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A b s t r a c t  

We identify an emergent class of database systems 
that has not been dealt with extensively in the lit- 
erature that we call ARCS (Active, Rapidly Chang- 
ing data Systems) databases. These systems impose 
certain unique requirements on databases that mon- 
itor and control them. These requirements are such 
that traditional data and transaction management 
models appear inadequate. We present an analy- 
sis of data and transaction characteristics in ARCS 
systems and identify relevant research issues. 

1 I n t r o d u c t i o n  

In this paper we analyze the characteristics of an 
emergent class of database systems that we call 
ARCS (Active Rapidly Changing Systems). Ex- 
amples of such systems include telecommunications 
network management systems, manufacturing sys- 
tems, process control, air traffic control. Typically 
in such systems, the database models a real world 
environment where the state changes rapidly (i.e., 
link parameters in a network) and it is required to 
take corrective/restorative actions when unaccept- 
able events occur in the environment (e.g., link uti- 
lization going beyond unacceptable bounds). The 
general system model that has been proposed for 
such systems include the following features: 

• The database is the repository of all system 
information that need to be accessed or ma- 
nipulated. 

Monitoring tools (commonly known as sen- 
sots) are distributed throughout the real sys- 
tem being modeled. These sensors monitor the 
state of the system and report to the ARCS 
database. Such state reports arrive at the 
database in very high frequency (e.g., each sen- 
sor reports every 60 seconds) 

The correct operation of the system requires 
the application of controls i.e., in the event 
of semantically incorrect operation of the sys- 
tem, certain actions need to be taken. We call 
such actions control actions. Such actions are 
taken from within the ARCS database (where 
active objects signal events) by automatic con- 
trol mechanisms and are communicated to the 
real system using database executors. 

Typically, control actions need to be performed 
under temporal constraints, e.g., it the temper- 
ature in a reactor has reached 80 deg, certain 
actions need to be taken within 60 seconds. 

In order for a database to monitor and control such 
a system, it needs active, temporal and real time 
capabilities. In this paper we identify the data and 
transaction characteristics of ARCS databases, and 
discuss relevant research issues. 

2 D a t a  C h a r a c t e r i s t i c s  in 
A R C S  

We classify ARCS data into two main categories: 
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2.1 Sensor  D a t a  

Sensor (o r measurement) data  is the raw informa- 
tion that  is received from the system monitoring 
processes. Since ARCS systems tend to be ex- 
tremely dynamic, the value of sensor data  items 
usually change very rapidly. Typically sensor data  
represents dynamic performance characteristics of 
the system. For example, in the case of network 
management  databases, the sensor data  may in- 
clude variables such as node queue lengths, retrans- 
mission rates, link status and call statistics. One 
assumption we make is that sensors are distributed 
and work in their own private data  parti t ion - thus 
a particular instance variable is always reported by 
one particular sensor. Usually each sensor's data  
arrives in the database at a regular frequency un- 
der normal system operation. However, under ex- 
traordinary conditions (e.g., fault conditions in a 
network) sensors may generate data  at a higher rate 
than normal. Sensor data, though in many respects 
similar to notions of data in real t ime systems, has 
certain differences. For example, it is required, for 
certain data  to be persistent e.g., security viola- 
tions, customer billing information etc. In typical 
ARCS databases (such as one for network manage- 
ment) several gigabytes of sensor data  need to be 
processed per day [3]. 

2.2 N o n  Sensor  D a t a  

These are data  items that  are more "permanent",  
in the sense that  non-sensor data  items retain their 
value for longer durations. In that  sense these 
data  items resemble the notions of data  in classi- 
cal databases. We classify non-sensor data  into two 
further subclasses. 

2.2.1 S t r u c t u r a l  Data: 

In contrast to sensor data, structural data  is com- 
posed of "static" (slowly changing) information. In 
the case of network management databases, such 
information may include network topology, the con- 
figuration of network switches and trunks, the data 
encryption keys etc. Most of the structural data  is 
stored at system initiation time and is changed at 
a moderate rate consistent with classical database 
applications such as banking. An important  point 
to note is that  unlike sensor data, structural data  
is valid even when the system is not in operation. 

