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ABSTRACT
With the recent development of tools for data sharing in
social networks and peer to peer networks, the same infor-
mation is often stored in different nodes. Peer-to-peer proto-
cols usually allow one user to collect portions of the same file
from different nodes in the network, substantially improving
the rate at which data are received by the end user. In some
cases, however, the same multimedia document is available
in different lossy versions on the network nodes. In such
situations, one may be interested in collecting all available
versions of the same document and jointly decoding them to
obtain a better reconstruction of the original. In this paper
we study some methods to jointly decode different versions
of the same image. We compare different uses of the method
of Projections Onto Convex Sets (POCS) with some Convex
Optimization techniques in order to reconstruct an image for
which JPEG and JPEG2000 lossy versions are available.

Categories and Subject Descriptors
E.0.a [General]: Data communications aspects; E.4.a [Coding
and Information Theory]: Data compaction and com-
pression.

Keywords
Consistent decoding, Projections Onto Convex Sets, Convex
Optimization.

1. INTRODUCTION
The increasing development of peer-to-peer and social net-

works observed in recent years imposes the need for a par-
allel development of communication protocols that enable
efficient distribution of digital information across such net-
works. The same information is often stored in different
nodes of the network and appropriate strategies are required
to allow a user to exploit such redundancy in order to im-
prove the communication efficiency towards the end point.
Today peer-to-peer protocols handle the information flow
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to the end user at the transport level, allowing the user to
collect portions of the same file from different peers in the
network. With an increasing interest in sharing multimedia
documents, a possible limitation of transport level protocols
may be found in the impossibility to exploit the redundancy
associated to different descriptions of the same original con-
tent. A typical example is the case of video sequences, where
different copies obtained from one single original version are
often stored in different points of the network. In this case,
it is often easy for the user to obtain many low quality ver-
sions of one video sequence, but it may be difficult to find
even one good quality copy.

In this perspective, it is important to develop techniques
that would allow a user to integrate different encoded ver-
sions of the same original data in order to extract one single
higher quality version of it. Previous work in this direction
recently appeared focusing on the case when the different
descriptions are obtained by encoders using a single orthog-
onal transform with different quantization parameters ([14,
13]). In this paper, we focus on the more general case when
different possibly non-orthogonal transforms are used and,
more specifically, when a single reconstructed image is to be
obtained from some JPEG and JPEG2000 lossly encoded
versions. We here limit the attention to still image decoding
in order to first focus on the computational problems arising
from using different non-orthogonal transforms, and we leave
to future research the extension to video reconstruction.

The main assumption is that the reconstructed image must
be consistent with all the received descriptions (see [11, 12]),
i.e., it must be mapped into the received versions when en-
coded with their respective encoding/quantization schemes.
Every quantized version of the image can be interpreted as
an indication of a quantization cell that contains the origi-
nal image. When multiple versions are available, many such
quantization cells are known at the receiver, each containing
the original image. The objective of the decoder is thus to
find one point in the intersection of those cells. Different
techniques can be used for this purpose and in the following
sections two types of approaches are presented and com-
pared on some test images encoded with block-DCT (as in
JPEG) and with a wavelet decomposition (as in JPEG2000).

2. CONSISTENT IMAGE DECODING

2.1 Introduction to Set Theoretic Coding
In order to properly present the main idea needed for

jointly decoding several versions of the same image, it is use-
ful to consider the general scheme of linear transform coding



with scalar quantization of the coefficients, which is the most
used image coding scheme. Let x = (x1, x2, . . . , xn) be the
vector of n pixel values of the original image and let X the
set of all possible such vectors. Any linear transform, such
as block-DCT or wavelet transforms, can be represented by
a matrix T , the output vector y = (y1, y2, . . . , ym) being
thus represented as a matrix multiplication y = Tx. Scalar
quantization of a coefficient yi simply generates an indica-
tion of an interval [li, ui] that contains the value yi. Every
quantized coefficient thus identifies a region in the space X
described by the constraints li ≤ Tix ≤ ui, Ti being the
i-th row of T , which is a strip shaped region Θi included
within the two hyperplanes Tix = li and Tix = ui. Hence,
the set of all quantized transform coefficients identifies the
intersection of all such regions, which is a polytope shaped
region Θ. In the case T is an orthogonal transform, Θ is a
parallelepiped.

