
Reversible circuit synthesis using a cycle-based approach

Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi, Zahra Sasanian

Quantum Design Automation Lab

Department of Computer Engineering and Information Technology

Amirkabir University of Technology

Tehran, Iran

{msaeedi, szamani, msedighi, sasanian}@aut.ac.ir

Abstract

Reversible logic has applications in various research areas including sig-
nal processing, cryptography and quantum computation. In this paper,
direct NCT-based synthesis of a given k-cycle in a cycle-based synthe-
sis scenario is examined. To this end, a set of seven building blocks is
proposed that reveals the potential of direct synthesis of a given permu-
tation to reduce both quantum cost and average runtime. To synthesize
a given large cycle, we propose a decomposition algorithm to extract the
suggested building blocks from the input specification. Then, a synthesis
method is introduced which uses the building blocks and the decomposi-
tion algorithm. Finally, a hybrid synthesis framework is suggested which
uses the proposed cycle-based synthesis method in conjunction with one
of the recent NCT-based synthesis approaches which is based on Reed-
Muller (RM) spectra.
The time complexity and the effectiveness of the proposed synthesis ap-
proach are analyzed in detail. Our analyses show that the proposed hy-
brid framework leads to a better quantum cost in the worst-case scenario
compared to the previously presented methods. The proposed framework
always converges and typically synthesizes a given specification very fast
compared to the available synthesis algorithms. Besides, the quantum
costs of benchmark functions are improved about 20% on average (55%
in the best case).

1 Introduction

Reversible computing deals with any computational process that is time-invertible,
meaning that the process can also be computed backward through time. A nec-
essary condition for reversibility is that the transition function applied to map
inputs onto outputs works as a one-to-one function to have a unique output as-
signment for each input pattern. Generally, conventional logic gates other than
NOT are not reversible, as their inputs cannot be determined from the related
outputs uniquely.

1

ar
X

iv
:1

00
4.

43
20

v2
 [

qu
an

t-
ph

]
 2

7
D

ec
 2

01
0

One of the motivations for research on reversible computing is that it offers
a potential way to improve the energy efficiency of computers beyond the fun-
damental Landauer limit introduced in 1961 [1]. Landauer proved that using
conventional irreversible logic gates leads to at least kT × ln2 energy dissipation
per irreversible bit operation, regardless of the underlying circuit, where k is
Boltzmann’s constant, and T is the temperature of the environment. In 1973,
Bennett stated that to avoid power dissipation in a circuit, the circuit must
be built from reversible gates [2]. This has made reversible computing an at-
tractive option for low-power design [3], [4]. Additionally, the field of reversible
computing has received considerable attention in quantum computing as each
quantum gate is reversible in nature [5].

Among various open research problems related to the field of reversible com-
puting, reversible logic synthesis, defined as the ability to generate an efficient
circuit from a given arbitrary-size specification, is considered as a stepping-
stone towards realization of useful reversible hardware. As a result, working
on synthesis methods for reversible circuits has received a significant attention
recently (for examples see [6], [7] and [8]). As loop and fanout are not allowed
in reversible circuits, and each gate must have the same number of inputs and
outputs with unique input/output assignments in the transition function, ma-
ture irreversible synthesis algorithms cannot be directly applied to reversible
circuits.

To synthesize a given reversible specification, the authors of [9] proposed a
synthesis algorithm based on NOT, CNOT and Toffoli gates which represents
a given permutation as a product of pairs of disjoint transpositions (2-cycles)
and synthesizes each pair subsequently. A general permutation should be de-
composed into a set of 2-cycles to be synthesizable using their approach. In this
paper, a k-cycle-based synthesis method is proposed and analyzed in detail. We
show that direct synthesis of large cycles in a cycle-based synthesis scenario
can lead to a significant reduction in quantum cost. In order to achieve this,
several building blocks (BBs) and synthesis algorithms are proposed to be used
in the proposed k-cycle-based synthesis method. In addition, a decomposition
algorithm for the synthesis of a general large cycle considering the suggested
building blocks is introduced and analyzed. Based on the characterization of
the proposed synthesis method, a hybrid synthesis framework, which uses the
cycle-based synthesis approach in conjunction with one of the recent methods
[6], is also presented. Furthermore, the average-case and worst-case quantum
costs of the proposed synthesis framework are experimented and analyzed in
detail.

The main contributions of this paper are as follows.

• The analysis of cycle-based synthesis approach and its usefulness in syn-
thesizing reversible functions with different characterizations,

• A k-cycle-based synthesis method with guaranteed convergence,

• A hybrid synthesis framework based on the proposed k-cycle-based syn-
thesis method together with the method of [6],

2

• The improved quantum cost in the worst-case scenario compared to the
previously presented methods,

• Better average quantum costs for available benchmark functions in the
NCT library,

• Improved average runtime compared to the present synthesis algorithms
with favorable synthesis costs.

The rest of this paper is organized as follows: In Section 2, basic concepts
are introduced. The proposed cycle-based synthesis method is presented in Sec-
tion 3 where the building blocks and their synthesis algorithms are proposed
in Subsection 3.1, the decomposition algorithm and the k-cycle-based synthe-
sis method are explained in Subsection 3.2, and the worst-case analysis of the
proposed cycle-based approach is discussed in Subsection 3.3. Experimental re-
sults and the hybrid synthesis framework are proposed in Section 4 and finally,
Section 5 concludes the paper.

2 Preliminaries

Let A be a set and define f : A → A as a one-to-one and onto transition
function. The function f is called a permutation function as applying f to A
leads to a set with the same elements of A and probably in a different or-
der. If A = 1, 2, 3, · · · ,m there exist two elements ai and aj belonging to
A such that f(ai) = aj . In addition, a k-cycle with length k is denoted as
(a1, a2, · · · , ak) which means that f(a1) = a2, f(a2) = a3, ..., and f(ak) = a1.
A given k-cycle (a1, a2, · · · , ak) could be written in many different ways such as
(a2, a3, · · · , ak, a1). A cycle with length 2 is called transposition.

Cycles c1 and c2 are called disjoint if they have no common members, i.e.,
∀ai ∈ c1, ai /∈ c2 and vice versa. Any permutation can be written uniquely,
except for the order, as a product of disjoint cycles. If two cycles c1 and c2 are
disjoint, they can commute, i.e., c1c2 = c2c1. In addition, a cycle may be written
in different ways; as a product of transpositions and using different numbers of
transpositions. A cycle (or a permutation) is called even if it can be written as
an even number of transpositions. A similar definition is introduced for an odd
cycle. Although there may be too many ways to decompose a given cycle into
a set of transpositions, the parity of the number of transpositions used stays
the same, i.e., all resulted decompositions have the same even/odd number of
transpositions. A k-cycle is odd (even) if k is even (odd).

An n-input, n-output, fully specified Boolean function is reversible if it maps
each input pattern to a unique output pattern. In this paper, n is particularly
used to refer to the number of inputs/outputs in a circuit. A gate is called
reversible if it realizes a reversible function. A generalized Toffoli gate CmNOT
(x1, x2, · · · , xm+1) passes the first m lines unchanged. These lines are referred
to control lines. This gate flips the (m+ 1)th line if and only if the control lines
are all one. Therefore, the generalized Toffoli gate works as follows: xi(out) =

3

Figure 1: Construction of k Toffoli gates with common controls

xi(i < m + 1), xm+1(out) = x1x2 · · ·xm ⊕ xm+1. For m = 0 and m = 1, the
gates are called NOT (N) and CNOT (C), respectively. For m = 2, the gate
is called C2NOT or Toffoli(T). These three gates compose the universal NCT
library and are used in quantum computation frequently [5]. Outputs that are
not required in the function specification are considered as garbage or auxiliary
bits. The number of elementary gates required for simulating a given gate is
called quantum cost.

It has been shown that for n ≥ 5 and m ∈ {3, 4, · · · , bn/2e}, a CmNOT gate
can be simulated by a linear-size circuit which contains 12m − 22 elementary
gates. In addition, for n ≥ 7, a Cn−2NOT gate can be simulated by 24n − 88
elementary gates with no auxiliary bits [7]. On the other hand, a Cn−1NOT
gate can be simulated with an exponential cost 2n − 3 if no garbage line is
available [10]. To avoid the exponential size and the need for a large number of
elementary gates, several researchers used an extra garbage line for an efficient
simulation of Cn−1NOT gate (e.g., [6]). Generally, the number of available
bits is very restricted in today’s reversible and quantum implementations [11].
Therefore, for two circuits with equal linear costs, the one without garbage line
is preferred. The implementation of k Toffoli gates with common controls can
be done by 2k + 3 elementary gates as illustrated in Fig. 1 [12]. Note that a
Toffoli gate has the cost of 5 whereas NOT and CNOT gates have unit costs.