2.2.2 Contro l  Data: 

The final and very critical category o f  data  is con- 
trol da ta  which captures the setting of the system 
tuning parameters. It is this class of data  that  char- 
acterizes ARCS databases as not only repositories of 
data  but  also as control systems. In network man- 
agement databases control da ta  are information like 
maximum flows in individual trunks, the traffic split 
ratios on output  links of switches, the routing table 
etc. Control da ta  is changed from within the system 
and such changes affect the operational dynamics of 
the network. For example, changing the maximum 
flow rate on a particular link may increase link uti- 
lization on that  link while decreasing delay for the 
overall system. The process of changing an existing 
set of control settings may be initiated in two ways: 

• By human operators; 

• By automatic triggering of control processes as 
a function of the information contained in the 
sensor data; 

In addition to the above classification, we also view 
ARCS data  from another perspective. There is a 
class of data  items, the updating of which may 
invoke control actions. These are called reactive 
items. An example of a reactive at tr ibute for a net- 
work management database is the link-utilization 
data  item for any link object. Updating of the 
link-utilization data item invokes rules such as i f  
link-utilization is g r e a t e r  t h a n  80%~ r e d u c e  
transmission-rate o n  a t t a c h e d  n o d e s .  As we will 
see in the next section, the updating of reactive at- 
tributes leads to the generation of control transac- 
tions in the system. 

3 T r a n s a c t i o n  C h a r a c t e r i s t i c s  

Examination of transaction characteristics yields 
three different types of transactions: 

1. S t a t e  R e p o r t i n g  T r a n s a c t i o n s  (SRT):  
SRTs are transactions that  are generated by sen- 
sors dispersed throughout the entity being modeled 
(e.g., a heterogeneous communications network). 
These transactions report the current states of re~l 
world objects and thus consist purely of S E T ( X )  
operations. In most dynamic systems these transac- 
tions are generated at a high frequency (e.g., every 
15 see.). These transactions do not conflict with 
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each other as the network monitoring tools (i.e., 
sensors) work in private data  partitions. Also these 
updates are different for conventional database up- 
dates in that  the updated value is independent of 
the current value of the data  objects. These are 
referred to as blind writes [2]. Thus, due to the ab- 
sence of write-write conflicts between these trans- 
actions no explicit concurrency control is necessary 
to prevent such conflicts. Adopting a data  centric 
view, it may be stated that  since these transactions 
work on dynamic performance data  no explicit con- 
currency schemes need to be defined for these data  
items. However, since it is important  to ensure that  
the database project a coherent state of the real 
world, SRTs need to be atomic, i.e., we cannot al- 
low these transactions to commit  their operations 
on some objects and not on others. 

2. Q u e r y i n g  T r a n s a c t i o n s  ( Q T ) :  QTs are gen- 
erated by readers of MIB data  - typically human 
users, and consist of GET(X)  operations. QTs may 
want to read both sensor as well as non-sensor in- 
formation. Certain interesting scenarios arise when 
QTs want to read sensor data, i.e., conflicts arise be- 
tween operations of QTs and SRTs. As we show in 
section 4.1, enforcing serializability to resolve these 
conflicts appear to be too restrictive. Typically, 
QTs are expected to fulfill two conditions: 

• The Coherency Condition: The values re- 
turned by QTs (of sensor data) must reflect a 
coherent state of the database. However, this 
notion of coherency is somewhat different from 
the standard definition of consistency. Notions 
like snapshot consistency [5] may be used. 

* The Recency Condition: The values returned 
by QTs must reflect as recent a state of the real 
system as possible. This is a problem in the 
case of sensor data  that  changes very fast - we 
show later that  standard concurrency control 
mechanisms do not provide adequate recency. 