In the reconstruction phase, for every i, the decoder usu-
ally takes ŷi = (li + ui)/2, the middle point of the quantiza-
tion interval, as an estimation of the true coefficient yi and
then inverts the transform T . The reconstructed pixel val-
ues vector x̂ is thus x̂ = T−1(l + u)/2, which is the centroid
of the quantization region Θ. The choice ŷi = (li + ui)/2 is
optimal under the assumption that yi, at the decoder side, is
to be considered as a random variable uniformly distributed
over the interval [li, ui]. Under different assumptions, for
example if the decoder has access to additional a priori or
side information, different choices of ŷi may be preferable.

When more lossy descriptions of the same image are gen-
erated, we may repeat the same discussion as above, the
only difference being that different transforms T (k) are used,
and different corresponding Θ(k) ⊂ X regions are obtained,
each one containing the original vector x. When all such
descriptions are available at the same point, the complete
information about vector x is that it lies in the intersection
Θ̄ =

T
k Θ(k). A consistent reconstruction of x is any x̂ ∈ Θ̄.

Note that any such vector x̂ leads to exactly the same de-
scriptions Θ(k) when encoded with the same coding schemes
used for x and it is then actually consistent with all the
available information about x.

Choosing a specific point in Θ̄ mainly depends on the a
priori information available about x and the computational
power available at the decoder to exploit such a priori infor-
mation. In the following two sections two main approaches
to such problems are described, namely Projections Onto
Convex Sets (POCS, see [4, 5]) and Convex Optimization
(CO) techniques (see [1]).

2.2 Projections Onto Convex Sets (POCS)
Let Φh, h = 1, . . . , H, be a set of convex closed sets in

a Hilbert space and let Φ̄ =
T

h Φh. One of the most used
techniques to find a point p in Φ̄ is the method of Projec-
tion Onto Convex Sets (POCS) (see [4]). This method starts
with an initial estimate p(0) and it constructs a sequence of
estimates p(t) by iterative cyclic projections onto the sets
Φh. It can be proved that the obtained sequence of points
converges to a point in Φ̄. In our setting, we are interested
in finding a point x̂ in Θ̄, and POCS can be efficiently used
for such scope. We now describe three main variations that
we have experimented on the use of POCS for reconstruct-
ing an image from lossy JPEG (block-DCT transform) and
JPEG2000 (Daubechies 9/7 wavelet transform) versions.

2.2.1 Approximate POCS (A-POCS)
One may consider the convex sets Φh as the convex cells

associated with the lossy versions of the images, that is
the Θ(k) sets. When the used transforms T (k) are orthogo-
nal, as for the case of the block-DCT transform of JPEG,
POCS can be implemented very efficiently since projections
can be computed easily in the transform domain. In fact,
since orthonormal transforms preserve inner products, pro-
jection operations in the X domain coincide with identical
projections in the transformed domain. Due to scalar quan-
tization, in the transform domain the quantization cell is a
parallelepiped oriented in the directions of the coordinate
axes. At iteration t, the point x̂(t) is projected into Θ(k)

by computing the transform ŷ(k)(t) = T (k)x̂(t), projecting

every component of ŷ(k)(t) in the appropriate quantization

interval, and then inverting the transform T (k). The main
advantage in this case is that applying the direct and inverse
transforms is a relatively simple operation and it does not
require explicitly computing and storing the matrix T (k).

When the used transforms are not orthogonal, however, as
for the Daubechies 9/7 transform of JPEG2000, using POCS

directly on the Θ(k) sets is not an easy operation, since pro-
jections in the X domain do not coincide with projections
in the transform domain. Finding the exact projection of a
point x̂(t) onto the set Θ(k) is a more complicated problem

in this case. If the transform T (k) is not very bad condi-
tioned, however, one may nevertheless try to approximate
projections by using the same procedure used for orthog-
onal transforms. The obtained algorithm is not a precise
POCS, but may however lead to a point in Θ̄. Note that the
decoder can always check the convergence of the algorithm
and the consistency of the obtained final estimation.

