
Research Issues in Databases for ARCS: Active Rapidly
Changing data Systems

A n i n d y a D a t t a

Dept . of MIS

Univers i ty of Ar izona

Tucson, AZ 85721
ada t t a@looch i . bpa . a r i zona . edu

A b s t r a c t

We identify an emergent class of database systems
that has not been dealt with extensively in the lit-
erature that we call ARCS (Active, Rapidly Chang-
ing data Systems) databases. These systems impose
certain unique requirements on databases that mon-
itor and control them. These requirements are such
that traditional data and transaction management
models appear inadequate. We present an analy-
sis of data and transaction characteristics in ARCS
systems and identify relevant research issues.

1 I n t r o d u c t i o n

In this paper we analyze the characteristics of an
emergent class of database systems that we call
ARCS (Active Rapidly Changing Systems). Ex-
amples of such systems include telecommunications
network management systems, manufacturing sys-
tems, process control, air traffic control. Typically
in such systems, the database models a real world
environment where the state changes rapidly (i.e.,
link parameters in a network) and it is required to
take corrective/restorative actions when unaccept-
able events occur in the environment (e.g., link uti-
lization going beyond unacceptable bounds). The
general system model that has been proposed for
such systems include the following features:

• The database is the repository of all system
information that need to be accessed or ma-
nipulated.

Monitoring tools (commonly known as sen-
sots) are distributed throughout the real sys-
tem being modeled. These sensors monitor the
state of the system and report to the ARCS
database. Such state reports arrive at the
database in very high frequency (e.g., each sen-
sor reports every 60 seconds)

The correct operation of the system requires
the application of controls i.e., in the event
of semantically incorrect operation of the sys-
tem, certain actions need to be taken. We call
such actions control actions. Such actions are
taken from within the ARCS database (where
active objects signal events) by automatic con-
trol mechanisms and are communicated to the
real system using database executors.

Typically, control actions need to be performed
under temporal constraints, e.g., it the temper-
ature in a reactor has reached 80 deg, certain
actions need to be taken within 60 seconds.

In order for a database to monitor and control such
a system, it needs active, temporal and real time
capabilities. In this paper we identify the data and
transaction characteristics of ARCS databases, and
discuss relevant research issues.

2 D a t a C h a r a c t e r i s t i c s in
A R C S

We classify ARCS data into two main categories:

8 S IGMOD RECORD, Vol. 23, No. 3, September 1994

http://crossmark.crossref.org/dialog/?doi=10.1145%2F187436.187442&domain=pdf&date_stamp=1994-09-01

2.1 Sensor D a t a

Sensor (o r measurement) data is the raw informa-
tion that is received from the system monitoring
processes. Since ARCS systems tend to be ex-
tremely dynamic, the value of sensor data items
usually change very rapidly. Typically sensor data
represents dynamic performance characteristics of
the system. For example, in the case of network
management databases, the sensor data may in-
clude variables such as node queue lengths, retrans-
mission rates, link status and call statistics. One
assumption we make is that sensors are distributed
and work in their own private data parti t ion - thus
a particular instance variable is always reported by
one particular sensor. Usually each sensor's data
arrives in the database at a regular frequency un-
der normal system operation. However, under ex-
traordinary conditions (e.g., fault conditions in a
network) sensors may generate data at a higher rate
than normal. Sensor data, though in many respects
similar to notions of data in real t ime systems, has
certain differences. For example, it is required, for
certain data to be persistent e.g., security viola-
tions, customer billing information etc. In typical
ARCS databases (such as one for network manage-
ment) several gigabytes of sensor data need to be
processed per day [3].

2.2 N o n Sensor D a t a

These are data items that are more "permanent",
in the sense that non-sensor data items retain their
value for longer durations. In that sense these
data items resemble the notions of data in classi-
cal databases. We classify non-sensor data into two
further subclasses.

2.2.1 S t r u c t u r a l Data:

In contrast to sensor data, structural data is com-
posed of "static" (slowly changing) information. In
the case of network management databases, such
information may include network topology, the con-
figuration of network switches and trunks, the data
encryption keys etc. Most of the structural data is
stored at system initiation time and is changed at
a moderate rate consistent with classical database
applications such as banking. An important point
to note is that unlike sensor data, structural data
is valid even when the system is not in operation.