3. C o n t r o l  A c t i o n  T r a n s a c t i o n s  ( C A T ) :  
CATs are transactions that  are generated due the 
invocation of automatic control actions inside the 
database. Please note that  control transactions may 
also be generated due to operator intervention. The 
goal of of active systems is to reduce the need of 
such interventions so that  the system itself may take 
care of situations. In such situations it is of criti- 

cal importance to ensure the correct behavior of the 
system. 

CATs are generated by the updating of reactive 
attributes (usually by SRTs but  also potential ly by 
other CATs). Such updates generate events and 
rules and the CATs are generated through the AC- 
TION part of rules. In such situations there is a 
potential of transaction spreading i.e., where the ef- 
fect of one CAT invokes one or more other CATs. 

It is clear from the above discussion that  CATs 
exhibit characteristics that  fit the definition of 
nested transaction models [12]. This is so because, 
the generation of a CAT may lead to the updat ing 
of other reactive data  items which may lead to the 
generation of other CATs and so on. 

4 R e l e v a n t  I s sues  in A R C S  
D a t a b a s e  R e s e a r c h  

4 . 1  W h y  a r e  C o n v e n t i o n a l  T r a n s a c -  

t i o n  M o d e l s  N o t  S u i t a b l e  f o r  

A R C S  T r a n s a c t i o n s ?  

Conventional transaction models (i.e. commutat iv-  
ity based models) appear too restrictive for ARCS 
because of several reasons, especially with respect 
to the execution of SRTs and QTs. We provide two 
reasons below in sections 4.1.1 and 4.1.2. 

4.1.1 I r r e l e v a n c y  o f  C a s c a d i n g  A b o r t s  

The issue of cascading aborts (or the avoidance of 
this phenomenon) has been one of the fundamental  
guiding forces behind the development of conven- 
tional transaction models of concurrency [7]. Con- 
sider for example, the following execution subhis- 
tory of three transactions 1 : 

readl ( X, 1), writer(x, 4), reads(x, 4), 

writes(y, 7), read3(y, 7), write3( z, 8) 

In the above history, according to conventional 
transaction models, if transaction 1 ( t l )  aborts, we 
must remove its effects from the database. However, 
since ts read (through the operation reads(x,4)) 
the value of a data item written by t l ,  effectively 
it read a value that  does n o t  really exist (as the 

1 Please note that in this execution sequence we assume 
immediate effect of operations, i.e., the effects of an operation 
are visible immediately. A similar analysis may be provided 
assuming de]erred effect 
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effect of tl  is eliminated). Thus t2 would need to 
be aborted. Following the same logic, t3 would now 
need to abort as it read uncommitted update of 
t2. This phenomenon is known as cascading aborts 
and it helps shape the notion of failure atomicity in 
conventional transaction models. As shown in the 
following example, because of particular semantics 
of ARCS data  and transactions, cascading aborts is 
not an issue when dealing with sensor data. 
ExAmple :  Consider an object K,  with sensor data  
item X and non-sensor data  item Y. Further as- 
sume that  X is a reactive attribute, i.e., when X is 
updated, there is potential for rule activation and 
consequent generation of CATs. Now consider the 
following interleaving of two transactions ti and t j ,  
that  both access object K.  

SET] ( X,  vl ), SETj  (Y, v2), aborti 

We provide the following semantic interpretation 
for the above interleaved sequence of operations: ti 
is a SRT, which sets the value of data  item X to 
vl. X being a reactive attribute, this update leads 
to rule activation and generation of the CAT tj.  
This CAT takes the control action of setting control 
data  item Y to v2. Subsequently ti aborts. Accord- 
ing to the theory of cascading abort,  tj should also 
abort now, as a dependency exists bet.ween tj and 
ti. However the semantics of sensor data  are such 
that  tj need not abort.  This is because: 