The authors of [9] proposed an NCT-based synthesis method which applies
NOT, Toffoli, CNOT and Toffoli gates in order (the T |C|T |N synthesis method)
to synthesize a given permutation. For the last Toffoli part, the authors pro-
posed a synthesis algorithm that maps distinct a, b, c and d (a, b, c, d 6= 0, 2i

to have at least two ones in their binary representations) to 2n − 4, 2n − 3,
2n− 2 and 2n− 1 using a circuit called π by at most 5n− 2 Toffoli gates. Then,
the permutation (2n − 4, 2n − 3) (2n − 2, 2n − 1) is implemented by a circuit,
κ0, using 8(n − 5) Toffoli gates and finally, the reversed π circuit, i.e., π−1, is
applied to transform 2n− 4, 2n− 3, 2n− 2 and 2n− 1 into a, b, c and d, respec-
tively. Therefore, the πκ0π

−1 circuit implements the permutation (a, b)(c, d)
where a, b, c, d 6= 0, 2i by at most 18n− 44 Toffoli gates.

In contrast, a given k-cycle f=(x0, x1, x2, · · · , xk) is decomposed into a set of

4

transpositions in [9] by using the decomposition pattern f=(x0, x1) (xk−1, xk)
(x0, x2, x3, · · · , xk−1), recursively. Subsequently, each pair of the transpositions
is implemented using the πκ0π

−1 circuit. The proposed approach leads to at
most n NOT gates, n2 CNOT gates and 3(2n + n+ 1)(3n− 7) Toffoli gates [9].
An extension of [9] was suggested in [13] which produced better quantum cost
by applying the unit-cost NOT and CNOT gates instead of using Toffoli gates
with cost 5 in many situations.

In this paper, the πκ0π
−1 circuit is improved by a k-cycle-based synthesis

method. For the rest of this paper, we use the same notations as [9] for the
κ0, π, and π−1 circuits. In all figures, the (n − 1)th bit represents the most
significant bit (MSB) and is shown as the top line in the circuit representations.
Similarly, the 0th bit represents the least significant bit (LSB) and is shown as
the bottom line in the circuit representations.

3 k-Cycle-Based Synthesis Method

3.1 Building Blocks

In this subsection, direct synthesis algorithms for seven suggested building
blocks (i.e., a pair of 2-cycles, a single 3-cycle, a pair of 3-cycles, a single 5-
cycle, a pair of 5-cycles, a single 2-cycle (4-cycle) followed by a single 4-cycle
(2-cycle), and a pair of 4-cycles) are introduced and evaluated. Consider a
given 5-cycle f=(a1, a2, a3, a4, a5) defined in a 7-bit circuit. Assume that a1,
a2, a3, a4, and a5 are neither 0 nor 2i to have at least two ones in their binary
representations. Applying the decomposition method of [9] leads to (a1, a2)
(a3, a4) (a1, a3) (a1, a5) transpositions which could be implemented by at most
3× (18n− 44) = 54n− 132 Toffoli gates with cost 270n− 660. However, we will
show that a direct 5-cycle implementation of f reduces the total quantum cost
to at most 60n− 144.

The proposed synthesis method treats the zero and 2i terms different from
the remaining terms. The first group is handled in a pre-process stage similar
to the method presented in [9]. For an arbitrary k-cycle (a1, a2, · · · , ak) in the
second group, it can be assumed that a1, a2, · · · ak 6= 0, 2i and a1 6= a2 6= · · ·
6= ak. Throughout this paper, the binary representation is used where CNOT
and Toffoli control bits are demonstrated in bold face and the rightmost bit is
numbered as the 0th (least significant) bit. In order to use the decomposition
algorithm proposed in [7], we assume that n ≥ 7.

Lemma 3.1 The κ0(2,2) circuit (Fig. 2) creates a pair of 2-cycles (2n−4, 2n−3)
(2n − 2, 2n − 1) by 24n− 88 elementary gates.

Proof Lemma 20 of [9] proves the correspondence between the κ0(2,2) circuit
and above cycles. As for the cost, it can be obtained by applying the results of
[14].

5

Figure 2: The κ0(2,2) circuit Figure 3: The circuit of Theorem 3.1

Figure 4: Synthesis of an arbitrary pair of 2-cycles (a, b) (c, d)

According to Lemma 3.1, the κ0(2,2) circuit implements the particular pair
of 2-cycles (2n − 4, 2n − 3) (2n − 2, 2n − 1). In order to implement an arbitrary
pair (a, b) (c, d), the circuit is divided into five parts as follows. First, the terms
a, b, c and d are changed to 4, 1, 2 and 2n−1+3, respectively. Note that the first
three terms have only one 1 in their binary representations. As shown in the
following theorem, this characterization is used during the synthesis of a pair of
2-cycles. Second, a circuit is applied to change 4, 1, 2 and 2n−1 + 3 to 2n − 4,
2n−3, 2n−2 and 2n−1 (i.e., the terms used in κ0(2,2) circuit), correspondingly.
Afterward, the κ0(2,2) circuit is used which changes 2n − 4, 2n − 3, 2n − 2 and
2n − 1 to 2n − 3, 2n − 4, 2n − 1 and 2n − 2, respectively. Applying the second
and the first sub-circuits in the reverse order puts unwanted terms (i.e., all
terms except a, b, c and d) back to their original locations and implements the
given pair of 2-cycles (a, b) (c, d). Fig. 4 demonstrates the complete synthesis
scenario. Theorem 3.1 discusses the synthesis of an arbitrary pair of 2-cycles in
more details. The synthesis procedures for other cycles are similar to the one
explained here as shown later.

Theorem 3.1 (Syn2,2 method): An arbitrary pair of 2-cycles (a, b) (c, d) can
be simulated by at most 34n− 64 elementary gates.

Proof Since a, b, c and d are neither 0 nor 2i, they should have at least two
ones in their binary representations. Assume that the c1

th bit of a is 1. One can
use at most one CNOT gate whose control is on c1 to set the 2nd bit of a to 1.
Subsequently, by using at most n−1 CNOT gates whose controls are on the 2nd

6

bit other bits can be set to 0 for converting a to 4 (i.e., 0 · · · 0100). Assume that
after applying these gates, b, c and d are changed to b′, c′, and d′, respectively.
Since b′ should have at least one 1 namely at position c2 (c2 6= 2), b′ can be
converted to 1 (i.e., 0 · · · 01) by at most n CNOT gates using a similar approach.
Then, c′ and d′ may be changed to new numbers c′′ and d′′, respectively without
changing 4.

Subsequently, c′′ can be converted to 2 (i.e., 0 · · · 010) by at most one Toffoli
gate and n − 1 CNOT gates with no effects on 4 and 1. Finally, the last term
can be converted to 2n−1 + 3 (i.e., 10 · · · 011) by at most one Toffoli gate and
n − 1 CNOT gates with no effect on the previous terms again. Therefore, at
most 4n+ 8 elementary gates are required to transform a, b, c and d into 4, 1, 2
and 2n−1 + 3, respectively. Now, the circuit shown in Fig. 3 should be applied
to change 4, 1, 2 and 2n−1 + 3 to the terms used in κ0(2,2) circuit (Lemma 3.1).
Considering the applied gates (at most 5n+ 12 elementary gates), the terms a,
b, c and d are changed to 2n−4, 2n−3, and 2n−2 and 2n−1, respectively (i.e.,
the π2,2 circuit). Now, by using the κ0(2,2) circuit with the cost of 24n − 88,
the pair of 2-cycles (2n − 4, 2n − 3) (2n − 2, 2n − 1) is implemented. Applying
the π−12,2 circuit changes 2n − 4, 2n − 3, and 2n − 2 and 2n − 1 to a, b, c, and

d, respectively. In addition, the circuit π−12,2 puts other unwanted terms back to
their original locations. Therefore, by at most 34n − 64 elementary gates, the
pair of 2-cycles (a, b) (c, d) can be implemented.