We tested this fast procedure, which is exact only for or-
thogonal transforms, when applied both to the orthogonal
DCT transform and to the non-orthogonal Daubechies 9/7
wavelet transform, thus obtaining what we call an approxi-
mate POCS algorithm. We point out that this approximate
POCS is often tacitly considered as a real POCS in other
works (see the projection method in [10]). The advantage of
this procedure is that it is fast and it does not require ad-
ditional memory than performing a simple classic decoding.
For this reason, it is easily implemented even if the whole
image is transformed in a single tile in JPEG2000.

2.2.2 Exact POCS (E-POCS)
When the used transform T (k) is not orthogonal, it is pos-

sible to implement a precise POCS procedure at a lower
level, disaggregating all the coefficients of the non-orthogonal
transform and using their associated strip shaped regions

Θ
(k)
i as projection sets Φh. This projections are very easy

to compute, since the regions are bounded by hyperplanes.
In order to deal with the non orthogonal wavelet transform
used in JPEG2000, we implemented such a lower-level exact
POCS computing the exact projection in every strip region
Θi for every wavelet coefficient. This procedure has the
disadvantage of being substantially slower, and it requires
explicitly computing the rows of the transformation matrix
T , which are instead never computed in the transform pro-
cess. For this reason, we could only apply this technique on
images encoded with tiles of 64× 64 pixels.
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2.2.3 Enhanced Starting Point
As it will be described in the numerical result section, the

initialization of the POCS algorithm showed to be very im-
portant in order to reach a good point in the intersection
set. A proper initial point can be chosen to account for a
priori information on the regularity of the signal. In order
to evaluate the importance of regularizing the signal in the
case of a DCT and a wavelet description, we have tested
both the approximate and exact POCS with the addition of
a restoration filter used to start the algorithms with an im-
proved version of the image. In our experiments, we used the
filter proposed and freely distributed by Foi (see [7, 6]). We
point out that regularity constraints are sometimes added
in POCS by applying regularization operators between dif-
ferent iterations of the algorithm (see for example [10]) but
we did not find significantly general gains from this choice.

2.3 Convex Optimization Reconstruction
The second approach usually considered in the literature

for solving the problem of image reconstruction from quan-
tized or noisy descriptions is based on Convex Optimization
(CO) methods. Since the Θ(k) sets are polytopes, their inter-
section Θ̄ is itself a (convex) polytope. Within the Θ̄ region
one may be interested in finding a reconstruction point x̂
minimizing a properly chosen cost function J which is as-
sociated to the a priori information about the true value x.
The reconstruction x̂ is thus usually chosen as the solution
of a convex optimization problem of the type

minimize J(x) subject to x ∈ Θ̄. (1)

Typically, the cost function J represents a degree of reg-
ularity of the target reconstruction image. One of the first
important examples of this type is the inversion of partially
observed transforms by minimization of the total variation
proposed in [3]. In recent years there has been a prolifer-
ation of regularized image reconstruction techniques from
noisy/quantized observations. One of the most studied con-
text is Compressive Sensing. In that scenario, relatively few
random linear measurements y = Tx are taken from the
original data. These measurements are used as constraints
in the reconstruction phase under the hypothesis that the
signal is sparse in some given base Ψ, that is x = Ψu for
some sparse u. It was proved that a good convex cost func-
tion for approximately measuring the sparseness of a signal
is the L1 norm ([2]). So, a reconstruction technique that
has attracted a lot of attention is choosing x̂ = Ψû, where û
solves the problem

minimize J(u) = ‖u‖1 subject to TΨu = y (2)

Many variations of equation (2) has been studied, further-
more, to deal with the more concrete case when y is affected
by noise or roundoff errors.

With respect to the results available in these fields of re-
search, it is important to comment about the computational
complexity of the considered problems. In our setting, we
are interested in finding a consistent reconstruction of the
image and this implies that the convex optimization prob-
lem must be solved within the domain Θ̄. Solving a convex
problem over this domain in the case of a wavelet decompo-
sition, with the Daubechies 9/7 filters used in JPEG2000,
seems to require a very high computational complexity both
in time and space. In the convex optimization approaches
to compressive sensing in the literature, quantization error

is usually dealt with in a statistical fashion which allows
recasting the decoding problem as a computationally much
simpler convex problem (see [9] for interesting progresses
in modeling quantization error in compressive sensing prob-
lems). For this reason, even solving problems with encoded
tiles of size 64x64 required some hours of processing. So, we
used tiles of 32x32 to test different optimization strategies.