2.2.2 Contro l Data:

The final and very critical category o f data is con-
trol da ta which captures the setting of the system
tuning parameters. It is this class of data that char-
acterizes ARCS databases as not only repositories of
data but also as control systems. In network man-
agement databases control da ta are information like
maximum flows in individual trunks, the traffic split
ratios on output links of switches, the routing table
etc. Control da ta is changed from within the system
and such changes affect the operational dynamics of
the network. For example, changing the maximum
flow rate on a particular link may increase link uti-
lization on that link while decreasing delay for the
overall system. The process of changing an existing
set of control settings may be initiated in two ways:

• By human operators;

• By automatic triggering of control processes as
a function of the information contained in the
sensor data;

In addition to the above classification, we also view
ARCS data from another perspective. There is a
class of data items, the updating of which may
invoke control actions. These are called reactive
items. An example of a reactive at tr ibute for a net-
work management database is the link-utilization
data item for any link object. Updating of the
link-utilization data item invokes rules such as i f
link-utilization is g r e a t e r t h a n 80%~ r e d u c e
transmission-rate o n a t t a c h e d n o d e s . As we will
see in the next section, the updating of reactive at-
tributes leads to the generation of control transac-
tions in the system.

3 T r a n s a c t i o n C h a r a c t e r i s t i c s

Examination of transaction characteristics yields
three different types of transactions:

1. S t a t e R e p o r t i n g T r a n s a c t i o n s (SRT):
SRTs are transactions that are generated by sen-
sors dispersed throughout the entity being modeled
(e.g., a heterogeneous communications network).
These transactions report the current states of re~l
world objects and thus consist purely of S E T (X)
operations. In most dynamic systems these transac-
tions are generated at a high frequency (e.g., every
15 see.). These transactions do not conflict with

SIGMOD RECORD, Vol. 23, No. 3, September 1994 9

each other as the network monitoring tools (i.e.,
sensors) work in private data partitions. Also these
updates are different for conventional database up-
dates in that the updated value is independent of
the current value of the data objects. These are
referred to as blind writes [2]. Thus, due to the ab-
sence of write-write conflicts between these trans-
actions no explicit concurrency control is necessary
to prevent such conflicts. Adopting a data centric
view, it may be stated that since these transactions
work on dynamic performance data no explicit con-
currency schemes need to be defined for these data
items. However, since it is important to ensure that
the database project a coherent state of the real
world, SRTs need to be atomic, i.e., we cannot al-
low these transactions to commit their operations
on some objects and not on others.

2. Q u e r y i n g T r a n s a c t i o n s (Q T) : QTs are gen-
erated by readers of MIB data - typically human
users, and consist of GET(X) operations. QTs may
want to read both sensor as well as non-sensor in-
formation. Certain interesting scenarios arise when
QTs want to read sensor data, i.e., conflicts arise be-
tween operations of QTs and SRTs. As we show in
section 4.1, enforcing serializability to resolve these
conflicts appear to be too restrictive. Typically,
QTs are expected to fulfill two conditions:

• The Coherency Condition: The values re-
turned by QTs (of sensor data) must reflect a
coherent state of the database. However, this
notion of coherency is somewhat different from
the standard definition of consistency. Notions
like snapshot consistency [5] may be used.

* The Recency Condition: The values returned
by QTs must reflect as recent a state of the real
system as possible. This is a problem in the
case of sensor data that changes very fast - we
show later that standard concurrency control
mechanisms do not provide adequate recency.

3. C o n t r o l A c t i o n T r a n s a c t i o n s (C A T) :
CATs are transactions that are generated due the
invocation of automatic control actions inside the
database. Please note that control transactions may
also be generated due to operator intervention. The
goal of of active systems is to reduce the need of
such interventions so that the system itself may take
care of situations. In such situations it is of criti-

cal importance to ensure the correct behavior of the
system.

CATs are generated by the updating of reactive
attributes (usually by SRTs but also potential ly by
other CATs). Such updates generate events and
rules and the CATs are generated through the AC-
TION part of rules. In such situations there is a
potential of transaction spreading i.e., where the ef-
fect of one CAT invokes one or more other CATs.

It is clear from the above discussion that CATs
exhibit characteristics that fit the definition of
nested transaction models [12]. This is so because,
the generation of a CAT may lead to the updat ing
of other reactive data items which may lead to the
generation of other CATs and so on.

4 R e l e v a n t I s sues in A R C S
D a t a b a s e R e s e a r c h

4 . 1 W h y a r e C o n v e n t i o n a l T r a n s a c -

t i o n M o d e l s N o t S u i t a b l e f o r

A R C S T r a n s a c t i o n s ?