Example 3.1 Assume that the pair of 2-cycles (5, 3) (9, 67) should be imple-
mented in a circuit over 7 bits (i.e., n=7). According to the proof of Theorem
3.1, the term 5 should be transformed to 4 by a CNOT gate which has no effect
on other terms. Similarly, 3 is transformed to 1 by a CNOT gate which changes
the term 9 to 11 and 67 to 65. Then, 11 is transformed to 2 by two CNOT gates
with no effect on other terms. Finally, 65 is transformed to 67 by a CNOT gate.
See the first sub-circuit in Fig. 5 for more details. Now, the circuit shown in
Fig. 3 should be applied followed by the κ0(2,2) circuit. Finally, as illustrated
in the last two sub-circuits of Fig. 5, the above gates (except κ0(2,2) circuit)
should be used in the reverse order to construct the complete circuit. In Fig.
5, the results of applying all gates on the term 67 are also represented by gray
squares where only values 1 are shown for the sake of simplicity. As can be seen,
applying all gates changes 67 to 9.

Lemma 3.2 The κ0(3) circuit (Fig. 6) creates the 3-cycle (2n−2k−1−1, 2n−1,
2n−1 − 1) by 24n− 88 elementary gates where k = dn/2e.

Proof As shown in Fig. 6, the gates CmNOT(n − 1, n − 2, · · ·, k, k − 1),
CkNOT(0, 1, 2, · · ·, k−1, n−1), CmNOT(n−1, n−2, · · ·, k, k−1), CkNOT(0,
1, 2, · · ·, k−1, n−1) are applied consecutively in the κ0(3) circuit. After applying

the first CmNOT gate, the locations of 2k minterms (denoted as
∑

1={2n− 2k,
2n−2k+1, · · ·, 2n−1}) are changed. Particularly, 2n−2k−1−1 (i.e., 1 · · · 101 · · · 1
where the underlined 1 is at the (k − 1)th position) ∈

∑
1 is changed to 2n − 1

7

Figure 5: The circuit of Example 3.1

Figure 6: The κ0(3) circuit Figure 7: The circuit of Theorem 3.2

(i.e., 1 · · · 1)(∈
∑

1). By applying the CkNOT, the locations of 2m minterms
(denoted as

∑
2={0×2k +2k−1, 1×2k +2k−1, · · ·, 2m−1×2k +2k−1=2n−1}

are changed (2n−1 ∈
∑

1 ∩
∑

2). Among them, 2n−1 is exchanged with 2n−1−1
(i.e., 01 · · · 1) ∈

∑
2. Applying the third CmNOT gate puts all

∑
1 minterms at

their right locations except 2n−2k−1−1 and also changes 2n−1 to 2n−2k−1−1.
Finally, the last CkNOT gate corrects the locations of all

∑
2 members except

2n−1− 1 and 2n− 1. Considering all the exchanges, 2n− 2k−1− 1 is changed to
2n− 1, 2n− 1 is changed to 2n−1− 1, and 2n−1− 1 is changed to 2n− 2k−1− 1.

For the second part of the lemma, note that the first and the third gates
shown in Fig. 6 can be implemented by 2× (12× (n− dn/2e)− 22) elementary
gates. Similarly, the second and the fourth gates can be implemented by 2 ×
(12× dn/2e − 22) gates. Therefore, κ0(3) is implemented by cost 24n− 88.

Theorem 3.2 (Syn3 method): An arbitrary 3-cycle (a, b, c) requires at most
32n− 82 elementary gates to be implemented.

Proof Since a, b, and c are neither 0 nor 2i, they should have at least two
ones in their binary representations. One can use at most n CNOT gates to
transform a to 2n−1 (i.e., 10 · · · 0). After applying these gates, assume that b
and c are changed to b′ and c′, respectively. By using a similar approach, c′ can

8

Figure 8: The κ0(3,3) circuit,
k = dn/2e

Figure 9: The circuit of Theorem 3.3

be converted to 2n−2 (i.e., 010 · · · 0) by n CNOT gates that may change b′ to a
new number b′′ without changing 2n−1. Finally, converting b′′ to 2n−1 + 2k−1

(i.e., 10 · · · 010 · · · 0 where the underlined 1 is at the (k − 1)th position) can be
done by one Toffoli and n− 1 CNOT gates with no effects on the previous 2n−1

and 2n−2 terms. Therefore, by at most 3n+ 4 elementary gates, a, b and c are
transformed into 2n−1, 2n−1 + 2k−1 and 2n−2, respectively. Now, the circuit
shown in Fig. 7 should be applied to change the recent terms to the terms used
in κ0(3) circuit.

Considering the applied gates (at most 4n+ 3 elementary gates), the terms
a, b, and c are changed to 2n − 2k−1 − 1, 2n − 1, and 2n−1 − 1, respectively
(i.e., the π3 circuit). By using the κ0(3) circuit with cost 24n − 88, the 3-cycle

(2n−2k−1−1, 2n−1, 2n−1−1) is implemented. Applying the π−13 circuit changes
2n− 2k−1− 1, 2n− 1, and 2n−1− 1 to a, b, and c, respectively. Therefore, by at
most 32n− 82 elementary gates, the 3-cycle (a, b, c) can be implemented. It is
worth noting that a single 3-cycle can be a BB by itself because it is even. As
will be shown later, the same is true for a single 5-cycle.

Lemma 3.3 The κ0(3,3) circuit (Fig. 8) implements the pair of 3-cycles (2n −
2k−1 − 1, 2n − 1, 2n−1 − 1) (2n − 2k−1 − 2, 2n − 2, 2n−1 − 2) by 24n − 112
elementary gates where k = dn/2e.

Proof It can be verified that the κ0(3,3) circuit differs from the κ0(3) circuit in

its least significant bit (i.e., the 0th bit) which leads to two 3-cycles. The first
and the third gates need 12n− 44 elementary gates. The second and the fourth
gates need 12n − 68 elementary gates. Therefore, κ0(3,3) can be implemented
by the cost of 24n− 112 gates.

Theorem 3.3 (Syn3,3 method): The implementation of an arbitrary pair of
3-cycles (a, b, c) (d, e, f) requires at most 38n− 46 elementary gates.

Proof Use at most 6n+16 elementary gates to convert a to 2n−1 (i.e., 10 · · · 0),
b to 2k−1 (i.e., 0 · · · 010 · · · 0 where the underlined 1 is at the (k−1)th position),

9

Figure 10: The κ0(4,2) circuit, k =
dn/2e

Figure 11: The circuit of Theorem 3.4

c to 1 (i.e., 0 · · · 01), d to 2 (i.e., 0 · · · 010), e to 2n−2 (i.e., 010 · · · 0), and f to
2n−2 + 6 (i.e., 010 · · · 0110), sequentially. Therefore, the terms a, b, c, d, e, and
f are changed to 2n−1, 2k−1, 1, 2, 2n−2, and 2n−2 + 6, respectively. Note that
the terms a and b can be implemented by only CNOT gates. For each of the
other terms, at most one Toffoli and n−1 CNOT gates should be applied. Now,
apply the circuit shown in Fig. 9. After applying at most 7n + 33 elementary
gates, a, b, c, d, e, and f are transformed into 2n − 2k−1 − 2, 2n − 2, 2n−1 − 2,
2n− 2k−1− 1, 2n− 1, and 2n−1− 1, respectively (i.e., π3,3 circuit). By applying
κ0(3,3) and the reversed π3,3 circuit, 38n− 46 elementary gates are used and (a,
b, c) (d, e, f) is implemented.

Lemma 3.4 The κ0(4,2) circuit (Fig. 10-a) implements the pair (2n−4, 2n−1,
2n − 3, 2n − 2) (2n−1 − 2, 2n−1 − 1) by 36n− 180 elementary gates.

Proof The first Cn−2NOT(n − 1, n − 2, · · ·, 2, 1) gate shown in Fig. 10-a
changes 2n − 4, 2n − 3, 2n − 2, and 2n − 1 to 2n − 2, 2n − 1, 2n − 4, and 2n − 3,
respectively. The second Cn−2NOT(n− 2, · · · ,2, 1, 0) changes 2n − 2, 2n − 1,
2n−1 − 2 and 2n−1 − 1 to 2n − 1, 2n − 2, 2n−1 − 1 and 2n−2 − 2, respectively.
Considering the gates sequentially leads to the implementation of κ0(4,2). The
circuit in Fig. 10-b can be obtained by applying the Lemma 7.3 of [10] on each
Cn−2NOT gate of Fig. 10-a and canceling the resulted redundant gates. The
total number of 36n− 180 elementary gates can be achieved by a summation of
the costs of gates in Fig. 10-b.