• tl reports the state of the system. Thus, in 
spite of the abortion of ti, the fact that  the 
state of X is vl in the real system, is true. 
Thus the reason for the invocation of tj still 
holds good (remember tj is a CAT invoked as 
a result of X being set to vx). To consider 
a real life example, in the network manage- 
ment scenario, assume X refers to the data  
item link-utilization. Needless to say, the val- 
ues of link-utilization for all links is rapidly 
changing, and is being reported by SRTs. link- 
utilization is also a reactive attribute, as there 
exists a rule of the form i f  l ink  u t i l i z a t i o n  
o n  a n y  l ink  e x c e e d s  90%,  r e d u c e  t h e  
sp l i t  r a t i o  o n  t h a t  l ink  b y  10%. Thus ev- 
ery time link-utilization is updated this rule is 
checked. Now, it is easy to see the validity of 
the general example given above, by substitut- 
ing Y = split - ratio, and vl = .92. 

4 .1 .2  T h e  N o t i o n  C o r r e c t n e s s  o f  E x e c u t i o n  
o f  a S e t  o f  T r a n s a c t i o n s  

In traditional transaction models, the notion of cor- 
rectness for the execution of a set of transactions is 
serializability. Serializability requires that  an ex- 
ecution be equivalent to one that  would have oc- 
curred without any concurrency in the system. Sev- 
eral variations of the serializability paradigm have 
been proposed [1, 6]. However, most transaction 
models require some sort of serialized execution. In 
other words, users (transactions) must not see the 
effects of concurrent execution. However, the se- 
mantics of ARCS transactions validate the correct- 
ness of non-serialized execution, as shown in the 
example below. 
E x a m p l e :  Assume the following interleaved sub- 
history of the concurrent execution of two transac- 
tions ti and tj. Further assume that  ti is a SRT 
while tj is a QT. 

set  i ( X ,  Vl ), get j ( X ,  v 1 ), set  i ( Y,  ~v2) , 

getj (Y, v2), commit j , . . .  

The above execution is clearly not a serializable exe- 
cution as the effect of ti is visible to tj while they are 
executing concurrently. However, from the ARCS 
perspective it is an allowable schedule because tj is 
reporting a coherent state of the systems as it re- 
'turns values that  occur together in the system. Ac- 
tually, enforcing serializability in this context would 
only lead to decreased flexibility as it would stipu- 
late unnecessary restrictions on scheduling. A corol- 
lary to the above argument is that  in ARCS scenar- 
ios we have a different notion of consistency than 
traditional systems. This issue is explored in the 
next section. 

4 . 2  N o t i o n s  o f  C o n s i s t e n c y  i n  A R C S  

D a t a b a s e s  

Apropos the above discussion, ARCS consistency 
is different from consistency in classical database 
application, where satisfaction of the ACID prop- 
erties ensures consistency l]. Clearly, one measure 
of ARCS database consistency is how closely it rep- 
resents the real environment being monitored and 
controlled. This is, in many respects similar, to no- 
tions of temporal consistency [17], where two com- 
ponents of consistency are defined: 

• A b s o l u t e  C o n s i s t e n c y :  Keeping state of the 
database objects within certain temporal  limits 
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of the state of the corresponding environment 
objects. This limit is called the absolute valid- 
ity interval. 

Rela t ive  Consis tency:  A Relative Consis- 
tency Set R, is defined to a set of data items 
used to derive a new data item, e.g., connec- 
tivity and current link utilization information 
may be used to derive routes for network traffic. 
Relative Consistency is involved in keeping the 
base data items (i.e., members of R) within cer- 
tain temporal limits of each other. This limit 
is termed the relative validity interval. 

These ideas, though important to consider in ARCS 
databases, need to be significantly expanded as 
they appear not take into account the active and 
real-time dimensions of ARCS databases. For in- 
stance, taking the active nature of ARCS into ac- 
count would change the notion of absolute temporal 
consistency criterion which is defined as [13]: 

(current . t ime -- dtimestamp) <_ davi 

where d is any data item, and davi denotes d's ab- 
solute validity interval. This definition implies that 
the state of environment objects always changes 
before that of database objects, i.e., the database 
objects always lag the real objects in the outside 
world. This is true in a passive monitoring sys- 
tems. However, in ARCS databases, events in the 
outside world may trigger actions in the database 
which may change parameters in the database first, 
which would subsequently be propagated to the en- 
vironment. 