We conducted three types of tests using convex optimiza-
tion methods.

2.3.1 Sparseness Constraint
We tested the typical sparseness constraint by use of the

L1 norm as done in the compressive sensing literature. The
measurements that are available at the decoder, in our case,
are projections in two bases (DCT and wavelet) where the
signal is supposed to be sparse. Thus, many coefficients are
quantized to zero (i.e., to the cell centered around zero),
and imposing sparsity in our case must be confined to the
subset of such coefficients. So, we solved a convex problem
of minimization of the L1 norm of all coefficients quantized
to zero over the domain Θ̄.

2.3.2 Joint Closeness to Centroids
Note that, in our problem, the sparseness constraint through

L1 minimization as described above can be interpreted as
imposing zero quantized coefficients be in the largest possi-
ble part reconstructed as the center of their associated cell.
This target, however, may be well motivated even for coef-
ficients not quantized to zero. So, an alternative reasonable
objective may be that the whole reconstructed vector should
be jointly as close as possible to the centroids of the cells.
For this reason, we tested a convex optimization problem
where the objective function to be minimized is the sum
of the distances from the centroids of the quantization cells
associated to the available descriptions.

2.3.3 Average of close-to-a-centroid points
Minimizing the sum of the distances from the centroids

leads to a solution point which is usually on the boundary of
the intersection region Θ̄. If possible, it would be preferable
to find points in the interior of Θ̄, so as to stay closer to the
centroid of Θ̄, and this could be obtained with a different
strategy. In this experiments we solved different problems
minimizing the distance from different centroids and then we
averaged the obtained points. Note that the obtained final
point, being a convex combination of all those solutions, is
surely consistent since Θ̄ is convex.

3. NUMERICAL RESULTS
In this section we present experimental results obtained

by applying several methods based on POCS or Convex Op-
timization techniques in order to extract an image consistent
with two or more JPEG and JPEG2000 encoded versions of
the same original image.

For every experiment we first report the PSNR of input
images and then the PSNR of the simpler image to recover,
that obtained by pixel-wise averaging all the lossy available
input images. Note that this solution does not necessarily
meet all the quantization constraints imposed by each de-
scription. Nevertheless, expecially when input images have
similar qualities, it allows to reconstruct an image of signif-
icant good quality.
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Table 1: A-POCS results in PSNR
img JPEG1 JPEG2 JPEG2000 avr A-POCS1 A-POCS2 A-POCS3 recn

Lena a 30.38 31.56 31.95 32.98 32.36 32.72 32.89 33.38
Lena b 29.03 31.56 30.23 32.21 31.81 31.96 31.97 32.78
Lena c 32.24 33.14 28.89 33.19 33.23 33.68 33.12 33.90

Pirate a 29.01 28.60 30.09 30.52 30.30 30.07 30.71 30.92
Pirate b 27.57 31.20 28.79 30.78 30.71 31.35 30.98 31.68
Pirate c 30.52 31.20 27.12 31.22 31.24 31.68 31.10 31.81

F16plane a 30.35 33.30 31.42 34.01 33.87 33.83 33.88 34.80
F16plane b 34.21 31.34 29.91 34.19 34.41 34.61 34.18 35.31
F16plane c 31.93 31.34 33.67 34.09 33.63 33.35 34.49 34.66

Table 2: A-POCS with de-bloking filter results in PSNR
img SA1 SA2 JPEG2000 avr A-POCS1 A-POCS2 A-POCS3 recn

Lena a 31.62 32.39 31.95 33.01 33.82 33.96 33.76 34.07
Lena b 30.47 32.39 30.23 32.10 32.91 33.35 32.9 33.37
Lena c 32.81 33.37 28.89 32.39 34.37 34.43 34.03 34.43