Theorem 3.4 (Syn4,2 method): An arbitrary pair (a, b, c, d) (e, f) can be
implemented by at most 50n− 122 elementary gates.

Proof Use at most 6n+ 16 elementary gates to convert a to 4 (i.e., 0 · · · 0100),
c to 1 (i.e., 0 · · · 01), d to 2 (i.e., 0 · · · 010), e to 2n−2 (i.e., 010 · · · 0), f to 2n−3

(i.e., 0010 · · · 0), and b to 2n−1 + 3 (i.e., 10 · · · 011), sequentially. Note that the
terms a and c can be implemented by only CNOT gates. For each of the other
terms, at most one Toffoli and n−1 CNOT gates should be applied. Now, apply
the circuit shown in Fig. 11. After applying at most 7n+ 29 elementary gates,

10

Figure 12: The κ0(4,4) circuit, k =
dn/2e

Figure 13: The circuit of Theorem 3.5

the terms a, b, c, d, e, and f are changed to 2n − 4, 2n − 1, 2n − 3, 2n − 2,
2n−1 − 2, and 2n−1 − 1, respectively (the π4,2 circuit). Then, apply the κ0(4,2)
and the reversed π4,2 circuit (i.e., π−14,2) to complete the implementation of (a,
b, c, d) (e, f) by at most 50n− 122 elementary gates.

Lemma 3.5 The κ0(4,4) circuit (Fig. 12-a) implements (2n− 8, 2n− 2, 2n− 6,
2n − 4) (2n − 7, 2n − 1, 2n − 5, 2n − 3) by cost 36n− 228.

Proof Consider Fig. 12-a. The first Cn−3NOT(n − 1, n − 2, · · ·, 3, 2) gate
changes 2n − 8, 2n − 7, 2n − 6 and 2n − 5 to 2n − 4, 2n − 3, 2n − 2 and 2n − 1,
respectively. The second Cn−2NOT(n− 1, n− 2, · · ·, 2, 1) gate changes 2n − 4,
2n − 3, 2n − 2, and 2n − 1 to 2n − 2, 2n − 1, 2n − 4, and 2n − 3, respectively.
Considering the gates sequentially leads to the implementation of the cycle.
Applying the Lemma 7.3 of [10] on each gate shown in Fig. 12-a and canceling
the resulted redundant gates transform Fig. 12-a to Fig. 12-b. The total
number of 36n − 228 elementary gates can be obtained by summation of the
costs of gates shown in Fig. 12-b.

Theorem 3.5 (Syn4,4 method): An arbitrary pair (a, b, c, d) (e, f , g, h) can
be implemented by at most 56n− 126 elementary gates.

Proof Use at most 9n+22 elementary gates to sequentially convert a to 8 (i.e.,
0 · · · 01000), c to 2 (i.e., 0 · · · 010), d to 4 (i.e., 0 · · · 0100), e to 1 (i.e., 0 · · · 01), f
to 2n−2 (i.e., 010 · · · 0), g to 2n−1 (i.e., 10 · · · 0), h to 2n−3 (i.e., 0010 · · · 0) and
b to 14 (i.e., 0 · · · 01110). Note that a and c can be transformed to 8 and 2 by
only CNOT gates, respectively. In addition, for each term d, e, f , g, and h at
most one Toffoli and n− 1 CNOT gates should be used. For the last term b at
most two Toffoli gates should be used to set the 2nd and 3rd bits to 1. Then, at
most n− 2 Toffoli gates should be applied to set the 1st bit to 1 and the ith bit
to 0 where 0 ≤ i ≤ n−1, i 6= 1, 2, 3. The n−2 Toffoli gates can be implemented
by cost 2(n − 2) + 3 (see Fig. 1) since all Toffoli gates use the same control
lines (i.e., the 2nd and 3rd bits). Note that for n ≥ 8, the term b can also be
implemented by at most one Toffoli and n − 1 CNOT gates. Now, apply the

11

Figure 14: The κ0(5) circuit Figure 15: The circuit of Theorem 3.6

circuit shown in Fig. 13. After applying at most 10n+ 51 elementary gates, a,
b, c, d, e, f , g, and h are changed to 2n−8, 2n−2, 2n−6, 2n−4, 2n−7, 2n−1,
2n− 5, and 2n− 3, respectively (π4,4). Then, apply κ0(4,4) and π−14,4 to complete
the implementation of (a, b, c, d) (e, f , g, h) by at most 56n− 126 elementary
gates.

Lemma 3.6 The κ0(5) circuit (Fig. 14) implements the 5-cycle (2n−2−1, 2n−1,
2n − 2n−2 − 1, 2n−1 − 1, 2n − 2n−3 − 1) with cost 48n− 166.

Proof As illustrated in Fig. 14, four gates T(n−1, n−2, n−3), Cn−2NOT(0,
· · ·, n − 3, n − 1), T(n − 1, n − 2, n − 3), Cn−2NOT(0, · · ·, n − 1, n − 2) are
applied sequentially. After applying the first Toffoli gate, the locations of 2n−2

minterms (i.e.,
∑

1 = {2n − 2n−2, 2n − 2n−2 + 1, · · ·, 2n − 1}) are changed.
Mainly, 2n− 2n−3− 1 (i.e., 1101 . . . 1) ∈

∑
1 is changed to 2n− 1 (∈

∑
1). After

the second Cn−2NOT, the locations of 4 minterms (denoted as
∑

2={2n−2 − 1,
2n−1−1, 2n−2n−2−1, 2n−1}) are changed (where 2n−1 ∈

∑
1 ∩
∑

2). Among
them, 2n − 1 is changed to 2n−1 − 1 ∈

∑
2, and 2n−1 − 1 is changed to 2n − 1.

Applying the third Toffoli gate puts all
∑

1 minterms at their right locations
except 2n − 2n−3 − 1. In addition, it changes 2n − 1 to 2n − 2n−3 − 1. Finally,
the last Cn−2NOT gate changes the locations of four minterms as 2n−1 − 1 to
2n−2 − 1, 2n − 1 to 2n − 2n−2 − 1, 2n − 2n−2 − 1 to 2n − 1, and 2n−2 − 1 to
2n−1− 1. Considering all minterm exchanges, it can be verified that the 5-cycle
κ0(5) is implemented by the circuit of Fig. 14. The total number of 48n − 166
elementary gates can be obtained by a summation of the costs of gates in Fig.
14.

Theorem 3.6 (Syn5 method): An arbitrary 5-cycle (a, b, c, d, e) can be im-
plemented by at most 60n− 130 elementary gates.

Proof Use at most 5n+12 elementary gates to convert a to 2n−3 (i.e., 0010 · · · 0),
d to 2n−2 (i.e., 010 · · · 0), c to 2n−1 (i.e., 10 · · · 0), e to 2n−4 (i.e., 00010 · · · 0)
and b to 2n−1 + 2n−2 + 2n−3 + 1 (i.e., 1110 · · · 01), sequentially. Note that a and
d can be transformed to 2n−3 and 2n−2 by only CNOT gates, respectively. For
each of the other terms at most one Toffoli and n − 1 CNOT gates should be

12

Figure 16: The κ0(5,5) circuit, k = d(n− 1)/2e

Figure 17: The circuit of Theorem 3.7

used. Then, apply the circuit shown in Fig. 15. After using the applied gates
(at most 6n + 18 elementary gates), the terms a, b, c, d, and e are changed to
2n−2 − 1, 2n − 1, 2n − 2n−2 − 1, 2n−1 − 1, and 2n − 2n−3 − 1, respectively (π5).
Therefore, by applying the κ0(5) circuit and the π−15 circuit, the 5-cycle (a, b, c,
d, e) is implemented by at most 60n− 130 elementary gates.

Lemma 3.7 The κ0(5,5) circuit (Fig. 16) implements the pair of 5-cycles (2n−2

−2, 2n−2, 2n−2n−2−2, 2n−1−2, 2n−2n−3−2) (2n−2−1, 2n−1, 2n−2n−2−1,
2n−1 − 1, 2n − 2n−3 − 1) by cost 36n− 206.