Also, absolute and relative consistency definitions 
do not explicitly consider real time characteristics 
[13] of ARCS, i.e., they do not explicitly consider 
the time constraints on query and transaction pro- 
cessing. Thus, in temporal databases, when en- 
vironment state changes, it does not cause an in- 
place update of data base object, but rather involves 
creating a new version. Real time systems how- 
ever, have viewed an environment change as caus- 
ing a modification in corresponding database enti- 
ties. Also, transactions are usually allowed to access 
only current, valid information in the database. In 
ARCS however, it is required to store historical as 
well as current data, while allowing modifications 
to both data classes. 

5 Conc lus ion:  C o n c r e t e  Re-  
search Q u e s t i o n s  in A R C S  
D a t a b a s e s  

5.1 A n  A c t i v e ,  T e m p o r a l ,  R e a l  T i m e  
D a t a  M o d e l  

Clearly, an expressive data model is the first or- 
der of business. Modeling activity for ARCS can 
benefit a great deal from the recent upsurge in ef- 
forts to provide database support for complex new 
applications such as CAD and scientific databases. 
Also, there exists several data models for active 
databases [8, 11] as well as temporal databases 
[14, 15, 16]. Recently, there also has been some 
attempts to incorporate real time characteristics 
in temporal databases [13], integrating active and 
temporal databases [9, 10] as well as integrating 
real time and active systems [4]. There appears 
to be a consensus among researchers, that com- 
plex data models should be specified in the con- 
text of simpler, well established ones such as rela- 
tional and object-oriented models. Object-Oriented 
(OO) models appear to be a good starting point for 
ARCS databases, as they naturally model complex 
application domains such as network management 
or manufacturing. Thus, an approach with promise 
would be to take the basic OO model and enhance 
its functionalities. Certain specific questions that 
need to be answered are: 

1. How to model versions of active, real time ob- 
jects? 

2. How do we represent complex triggering con- 
straints (i.e., the violation of which will trigger 
CATs) and temporal constraints? Possible ways 
range from representing constraints as rules and 
storing them as first class objects that may be 
manipulated like environmental objects (weak cou- 
pling) or modeling constraints as database consis- 
tency constraints (strong coupling) (i.e., if a con- 
straint is violated database is inconsistent) and 
letting the concurrency control mechanism handle 
restorative action. The first approach has been ex- 
plored by researchers [4, 11] while we have postu- 
lated the second approach. The second approach 
appears to be promising for reasons beyond the 
scope of this paper. 
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5.2 An Active, Temporal~ Real Time 
Transact ion  Model  

This is yet a wide open research area. In section 3 
we briefly identified classes of ARCS transactions 
and in section 4.1 we showed some examples of the 
unsuitabili ty of serializability based models. Some 
specific questions that  need to be answered are: 

1. Under ARCS conditions do transactions preserve 
global consistency? In other words, does the tra- 
ditional definition of transaction hold for ARCS 
databases? Assume tha t  an event happens in the 
environment that  violates some consistency con- 
straint.  The SRT that  reports this to the database 
is going to render the database inconsistent, even 
though this inconsistency is s imply a reflection of 
the "true" state of the environment.  In order to 
handle situations like these, it may  be necessary to 
rethink the definition of a "correct" transaction in 
a ARCS database.  

2. How to formulate scheduling algorithms tha t  take 
into account t iming constraints as well as resource 
constraints? 

3. How to do contingency planning, i.e., in the face 
of temporal  constraints how does the system choose 
the "optimal" control action? This implies the 
need for a mechanism to perform a priori t ime es- 
t imates  of actions, i.e., a mechanism to est imate 
upper  bounds of transaction execution times.. 
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