Conventional transaction models (i.e. commutat iv-
ity based models) appear too restrictive for ARCS
because of several reasons, especially with respect
to the execution of SRTs and QTs. We provide two
reasons below in sections 4.1.1 and 4.1.2.

4.1.1 I r r e l e v a n c y o f C a s c a d i n g A b o r t s

The issue of cascading aborts (or the avoidance of
this phenomenon) has been one of the fundamental
guiding forces behind the development of conven-
tional transaction models of concurrency [7]. Con-
sider for example, the following execution subhis-
tory of three transactions 1 :

readl (X, 1), writer(x, 4), reads(x, 4),

writes(y, 7), read3(y, 7), write3(z, 8)

In the above history, according to conventional
transaction models, if transaction 1 (t l) aborts, we
must remove its effects from the database. However,
since ts read (through the operation reads(x,4))
the value of a data item written by t l , effectively
it read a value that does n o t really exist (as the

1 Please note that in this execution sequence we assume
immediate effect of operations, i.e., the effects of an operation
are visible immediately. A similar analysis may be provided
assuming de]erred effect

10 S I G M O D R E C O R D , Vol. 23, No. 3, S e p t e m b e r 1994

effect of tl is eliminated). Thus t2 would need to
be aborted. Following the same logic, t3 would now
need to abort as it read uncommitted update of
t2. This phenomenon is known as cascading aborts
and it helps shape the notion of failure atomicity in
conventional transaction models. As shown in the
following example, because of particular semantics
of ARCS data and transactions, cascading aborts is
not an issue when dealing with sensor data.
ExAmple : Consider an object K, with sensor data
item X and non-sensor data item Y. Further as-
sume that X is a reactive attribute, i.e., when X is
updated, there is potential for rule activation and
consequent generation of CATs. Now consider the
following interleaving of two transactions ti and t j ,
that both access object K.

SET] (X, vl), SETj (Y, v2), aborti

We provide the following semantic interpretation
for the above interleaved sequence of operations: ti
is a SRT, which sets the value of data item X to
vl. X being a reactive attribute, this update leads
to rule activation and generation of the CAT tj.
This CAT takes the control action of setting control
data item Y to v2. Subsequently ti aborts. Accord-
ing to the theory of cascading abort, tj should also
abort now, as a dependency exists bet.ween tj and
ti. However the semantics of sensor data are such
that tj need not abort. This is because:

• tl reports the state of the system. Thus, in
spite of the abortion of ti, the fact that the
state of X is vl in the real system, is true.
Thus the reason for the invocation of tj still
holds good (remember tj is a CAT invoked as
a result of X being set to vx). To consider
a real life example, in the network manage-
ment scenario, assume X refers to the data
item link-utilization. Needless to say, the val-
ues of link-utilization for all links is rapidly
changing, and is being reported by SRTs. link-
utilization is also a reactive attribute, as there
exists a rule of the form i f l ink u t i l i z a t i o n
o n a n y l ink e x c e e d s 90%, r e d u c e t h e
sp l i t r a t i o o n t h a t l ink b y 10%. Thus ev-
ery time link-utilization is updated this rule is
checked. Now, it is easy to see the validity of
the general example given above, by substitut-
ing Y = split - ratio, and vl = .92.

4 .1 .2 T h e N o t i o n C o r r e c t n e s s o f E x e c u t i o n
o f a S e t o f T r a n s a c t i o n s

In traditional transaction models, the notion of cor-
rectness for the execution of a set of transactions is
serializability. Serializability requires that an ex-
ecution be equivalent to one that would have oc-
curred without any concurrency in the system. Sev-
eral variations of the serializability paradigm have
been proposed [1, 6]. However, most transaction
models require some sort of serialized execution. In
other words, users (transactions) must not see the
effects of concurrent execution. However, the se-
mantics of ARCS transactions validate the correct-
ness of non-serialized execution, as shown in the
example below.
E x a m p l e : Assume the following interleaved sub-
history of the concurrent execution of two transac-
tions ti and tj. Further assume that ti is a SRT
while tj is a QT.

set i (X , Vl), get j (X , v 1), set i (Y, ~v2) ,

getj (Y, v2), commit j , . . .