Proof It can be verified that the κ0(5,5) circuit shown in Fig. 16-a differs from

the κ0(5) circuit in its least significant bit (i.e., the 0th bit) which results in
two 5-cycles. Applying Lemma 7.3 of [10] on each gate shown in Fig. 16-a and
canceling the resulted redundant gates transformed Fig. 16-a to Fig. 16-b. The
total number of 36n− 206 elementary gates can be obtained by a summation of
the costs of gates shown in Fig. 16-b.

Theorem 3.7 (Syn5,5 method): An arbitrary 5-cycle (a, b, c, d, e) (f , g, h, i,
j) can be implemented by at most 64n− 54 elementary gates.

13

Table 1: Maximum cost comparison for the proposed BBs

BB Length
Our Approach [13]

κ0 π, π−1 Total Cost/Length Total
(2,2) 4 24n-88 5n+12 34n-64 8.5n-16 34n-64
(3) 3 24n-88 4n+3 32n-82 10.7n-27.3 68n-128
(3,3) 6 24n-112 7n+33 38n-46 6.3n-15.3 68n-128
(2,4) 6 36n-180 7n+29 50n-122 8.3n-20.3 68n-128
(4,4) 8 36n-228 10n+51 56n-126 7n-15.7 102n-192
(5) 5 48n-166 6n+18 60n-130 12n-26 102n-192
(5,5) 10 36n-206 14n+76 64n-54 6.4n-5.4 136n-256

Proof Apply at most 13n+47 elementary gates to convert a to 2 (i.e., 0 · · · 010),
d to 4 (i.e., 0 · · · 0100), e to 2n−4 (i.e., 00010 · · · 0), f to 2n−3 (i.e., 0010 · · · 0), h
to 2n−1 (i.e., 10 · · · 0), i to 2n−2 (i.e., 010 · · · 0), j to 1 (i.e., 0 · · · 01), b to 2n−1+4
(i.e., 10 · · · 0100), c to 2n−1 + 2 (i.e., 10 · · · 010) and g to 2n−1 + 2n−2 + 2n−3

(i.e., 1110 · · · 0) sequentially. Note that a and d can be transformed to 2 and 4
by only CNOT gates, respectively. In addition, for each of other terms e, f , h,
i, and j at most one Toffoli gate and n−1 CNOT gates should be used. For the
last three terms b, c, and g at most two Toffoli gates should be used to set the
control bits to 1. Then, at most n − 2 Toffoli gates should be applied for each
term. For n ≥ 10, the terms b, c, and g can also be implemented by at most one
Toffoli gate and n − 1 CNOT gates which lead to 10n + 32 elementary gates.
Now, apply the circuit shown in Fig. 17. By using at most 14n+ 76 elementary
gates, the terms a, b, c, d, e, f , g, h, i, and j are changed to 2n−2 − 2, 2n − 2,
2n−2n−2−2, 2n−1−2, 2n−2n−3−2, 2n−2−1, 2n−1, 2n−2n−2−1, 2n−1−1,
and 2n − 2n−3 − 1, respectively (the π(5,5) circuit). Then, apply the κ0(5,5) and

the π−1(5,5) circuit to implement the cycles (a, b, c, d, e) (f , g, h, i, j) by at most

64n− 54 elementary gates.

So far, direct implementations of the selected building blocks have been
studied. Table 1 shows a summary of the achieved results for direct implemen-
tations of the selected building blocks. In this table, the maximum number of
elementary gates of our direct synthesis method and the 2-cycle-based method
[13] for the set of proposed building blocks are compared. As demonstrated in
this table, the direct k-cycle-based implementation has a significant potential
to reduce the cost. However, as the direct implementation of a general k-cycle
could be very hard, in this paper a decomposition algorithm is also proposed to
be used in conjunction with the selected set of building blocks.

3.2 Decomposition Method

In the rest of this paper, 2, 3, 4 and 5 cycles are called elementary cycles. For
an arbitrary single permutation P , we would like to decompose it into a set of
elementary cycles like c1, c2, ..., ck such that applying P would be identical to

14

applying c1, c2, ..., ck, sequentially; and c1, c2, ..., ck as well as P would belong
to a single permutation group.

To describe the decomposition method, the following notations are used: P
as an input permutation, m as the maximum cycle length available in P , Ck as
a cycle of length k, Ck,i(k) as the set of i(k) cycles each of which is of length k,

Cj
k (j ≤ i(k)) as the jth cycle of the cycle set Ck,i(k), N(k) as the number of

disjoint 5-cycles in a given k-cycle, L(k) as the length of a given k-cycle after
detaching N(k) disjoint 5-cycles, and E(k) as the length of a given k-cycle after
detaching all of the available disjoint/non-disjoint 5-cycles in the given k-cycle.

Any permutation P can be written uniquely, except for the order, as a
product of disjoint cycles. Without loss of generality, we assume that P =
Cm,i(m) Cm−1,i(m−1) · · · C3,i(3) C2,i(2) where ∀k ∈ (2, · · ·, m): i(k) ≥ 0. For
each Ck,i(k) (k > 5) in P , Ck,i(k) is decomposed into a set of cycles of lengths
5, 4, 3, and 2, sequentially. In addition, for any two cycles Ck,i(k) and Cj,i(j)

(k > j), Ck,i(k) is processed first. Consider a given k-cycle (1, 2, 3, 4, · · ·, k)
(k > 5). It is possible to decompose it into two cycles (1, 2, 3, 4, 5) (6, 7, · · ·, k,
1) of length 5 and (k − 4), respectively. Repeating the process leads to N(k)=
bk/5c disjoint 5-cycles and a cycle of length L(k)=N(k)+(k mod 5) with some
non-disjoint members. This process is called the 5-cycle extraction method in
the rest of the paper.

Since Ck,i(k) ∀k ∈ (2, · · ·, m) contains i(k) cycles of length k, one can write

Ck,i(k)= C1
k C2

k · · · C
i(k)
k . For each Ck and by using the 5-cycle extraction

method, Ck=C5,1 Ck−4,1=C5,2 Ck−8,1=...=C5,N(k) CL(k),1. Repeating this pro-
cess for L(k), L(L(k)), etc. lead to Ck=C5,N(k) C5,N(L(k)) C5,N(L(L(k))) · · ·
C5,N(L(L···(k))) CE(k),1. Note that E(k) is smaller than 5. Since there are i(k)
cycles of length k, Ck,i(k) = C5,N(k)×i(k) C5,N(L(k))×i(k) C5,N(L(L(k)))×i(k), ...,
C5,N(L(L···(k)))×i(k) CE(k),i(k).

It can be verified that the resulted elementary cycle of a k-cycle (k > 5) has
no common members with other cycles. In addition, all disjoint/non-disjoint
5-cycles (detached from a k-cycle) are disjoint over other cycles. Therefore, the
input permutation P can be written as (1). See Example 3.2 for more details.

P =
(
C5,N(k)×i(k)

)∣∣m
k=5

(
C5,N(L(k))×i(k)

)∣∣m
k=5

...(
C5,N(L(L(...(k)))×i(k)

)∣∣m
k=5

C4,i′(4)C3,i′(3)C2,i′(2)

where :

i′(4) = i(4) +
m∑

k=5

i(k)|E(k)==4,

i′(3) = i(3) +
m∑

k=5

i(k)|E(k)==3,

i′(2) = i(2) +
m∑

k=5

i(k)|E(k)==2

(1)

Example 3.2 Consider P = (3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19,
20, 21) (22, 23, 24, 25, 26, 27) (28, 29) (30, 31) written as C16,i(16) C6,i(6)

C2,i(2). It can be verified that m = 16, i(16) = 1, i(6) = 1, i(2) = 2, and
i(k) = 0 for k ∈ (3, 4, 5, 7, 8, · · ·, 15). We have:

15

• k = 16

– N(16)= b16/5c=3, L(16)=3 + 1=4

– N(L(16))=N(4)=0, L(L(16))=4=E(16)

• k = 6

– N(6)=1, L(6)=2=E(6)

• k = 2

– N(2)=0, L(2)=2=E(2)

Therefore P= (C5,3 C5,1) (C4,1 C2,3) = (3, 5, 6, 7, 9) (10, 11, 12, 13, 14) (15, 17,
18, 19, 20) (22, 23, 24, 25, 26) (21, 3, 10, 15) (22, 27) (28, 29) (30, 31).

