limbs leads to the
following benefits for machine recognition of 3D objects:

i) The intra-category invariance is increased. For ex-
ample, for the two objects (a) and (b) in Figure 1,
considering the main bodies of them without the limbs,
they can be easily matched.

ii) The inter-category variance is increased too. Take
(c) and (d) in Figure 1 as an example. Similar limbs
between them could mess up the obtained feature data
and raise the similarity between them.

Through extensive observation, we know that most objects
contain a key component, by which they are semantically
defined. The fact that we can recognize a horse and distin-
guish it from a cow is not because of their limbs but their
main bodies. For a general object, determining its visual key
component is not trivial. In what follows, we discuss how
to define the key component, called semantic component,
for a given object and develop an algorithm to locate it. We
also explore its applications and discuss its pros and cons.

2. SEMANTIC COMPONENT
As what we mentioned above, we try to understand an

object by its key component which carries the main seman-
tic meaning to identify the object. It should be noticed that
semantic component for an object can be composed of more
than one basic segments. For example, the semantic compo-
nent of a chair includes its back and seat base. The semantic
component can also change due to different context and the
learning data offered. For example, if we consider the cate-
gory of horses, then the semantic component is the trunk of
a horse. However, if we consider the category of quadrupeds,
then the limbs become the semantic component.
Suppose that there are a set of 3D objects O1, · · · ,OM

composed of K categories, a decomposition scheme Ψ of
each object, and a similarity scheme Γ. For each category,
say, the kth, we have a set of segments C1, · · · , CMk , which
can be obtained by some over-segmentation algorithm such
as [5] from all the objects in the k-th category. Regard Ci

as an object and let Cij be the similarity between Ci and
Cj , where

Cij =

{
0 Ci and Cj from the same object,
Γ(Ci, Cj) otherwise.

(1)
We can have a similarity matrix C = [Cij ]. By feeding it
to a clustering algorithm such as spectral clustering, we can
easily have a 2-cluster partition of the segments. The cluster
with higher intra-similarity represents the collection of the
segments whose shapes are commonly shared by the objects
in the kth category. The collection of the segments in this
cluster is defined as semantic components.

An experiment that follows the above method is carried
out by randomly choosing a set of 3D objects from the
Princeton shape benchmark. The set consists of 50 objects
from 5 categories. Some examples of semantic components
derived in this experiment are shown in Figure 2. By re-
peating the experiment many times (more than 100) and
observing the obtained semantic components for the objects,
we notice that the semantic components are usually bulky
and unwieldy parts of the objects. It is reasonable because
articulated components usually can change sharply, lead-
ing to lower intra-category similarity. Therefore, articulated
parts generally are not included in the cluster that defines
the semantic components.

In practical applications, the category labels of the objects
in a database are usually unknown. Therefore, we cannot
follow the method above to obtain semantic components.
Next, we develop a method that can separate an object into
two components, one of which is the semantic component.
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Figure 3: Illustration of the segmentation procedure
on a horse. (a) A walk on the mesh to generate a
path p1, · · · , pn, with the “flexibility” along the path
computed. Only one path is shown here. (b) Us-
ing the flexibility values for the points to categorize
the points into two classes, and marking the m-step
neighborhood. For convenient observation, here we
set m = 1. (c) Using the randomized cut to obtain a
refined segmentation cut. The white region denotes
the candidates.
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In the discussion above, we ignore the details of the de-
composition scheme Ψ. How to segment a 3D object into
several segments is a traditional topic in computer graphics.
Numerous methods have been proposed in the literature [4,
15]. However, most methods cannot be used in our task be-
cause they serve for graphics processing purpose, instead of
providing semantic information of objects. Moreover, these
methods usually provide over-segmentation which is too del-
icate to shape variations. To meet our requirement that an
object is partitioned into two components with one being
semantic, we develop a new segmentation approach in the
following.
Inspired by [17, 6], we find that the flexibility feature can

be used to represent the bulkiness of object parts. The flex-
ibility gives each point on an object a value which denotes
the deformable potential at that point. To use the flexibil-
ity to guide segmentation, we define a random walk path on
an object surface mesh, p1· · ·pn, where vertices pi and pi+1

(1 ≤ i < n) are neighbors on the mesh and n is set to one half
of the number of vertices on the mesh. By separating the
flexibility values at p1, · · · , pn into two clusters, we can de-
rive a labeling for vertices on the path. Select those vertices
whose m-step neighbors3 are with different labels and mark
the triangle patches containing the vertices as segmentation
candidates4. By repeating the process many times (100 in
our case), multiple paths and their corresponding candidates
can be found. With these candidates, we then use the ran-
domized cut [5] to obtain the segmentation. The procedure
can be seen from Figure 3.
By the above segmentation scheme, L segments, C1, · · · , CL,

are obtained from an object. We can have a flexibility vector
Hi for each Ci, where Hi is the histogram of the flexibility
values for the points on Ci. Taking each Hi as a sample
and feeding them into a clustering algorithm (such as K-
means), we obtain two clusters that classify the segments
into semantic and non-semantic components.
We compare the semantic components obtained by the

steps as shown in Figure 3 with those derived by the learn-
ing process as we discuss at the beginning of this section. A
number of objects with their semantic components are com-
puted by the two approaches. We find that they generate
very similar results. This indicates that the later method
is effective without the need of a group of labeled objects,
even though it handles one object each time.
In above discussion, we do not consider the topological

structure among the segments C1, · · · , CL. To obtain a more
robust similarity measure, we take the connecting relation-
ship between components as another feature. The structure
can be represented by a graph and the matching between
two graphs defined in [16] can be used to gauge the struc-
tural similarity between two objects.