The above execution is clearly not a serializable exe-
cution as the effect of ti is visible to tj while they are
executing concurrently. However, from the ARCS
perspective it is an allowable schedule because tj is
reporting a coherent state of the systems as it re-
'turns values that occur together in the system. Ac-
tually, enforcing serializability in this context would
only lead to decreased flexibility as it would stipu-
late unnecessary restrictions on scheduling. A corol-
lary to the above argument is that in ARCS scenar-
ios we have a different notion of consistency than
traditional systems. This issue is explored in the
next section.

4 . 2 N o t i o n s o f C o n s i s t e n c y i n A R C S

D a t a b a s e s

Apropos the above discussion, ARCS consistency
is different from consistency in classical database
application, where satisfaction of the ACID prop-
erties ensures consistency l]. Clearly, one measure
of ARCS database consistency is how closely it rep-
resents the real environment being monitored and
controlled. This is, in many respects similar, to no-
tions of temporal consistency [17], where two com-
ponents of consistency are defined:

• A b s o l u t e C o n s i s t e n c y : Keeping state of the
database objects within certain temporal limits

S I G M O D R E C O R D , Vol. 23, No. 3, S e p t e m b e r 1994 11

of the state of the corresponding environment
objects. This limit is called the absolute valid-
ity interval.

Rela t ive Consis tency: A Relative Consis-
tency Set R, is defined to a set of data items
used to derive a new data item, e.g., connec-
tivity and current link utilization information
may be used to derive routes for network traffic.
Relative Consistency is involved in keeping the
base data items (i.e., members of R) within cer-
tain temporal limits of each other. This limit
is termed the relative validity interval.

These ideas, though important to consider in ARCS
databases, need to be significantly expanded as
they appear not take into account the active and
real-time dimensions of ARCS databases. For in-
stance, taking the active nature of ARCS into ac-
count would change the notion of absolute temporal
consistency criterion which is defined as [13]:

(current . t ime -- dtimestamp) <_ davi

where d is any data item, and davi denotes d's ab-
solute validity interval. This definition implies that
the state of environment objects always changes
before that of database objects, i.e., the database
objects always lag the real objects in the outside
world. This is true in a passive monitoring sys-
tems. However, in ARCS databases, events in the
outside world may trigger actions in the database
which may change parameters in the database first,
which would subsequently be propagated to the en-
vironment.

Also, absolute and relative consistency definitions
do not explicitly consider real time characteristics
[13] of ARCS, i.e., they do not explicitly consider
the time constraints on query and transaction pro-
cessing. Thus, in temporal databases, when en-
vironment state changes, it does not cause an in-
place update of data base object, but rather involves
creating a new version. Real time systems how-
ever, have viewed an environment change as caus-
ing a modification in corresponding database enti-
ties. Also, transactions are usually allowed to access
only current, valid information in the database. In
ARCS however, it is required to store historical as
well as current data, while allowing modifications
to both data classes.

5 Conc lus ion: C o n c r e t e Re-
search Q u e s t i o n s in A R C S
D a t a b a s e s

5.1 A n A c t i v e , T e m p o r a l , R e a l T i m e
D a t a M o d e l

Clearly, an expressive data model is the first or-
der of business. Modeling activity for ARCS can
benefit a great deal from the recent upsurge in ef-
forts to provide database support for complex new
applications such as CAD and scientific databases.
Also, there exists several data models for active
databases [8, 11] as well as temporal databases
[14, 15, 16]. Recently, there also has been some
attempts to incorporate real time characteristics
in temporal databases [13], integrating active and
temporal databases [9, 10] as well as integrating
real time and active systems [4]. There appears
to be a consensus among researchers, that com-
plex data models should be specified in the con-
text of simpler, well established ones such as rela-
tional and object-oriented models. Object-Oriented
(OO) models appear to be a good starting point for
ARCS databases, as they naturally model complex
application domains such as network management
or manufacturing. Thus, an approach with promise
would be to take the basic OO model and enhance
its functionalities. Certain specific questions that
need to be answered are:

1. How to model versions of active, real time ob-
jects?

2. How do we represent complex triggering con-
straints (i.e., the violation of which will trigger
CATs) and temporal constraints? Possible ways
range from representing constraints as rules and
storing them as first class objects that may be
manipulated like environmental objects (weak cou-
pling) or modeling constraints as database consis-
tency constraints (strong coupling) (i.e., if a con-
straint is violated database is inconsistent) and
letting the concurrency control mechanism handle
restorative action. The first approach has been ex-
plored by researchers [4, 11] while we have postu-
lated the second approach. The second approach
appears to be promising for reasons beyond the
scope of this paper.