Considering the 5-cycle extraction method, the extraction time complexity
of each k-cycle can be written as O(k) + O(L(k)) + O(L(L(k)) + · · · + O(E(k))
≤ O(ηk) where η is an integer smaller than k. Therefore, each given k-cycle
is processed with the time complexity of O(k). On the other hand, as there
are i(k) ≥ 0 cycles of length k, the total time complexity of the decomposition
method is O(m) × i(m) + O(m − 1) × i(m − 1) + · · ·+ O(2) × i(2) where
O(i(k))=O(2n/k), k < 2n for k ∈ (2 · · ·m). Therefore, we have O(m) × i(m)
+ O(m − 1) × i(m − 1) + · · ·+ O(2) × i(2)=O(m2)=O(22n) as m < 2n. It is
important to note that the decomposition algorithm of [13] works with the same
O(22n) time complexity. After the decomposition stage, the resulted elementary
cycles should be implemented by using the proposed synthesis algorithms. Note
that the total number of extracted 5-cycles is O(k)+O(L(k))+O(L(L(k)))+· · ·
which is equal to O(k). Considering all k-cycles (k ≥ 5), the total number of
5-cycles is O(22n) as explained above. In addition, as each k-cycle (k ≥ 5)
could produce at most one elementary cycle with length 2, 3 or 4, the total
number of elementary cycles is at most

∑
k=2···m i(k)=O(2n). Therefore, the

total number of elementary cycles is O(22n) that leads to the time complexity of
O(22n)×O(SynthesisAlgorithm). It can be verified that the proposed synthesis
algorithms for the elementary cycles are of O(n). As a result, the total time
complexity of the proposed approach is O(22n × n), the same as [13].

To count the maximum number of elementary cycles in the proposed method,
note that the number of 5-cycle pairs, 3-cycle pairs and 4-cycle pairs resulted
from the decomposition algorithm areNum5,5 =

⌊
1
2

∑
k=5···mN(k) +N(L(k)) + · · ·

⌋
,

Num3,3 = 1
2 i
′(3), and Num4,4 = 1

2 i
′(4), respectively. On the other hand, at

most one single 5-cycle, one single 3-cycle and one 4-cycle followed by a 2-cycle
are produced, i.e., Num5 = mod(

∑
k=5···m N(k) + N(L(k)) + · · ·, 2), Num3

= mod(i′(3), 2) and Num4,2 = mod(i′(4), 2). Finally, the number of 2-cycle
pairs is Num2,2=

⌊
1
2 (i′(2)−Num4,2)

⌋
. Altogether, the maximum number of

elementary gates resulted in the proposed k-cycle-based synthesis method can

16

Step1
Fix 0 and 2i terms use a pre-process stage as done in [9].

Step2
if n < 7

1- Decompose the input permutation into a set of 2-cycles.
2- Apply Syn2,2 to synthesize all 2-cycles

else
1- Decompose the input permutation into a set of 5, 4, 3, and 2 cycles
2- Synthesize all disjoint 5-cycle pairs (Syn5,5)
3- Synthesize single 5-cycles (Syn5)
4- Synthesize all disjoint 3-cycle pairs (Syn3,3)
5- Synthesize single 3-cycles (Syn3)
6- Synthesize all disjoint 4-cycle pairs (Syn4,4)
7- Synthesize all disjoint 4-cycle and 2-cycle pairs (Syn4,2)
8- Synthesize all disjoint 2-cycle pairs (Syn2,2)

Figure 18: The k-cycle-based synthesis method

be expressed by (2). See the following examples for more details.

Num5,5 × (64n− 54) +Num5 × (60n− 130) +Num3,3 × (38n− 46)+
Num3 × (32n− 82) +Num4,4 × (56n− 126) +Num4,2 × (50n− 122)+
Num2,2 × (34n− 64)

(2)

Example 3.3 Again, reconsider the permutation of Example 3.2, P = C16,1

C6,1 C2,2 where Num5,5 = 1
2 b(N(16) +N(6))c = 2, Num5 = 0, Num3,3 = 0,

Num3 = 0, Num4,4 = 0, Num4,2 = 1, and Num2,2 =
⌊
1
2 (3− 1)

⌋
= 1. At most

2 × (64n − 54) +(50n − 122) +(34n − 64) = 212n − 294 elementary gates are
produced using our k-cycle-based synthesis method.

Example 3.4 Let P=(3, 5, 6, 7, 9, 10, 11, 12, 13, 14) (15, 17, 18, 19, 20, 21)
(22, 23, 24) (25, 26, 27) (28, 29, 30) (P = C10,1 C6,1 C3,3). After decomposition,
we have P = C5,3 C3,3 C2,2. After applying the proposed method, Num5,5 =
1, Num5 = 1, Num3,3 = 1, Num3 = 1, Num4,4 = 0, Num4,2 = 0, Num2,2

= 1 and at most 2 × (64n − 54) + (60n − 130) + (38n − 46) + (32n − 82) +
(34n− 64) = 292n− 430 elementary gates are produced.

As stated at the beginning of Section 3, the zero and 2i terms are fixed by
applying a few Toffoli and CNOT gates as done in [9]. In addition, For small n
(i.e., n < 7), the decomposition algorithm is modified to produce only 2-cycles
where each cycle pair is synthesized by the Syn2,2 method. The complete k-
cycle-based synthesis method is shown in Fig. 18. For n ≥ 7, a given permuta-
tion is recursively decomposed into a set of elementary cycles each of which is
synthesized by the synthesis algorithm listed in parentheses as discussed.

17

Theorem 3.8 The proposed k-cycle-based synthesis method always converges.

Proof According to the proofs of Theorem 3.1 to Theorem 3.7, the suggested
building blocks (i.e., a pair of 2-cycles, single 3-cycle, a pair of 3-cycles, single
5-cycle, a pair of 5-cycles, a single 2-cycle (4-cycle) followed by a single 4-cycle
(2-cycle), and a pair of 4-cycles) can always be synthesized for any arbitrary
values of cycle elements for n ≥ 7 as far as each cycle element is neither 0 nor
2i. In addition, by using the proposed decomposition algorithm, a given large
cycle can always be decomposed into a set of elementary cycles. For small n (i.e.,
n < 7), the decomposition algorithm produces only 2-cycles where each pair can
always be synthesized by the Syn2,2 method. Considering the pre-process stage
for the zero and 2i terms and the synthesis scenarios for n < 7 and n ≥ 7 as
explained above lead to the theorem.

3.3 Worst Case Analysis

To analyze the total number of elementary gates resulted from the proposed
k-cycle-based synthesis method in the worst case, assume that the maximum of
m members (a1, a2, · · ·, am) of a given permutation P are moved. As each ak,
k ∈ (2, · · · ,m) is neither 0 nor 2i, m is equal to 2n − n − 1 for an even n and
equal to 2n − n− 2 for an odd n.

Theorem 3.9 The maximum number of elementary gates in the proposed cycle-
based synthesis method is calculated by 8.5n2n + o(2n).

Proof In order to place each row at its right position, several reversible gates
should be applied in the proposed method. The worst-case cost occurs for the
maximum number of changed rows (i.e., m = o(2n)). The synthesis costs listed
in Table 1 (i.e., Cost/Length) indicate that the cost of correcting a single row is
8.5n− 16 for a pair of 2-cycles, 10.7n− 27.3 for a single 3-cycle, 6.3n− 15.3 for
a pair of 3-cycles, 8.3n − 20.3 for a single 2-cycle followed by a single 4-cycle,
7n− 15.7 for a pair of 4-cycles, 12n− 26 for a single 5-cycle and 6.4n− 5.4 for
a pair of 5-cycles.

For a decomposition with 2n changed rows, there are at most one single
5-cycle and one single 3-cycle. Considering the cost of 12n− 26 for correcting a
single row in a single 5-cycle, 10.7n− 27.3 in a single 3-cycle and 8.5n− 16 in a
pair of 2-cycles, it can be verified that the worst-case cost for a decomposition
with 2n changed rows is 8.5n2n + o(2n).