3. IMPLEMENTATION & EXPERIMENTS
In this section, we describe the implementation of the

method proposed in Section 2. We also show the effective-
ness of our method with a set of experiments.
In these experiments, one critical element is to define a

similarity measure between two given objects Oa and Ob.

3Two vertices are m-step neighbors when the minimum
number of edges between them is less than or equal to m.
4Segmentation candidates are meshes confining that the fu-
ture segmentation can only occur on them.
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Figure 4: The improvements by exploiting semantic
component(SC) on the McGill 3D shape benchmark.
(a) Compared with LFD. (b) Compared with AAD.

For each object Oi, i = a, b, we can have a duple 〈Si, Ni〉,
where Si is the semantic component and Ni is the non-
semantic one. Note that Si or Ni can contain multiple seg-
ments of an object. For Si, which is usually the main body
of the object without articulated segments, many matching
schemes, including those using relatively simple geometrical
or local features, can be used to handle the component. On
the other hand, for non-semantic components, those meth-
ods suitable for semantic component matching may not work
well any more. In this case, a similarity measure employing
object structure may achieve better performance.

Therefore in our scheme, we compute two measures Γs and
Γn and then combine them to obtain a similarity measure:

`Oa,Ob = Γs(Sa, Sb)[Γn(Na, Nb)]
ν , (2)

where Γs and Γn are the similarities for semantic and non-
semantic components respectively, and ν is a constant to
balance Γs and Γn (ν = 0.5 in this paper). In the follow-
ing experiments, Γn comes from the connecting component
structure as discussed in Section 2. For Γs, we employ two
well-known similarity measures and test if our approach can
improve their performance.

The experiments are carried out on two most commonly
used data sets, McGill5 and Princeton6 3D shape bench-
marks. The two well-known measures are AAD shape dis-
tributions [13] and Lightfield (LFD) [3], which are used to
compute Γs in (2) after each object is decomposed into two
components.

In the experiments on the McGill 3D shape benchmark,
we use objects in i) a specific category (say ant), ii) an ar-
ticulated object set, and iii) the whole database as queries
to test the average retrieval performance. The results are
shown in Figure 4 (a) and (b), where the dash lines are
the P-R curves for using LFD and AAD only, and the solid
lines are for our scheme with SC short for semantic com-
ponent. The lines with the same color are a pair showing
the performance when the queries are from the above three
cases. The improvements of retrieval performance with both

5http://www.cim.mcgill.ca/∼shape/benchmark.
6http://shape.cs.princeton.edu/benchmark.
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Figure 5: Tests on non-artificial objects from the
Princeton 3D shape benchmark.

measures AAD and LFD on articulated objects (including
ants) are most significant. There is about 20% precision
increase at the same recall level on average. It is not sur-
prising that there is no so distinct improvement for objects
without articulated parts. However, we can still have nearly
10% precision improvement on the whole database.
We also test our method on Princeton 3D shape bench-

mark (PSB) with LFD and AAD. All non-artificial objects,
which are generally considered as the toughest challenge to
3D object retrieval, are included in our experiments. In
Figure 5, first we show the performance when taking human
bodies, a class of typical objects in PSB, as queries. We
can see that the precision rate can be 10%–20% better when
we demand a high recall rate. On average we can achieve
about 5% higher precision, compared to the original LFD
method. Generally, the experiments on all non-artificial ob-
jects result in 4%–5% precision improvement. Similarly, our
method can improve the precision of AAD about 5% to 8%
when the recall rate is high.

4. DISCUSSION AND CONCLUSION
In this paper, we have presented a novel concept named

semantic component to describe the key component that
semantically defines an object. In most cases, the semantic
component is intra-category stable and therefore can be used
to construct an efficient object retrieval scheme. We have
also proposed a method to segment an object and then to
find its semantic component. In the experiments, our theory
is justified and the effectiveness of the proposed scheme is
demonstrated.
From our experiments, we also notice that our scheme

gives less improvement when dealing with objects without
articulated parts. In many cases like this, the semantic com-
ponent of an object is the object itself. Sometimes, we can-
not find semantic component for an object. Take snake as
an example. Given a set of learning samples in various con-
figurations, We can hardly learn a component shared alike
among the samples since the shape of a snake body is equally
tenuous at any part. With our theory we can expect a struc-
ture involved measure, like those using skeleton, can achieve
a better performance on these objects.
In our future work, we plan to build an object component

warehouse including a comprehensive collection of everyday
objects. With it we can learn which part or structure is se-
mantically important to each object in the warehouse, from
which we can obtain a better understanding of human per-
ception of 3D objects.
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