12 S IGMOD RECORD, Vol. 23, No. 3, September 1994

5.2 An Active, Temporal~ Real Time
Transact ion Model

This is yet a wide open research area. In section 3
we briefly identified classes of ARCS transactions
and in section 4.1 we showed some examples of the
unsuitabili ty of serializability based models. Some
specific questions that need to be answered are:

1. Under ARCS conditions do transactions preserve
global consistency? In other words, does the tra-
ditional definition of transaction hold for ARCS
databases? Assume tha t an event happens in the
environment that violates some consistency con-
straint. The SRT that reports this to the database
is going to render the database inconsistent, even
though this inconsistency is s imply a reflection of
the "true" state of the environment. In order to
handle situations like these, it may be necessary to
rethink the definition of a "correct" transaction in
a ARCS database.

2. How to formulate scheduling algorithms tha t take
into account t iming constraints as well as resource
constraints?

3. How to do contingency planning, i.e., in the face
of temporal constraints how does the system choose
the "optimal" control action? This implies the
need for a mechanism to perform a priori t ime es-
t imates of actions, i.e., a mechanism to est imate
upper bounds of transaction execution times..

R e f e r e n c e s

[1] F. Bancilhon, W. Kim, and H.F. Korth. A Model
of CAD Transactions. In Proceedings of VLDB,
Stockholm, pages 25-33, September 1985.

[2] P. Bernstein, V. Hadzilakos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, MA, 1987.

[3] Sprint Network Management Center. Site Visit,
April 1992.

[4] S. Chakravarthy and D. Mishra. Snoop: An Ex-
pressive Event Specification Language for Active
Databases. Technical Report UF-CIS-TR-93-007,
Dept. of CIS, University of Florida, 1993.

[5] A. Datta. A Semantic Transaction Management
Model for ARCS - Active, Rapidly Changing data
Systems. Working Paper, MIS Dept., University of
Arizona, 1993.

[6] W. Du and A.K. Elmagarmid. Quasi Serializabil-
ity: a Correctness for Global Concurrency Control

in Interbase. In Proceedings of the Fifteenth In-
ternational Conference on Very Large Data Bases,
pages 347-355, 1989.

[7] A.K. Elmagarmid, Y. Leu, J.G. Mullen, and
O. Bukhres. Introduction to Advanced Trans-
action Models. In A.K. Elmagarmid, editor,
Database Transaction Models for Advanced Appli-
cations, pages 34-52. Morgan Kaufman, 1989.

[8] O. Etzion. PARDES - A Data Driven Oriented
Active Database Model. SIGMOD-RECORD,
22(1):7-14, 1993.

[9] O. Etzion, A. Gal, and A. Segev. Temporal Sup-
port in Active Databases. In Proceedings of the
Second Workshop on Information Technologies and
Systems (WITS), December 1992.

[10] O. Etzion, A. Gal, and A. Segev. Temporal Ac-
tive Databases. In Proceedings of the Interna-
tional Workshop on an Infrastructure for Temporal
Databases, June 1993.

[11] N.H. Gehani and H.V. Jagadish. Ode as an Active
Database: Constraints and Triggers. In Proceed-
ings of VLDB, Barcelona, September 1991.

[12] E. Moss. Nested Transactions. MIT Press, Cam-
bridge, Massachusetts, 1985.

[13] K. Ramamritham. Time for Real-Time Tempo-
ral Databases. In Proceedings of the Interna-
tional Workshop on an Infrastructure for Temporal
Databases, June 1993.

[14] E. Rose and A. Segev. TOODM - A Temporal
Object-Oriented Data Model with Temporal Con-
straints. In Proceedings of the lOth International
Conference on the Entity.Relationship Approach,
pages 205-229, 1991.

[15] E. Rose and A. Segev. A Temporal Object-
Oriented Algebra and Data Model . Technical Re-
port LBL-32013, Lawrence Berkeley Laboratories,
1992.

[16] R. Snodgrass and I. Ahn. A Taxonomy of Time in
Databases. In Proceedings of A CM SIGMOD, June
1985.

[17] X. Song and J.W.S. Liu. How well Can Data Tem-
poral Consistency be Maintained. In Proceedings of
the IEEE Symposium on Computer-Aided Control
Systems Design, 1992.

SIGMOD RECORD, Vol. 23, No. 3, September 1994 13