Theorem 3.9 shows a lower upper bound for k-cycle-based synthesis method
compared to the best reported upper bound of 11n2n + o(n2n) for the synthesis
algorithm proposed in [6]. Given the fact that the 8.5n2n term is dominant over
the o(2n) term, the former will be used in the remainder of this subsection for
cost analysis.

Reversible logic has application in quantum computing [10], [5]. Most quan-
tum algorithms presume that interaction between arbitrary qubits is possible

18

with no extra cost. However, some restrictions exist in real quantum tech-
nologies [15]. For example in a Linear Nearest Neighbor (LNN) architecture,
only adjacent qubits may interact. The implementation complexity with lim-
ited interaction depends on the relative target and control positions. It can
be modeled by using a sequence of SWAP gates to move controls and targets
close to each other to construct appropriate gates. Theorem 3.10 examines the
proposed method for LNN architecture.

Theorem 3.10 The maximum number of elementary gates in the proposed k-
cycle-based synthesis method for LNN architecture is equal to 51n22n.

Proof To prove, the number of required SWAP operations performing a 2-
qubit gate g with control c and target t has to be found. We assume c > t.
It can be verified that (c − t − 1) SWAP operations are required to bring the
control adjacent to the target, one gate is required to perform g, and the same
sequence of (c − t − 1) SWAP operations are required to return value of the
ith (t < i ≤ c) qubit to its initial value. Considering a cost 3 for each SWAP
operation leads to 6× (c− t− 1) + 1. The case of c ≤ t can be readily deduced
by following the same approach.

The theorem can be proven by using Theorem 3.9 and plugging in the cost
found above.

4 Experimental Results

The proposed k-cycle-based synthesis method and the 2-cycle-based algorithm
presented in [13] were implemented in C++ and all of the experiments were
done on an Intel Pentium IV 2.2GHz computer with 2GB memory. In addition,
we used one of the most recent and efficient NCT-based synthesis tools proposed
in [6] for our comparisons. This method used Reed-Muller (RM) spectra in an
iterative synthesis procedure (RM-based method). In all experiments, the post-
processing algorithm proposed in [13] was applied to simplify circuits produced
by our synthesis method and the algorithm of [13]. In this method, optimal
circuits for all 40320 3-input reversible functions and a large set of 4-input
circuits were generated and stored in a compact data-structure. As a result,
applying the post-processing algorithm of [13] leads to optimal results for all
3- and some 4-input specifications. The synthesis algorithm of [6] was applied
in “synthesized/ resynthesized using 3 methods” mode for circuits with n < 15
and in “synth/resynth with MMD (15+ variables)”for n ≥ 15. In addition, the
synthesis algorithm, the template matching method, the random and exhaustive
driver algorithms were applied sequentially to synthesize each function with a
time limit of 12 hours as done in [6]. Bidirectional and quantum cost reduction
modes were also applied.

To evaluate the proposed synthesis method, the completely specified re-
versible benchmarks from [16] were examined. In addition, the best documented
synthesis costs available at [16] resulted from applying different NCT-based syn-
thesis tools were used for our comparisons. In some cases, the synthesis results

19

in NCT library for some benchmarks have not been reported yet (these func-
tions are N-th prime functions over more than 7 bits, hamming coding functions
(hwb) over more than 11 bits1 and permanent functions). In those cases, we
applied the synthesis method of [6] which works efficiently in terms of quan-
tum cost with a time limit of 12 hours. If it failed to synthesize a function in
the given time limit (for hwb functions over more than 11 bits and N-th prime
functions over more than 10 bits, the algorithm failed), the method of [13] was
applied. All synthesis algorithms were compared in terms of the quantum cost
as done in [16]. Our actual circuits are available from [18].

The results of the proposed k-cycle-based synthesis method (Pure k-cycle)
and the best synthesized circuits resulted from the previous NCT-based synthe-
sis algorithms (Best Results) were shown in Table 2. A comparison of the
synthesis costs of the proposed k-cycle-based method and the best reported
ones reveals that the cycle-based approach treats differently in terms of the
quantum cost for different benchmarks (for examples see the results of hwb11
and cycle10 2). In the rest of this section, by analyzing the characteristics of
different benchmarks, a hybrid synthesis framework is proposed which uses the
cycle-based method in conjunction with the method of [6] to synthesize a given
function. As shown later, the proposed hybrid framework can improve the av-
erage quantum costs efficiently.

To evaluate the behavior of k-cycle-based synthesis method, a Distance met-
ric is defined as (3) for each reversible function f where 0 ≤ Distance(f) ≤ 1.

Distance(f) =

i=2n−1∑
i=0

|f(i)− i|/(22n−1) (3)

For a given function f , Distance(f) models the distribution of output code
words compared with the identity function. Fig. 19 shows the distributions of
output code words for three benchmarks. As illustrated in this figure, ham7
(Distance(f) = 0.38) and cycle10 2 (Distance(f) = 0.001) are more similar
to the identity function (f(i) = i,Distance(f) = 0) compared with hwb10
(Distance(f) = 0.62). The distributions of output code words for other func-
tions were reported in Table 2 (i.e., Dist.).

Based on the characterization of a reversible function, we divided bench-
marks into three categories as shown in Table 2 (Cat.). Category 1 includes
small functions with less than seven inputs. Category 2 and category 3 in-
clude large functions with n ≥ 7 but with different distribution levels. In other
words, for each function in category 2 (3), Distance(f) is greater (less) than
0.5. By applying a hybrid synthesis framework, functions in different categories
are handled differently as shown in Fig. 20.

For functions in category 1, we applied the cycle-based synthesis method
first. Then, the random driver procedure introduced in [6] was applied. Since
category 1 includes small functions, applying the random driver method for

1For hwb functions, polynomial size reversible circuits in NCTF library (NCT library plus
the Fredkin gate [17]) with [log(n)] + 1 garbage bits and O(nlog2(n)) gates exist [16].

20

Table 2: The comparison costs of the proposed synthesis framework. Time
values are in seconds.

Cat. Benchmark n Dist.
Pure The Proposed Cost

Best Results k-Cycle Hybrid Framework Impr.
Function Cost Cost Cost Time Method (%)

1

3 17 3 0.18 12 12 12 4 kC+R 0
4 49 4 0.37 32 116 32 5 kC+R 0
ham3 3 0.06 7 7 7 4 kC+R 0
hwb4 4 0.36 23 60 24 30 kC+R -4
hwb5 5 0.44 104 196 91 32 kC+R 13
hwb6 6 0.49 140 526 107 44 kC+R 24
mod5adder 6 0.07 77 853 79 20 kC+R -3
nth prime3 inc 3 0.13 6 6 6 3 kC+R 0
nth prime4 inc 4 0.47 58 190 51 20 kC+R 12
nth prime5 inc 5 0.34 91 363 97 27 kC+R -7
nth prime6 inc 6 0.61 667 1314 701 37 kC+R -5
permanent2x2 6 0.02 47 227 49 20 kC+R -4

average 2

2

hwb7 7 0.54 2611 2630 2630 111 kC -1
hwb8 8 0.58 7013 6940 6940 56 kC 1
hwb9 9 0.60 22502 16173 16173 44 kC 28
hwb10 10 0.62 59191 35618 35618 50 kC 40
hwb11 11 0.63 136756 90745 90745 60 kC 34
hwb12 12 0.64 334218 198928 198928 122 kC 40
hwb13 13 0.66 935322 436305 436305 481 kC 53
hwb14 14 0.65 1818773 994340 994340 994 kC 45
hwb15 15 0.66 4119568 1999194 1999194 1503 kC 51
hwb16 16 0.66 8910859 4730024 4730024 4312 kC 47
nth prime7 inc 7 0.59 2695 3172 3172 41 kC -18
nth prime8 inc 8 0.62 9409 7618 7618 56 kC 19
nth prime9 inc 9 0.55 20888 17975 17975 60 kC 14
nth prime10 inc 10 0.64 48435 40299 40299 64 kC 17
nth prime11 inc 11 0.62 197606 95431 95431 89 kC 52
nth prime12 inc 12 0.61 452301 208227 208227 190 kC 54
nth prime13 inc 13 0.6 1016567 474660 474660 420 kC 53
nth prime14 inc 14 0.62 2254198 1018661 1018661 1101 kC 55
nth prime15 inc 15 0.63 4948477 2271370 2271370 2812 kC 54
nth prime16 inc 16 0.64 10786095 4823320 4823320 4018 kC 55
nth prime17 inc 17 0.61 22144391 10592640 10592640 9231 kC 52

average 35

3

ham7 7 0.38 49 2117 49 ∗ RM 0
ham15 15 0.31 214 140343 214 ∗ RM 0
mod1024adder 20 0.66 1575 110222 1575 ∗ RM 0
cycle10 2 12 0.001 1206 93086 1206 ∗ RM 0
cycle17 3 20 ≈ 0 6057 523891 6057 ∗ RM 0
permanent3x3 12 ≈ 0 1884 89777 1884 * RM 0

average 0

∗ A time limit of 12 hours was considered in applying the method of [6].

optimizing the results has no runtime overhead. Hence, combining different
heuristics (i.e., cycle-based approach and random driver procedure) to achieve
better cost is reasonable. On the other hand, for large functions in category
2 with considerable differences from the identity function (Distance ≥ 0.5),
only the cycle-based synthesis method was applied. According to [6], for some
functions in this category (i.e., hwb11) the method of [6] needs several hours
to synthesize the function. Similarly, in [19], the authors stated their synthesis
algorithm cannot synthesize hwb circuit with over five variables by NCT library

21

Figure 19: The distributions of output code words for three benchmark functions

Figure 20: The hybrid synthesis framework

(with 4GB RAM and finite runtime). Memory/runtime limitations will be even
more challenging for hwb functions with more variables. As can be seen in Table
2, both average cost and runtime were improved for functions in category 2.

On the other hand, for functions in category 3 which have some similarities
to the identity function (Distance < 0.5), RM-based method is used in the
proposed hybrid framework. A reversible function with large Distance can have
regular distribution at its output side (e.g., f(i) = 2n−1−i where Distance(f) =
1). Hence, number of patterns (NoP) in the distribution of output code words
was also used in the proposed hybrid framework. Regular output distribution
leads to a small NoP. Fig. 21 shows output patterns for ham7 function (NoP =
12). A function with an appropriate number of patterns (NoP < Th) at its
output code words is similar to the identity function to some extent. Hence,
such function was synthesized by using the RM-based method too. For example,

22

Figure 21: Output patterns for ham7 function with NoP = 12

mod1024adder with Distance = 0.66 and NoP = 1000 was synthesized by
applying the RM-based method. We set Th = 0.005× 2n in our experiments.

The results of hybrid synthesis framework were shown in Table 2 where
k-cycle-based, random driver and RM-based methods were denoted by kC, R,
and RM, respectively. Runtime results (in seconds) for the hybrid framework
were reported in Table 2 too. According to the experimental results, RM-based
method works very fast for functions in category 3 compared with category
2. Therefore, the proposed hybrid synthesis framework outperforms the best
results in terms of quantum cost and runtime on average. Our synthesis tool
potentially can synthesize functions with any number of variables. However, as
the number of variables and resulted synthesized gates grows, the runtime and
memory usage grow accordingly (for hwb functions with n ≥ 20, peak memory
usage was more than 2GB).

Since both cycle-based and RM-based methods [6] always result in a synthe-
sized circuit, the proposed framework always converges. Moreover, as a generic
reversible function f with large n and Distance(f) ≥ 0.5 without regular pat-
terns at its output side needs much more gates in the proposed hybrid frame-
work compared with other functions, the worst-case cost of hybrid framework is
identical to the worst-case cost of the cycle-based method (i.e., 8.5n2n + o(2n)).

5 Conclusion and future directions

In this paper, a k-cycle-based synthesis method for reversible functions was
proposed and analyzed in detail. To this end, a set of synthesis algorithms
was proposed to synthesize cycles of length less than 6 (i.e., elementary cycles).
In addition, a decomposition algorithm was introduced to decompose a large
cycle into a set of elementary cycles. Next, the decomposition algorithm and
the proposed synthesis algorithms were used to synthesize all permutations. By
evaluating different benchmark functions, the behavior of cycle-based synthesis
method was analyzed and a hybrid synthesis framework was introduced which
uses the proposed cycle-based synthesis method in conjunction with one of the
recent synthesis methods.
Our worst-case analysis revealed that the proposed hybrid synthesis framework
leads to a lower upper bound compared to the present synthesis algorithms.

23

The hybrid framework always converges and it leads to better average runtime.
The experiments for average-case costs revealed that the proposed framework
produces circuits with lower costs for benchmark functions.
A natural next step to continue this path is working on the synthesis of cycles
with length greater than 5 for the average-case cost improvement in the k-cycle-
based synthesis method which can improve the results of hybrid framework too.
In addition, working on a synthesis approach for incompletely specified functions
based on the one proposed here could be considered as a future research.

Acknowledgment

We would like to acknowledge Dmitri Maslov from University of Waterloo for
providing an executable version of his recent synthesis tool.

References

[1] R. Landauer. Irreversibility and heat generation in the computing process.
IBM Journal of Research and Development, 5:183–191, July 1961.

[2] C. Bennett. Logical reversibility of computation. IBM Journal of Research
and Development, 17(6):525–532, November 1973.

[3] V. V. Zhirnov, R. K. Kavin, J. A. Hutchby, and G. I. Bourianoff. Limits to
binary logic switch scaling - a gedanken model. Proceedings of the IEEE,
91(11):1934–1939, 2003.

[4] G. Schrom. Ultra-Low-Power CMOS Technology. PhD thesis, Technischen
Universitat Wien, June 1998.

[5] M. Nielsen and I. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, New York, 2000.

[6] D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis
of reversible toffoli networks. ACM Trans. Des. Autom. Electron. Syst.,
12(4):42, 2007.

[7] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne. Quantum cir-
cuit simplification and level compaction. IEEE Trans. on CAD, 27(3):436–
444, March 2008.

[8] P. Gupta, A. Agrawal, and N.K. Jha. An algorithm for synthesis of re-
versible logic circuits. IEEE Trans. on CAD, 25(11):2317–2330, 2006.

[9] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of
reversible logic circuits. IEEE Trans. on CAD, 22(6):710–722, June 2003.

24

[10] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. Smolin, and H. Weinfurter. Elementary gates for quantum
computation. APS Physical Review A, 52:3457–3467, 1995.

[11] C. Negrevergne, T. S. Mahesh, C. A. Ryan, M. Ditty, F. Cyr-Racine,
W. Power, N. Boulant, T. Havel, D. G. Cory, and R. Laflamme. Bench-
marking quantum control methods on a 12-qubit system. Physical Review
Letters, 96(17), 2006.

[12] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network synthesis with
templates. IEEE Trans. on CAD, 24(6):807–817, 2005.

[13] Aditya K. Prasad, Vivek V. Shende, Igor L. Markov, John P. Hayes, and
Ketan N. Patel. Data structures and algorithms for simplifying reversible
circuits. J. Emerg. Technol. Comput. Syst., 2(4):277–293, 2006.

[14] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck. Quantum circuit
simplification using templates. In DATE ’05: Proceedings of the conference
on Design, Automation and Test in Europe, pages 1208–1213, Washington,
DC, USA, 2005. IEEE Computer Society.

[15] V. V. Shende, S. S. Bullock, and I. L. Markov. Synthesis of quantum-logic
circuits. IEEE Trans. on CAD, 25(6):1000–1010, June 2006.

[16] D. Maslov, G. Dueck, and N. Scott. Reversible logic synthesis benchmarks
page. http://www.cs.uvic.ca/˜ dmaslov/, November 2009.

[17] E. F. Fredkin and T. Toffoli. Conservative logic. International Journal of
Theoretical Physics, 21(3/4):219–253, 1982.

[18] M. Saeedi, M. Saheb Zamani, and M. Sedighi. Reversible logic synthesis
benchmarks. http://ceit.aut.ac.ir/QDA/benchmarks, March 2010.

[19] James Donald and Niraj K. Jha. Reversible logic synthesis with fredkin
and peres gates. J. Emerg. Technol. Comput. Syst., 4(1):1–19, 2008.

25

http://www.cs.uvic.ca/~
http://ceit.aut.ac.ir/QDA/benchmarks

	1 Introduction
	2 Preliminaries
	3 k-Cycle-Based Synthesis Method
	3.1 Building Blocks
	3.2 Decomposition Method
	3.3 Worst Case Analysis

	4 Experimental Results
	5 Conclusion and future directions