Pirate a 29.94 29.58 30.09 30.74 31.33 31.28 31.20 31.45
Pirate b 28.67 31.34 28.79 30.42 31.32 32.07 31.57 31.89
Pirate c 30.98 31.34 27.12 30.42 32.10 32.15 31.75 32.14

F16plane a 31.77 34.23 34.01 33.85 34.75 35.39 34.82 35.39
F16plane b 34.78 32.73 29.91 33.65 35.83 35.29 35.26 35.84
F16plane c 33.20 32.73 33.67 34.52 35.14 35.12 35.20 35.49

3.1 Approximate POCS (A-POCS)
The first experiment has been conducted on three different

copies of the same image, namely two JPEG versions with
different quality settings and a JPEG2000 image compressed
using a uniform quantizer.

To decode an image consistent with each encoded version,
we implemented three instances of the A-POCS algorithm
using as input images the centroids of each quantization cell.
Each instance allows to detect a point approximately located
on the border of the convex intersection set Θ̄. Since differ-
ent starting points could lead to different resulting points,
whose average is in Θ̄, being Θ̄ convex, we considered as final
result the pixel-wise average of the images obtained by each
instance of A-POCS. The image so reconstructed, in addi-
tion to being consistent, generally reduces the quantization
noise.

These experimental results are summarized in Table 1 for
three standard images: Lena (256×256), Pirate (512×512)
and F16Plane (512×512). Performances of the A-POCS
algorithm have been evaluated considering three different
quality settings for each image. Columns “A-POCS1”, “A-
POCS2”, “A-POCS3”, show the results of a single instance
applied respectively to the two JPEG copies and the JPEG-
2000 version. Last column “recn” reports the final result.

This method has also been tested after filtering the input
JPEG images with Foi’s de-blocking filter (SA1 and SA2
in Table 2). The third instance of the algorithm, with in-
put JPEG2000, has been modified introducing a de-blocking
step after the first iteration of A-POCS. Table 2 presents the
results of the described A-POCS variation applied to the im-
ages of Table 1 with the same initial settings. Compared to
the best input image and to the average of the inputs, this
method shows improvements up to 1 dB in PSNR.

We point out that these experiments were conducted using
one single slice in the JPEG2000 encoder, since the compu-
tational and spatial complexity are not an issue in this case.
This was not possible with the tests presented in the next
sections where smaller tiles had to be used.

3.2 Exact POCS (E-POCS)
In the second experiment we implemented an exact ver-

sion of POCS by subsequently projecting, for the wavelet
transform, the estimate x̂(t) at iteration t onto the strip-
shaped regions Θi associated with the coefficients yi. We
experimentally found that 15 iterations of this procedure
are enough to obtain a point lying in the intersection set Θ̄.

Due to the size of the transformation matrix T , we carried
out this experiment on blocks of size 64 x 64, which is the
minimum tile size used by commom JPEG2000 applications.

A comparison of the performance of A-POCS and E-POCS
is shown in Table 3. We used different encoded images than
in Table 2 to avoid comparison between incomparable ex-
periments, since the tiles are here limited to 64× 64 pixels.
We observe that E-POCS performs significantly better than
A-POCS, with an improvement of 0.4 - 0.7 dB. Table 3 also
shows the effect of using Foi’s de-blocking filter on the JPEG
image (SA), with up to 0.5 dB of further improvement for
E-POCS, as it was for A-POCS.

3.3 Convex Optimization
Finally we evaluated the effectiveness of Convex Opti-

mization techniques in solving the problem described above.
The aim of this kind of experiment is to find a proper and
effective objective function J(x) to be minimized to obtain
the reconstruction image under the constraints expressed by
the transformation matrix T .

Solving such minimization problems, in our case, shows a
high computational complexity, due to the size and struc-
ture of T . More precisely, the portion of T that expresses
the wavelet transform is not very sparse as generally re-
quired for fast solving a Convex Optimization problem. It is
worth pointing out that if we considered the case of jointly
decoding two images sharing the same sparse trasformation
matrix, similarly to the problem solved in [14], the compu-
tational complexity would rapidly drop and Convex Opti-
mization techniques could be much more successful. Since
solving such a problem is not the purpose of this work, in



Table 3: POCS Comparison results in PSNR (64×64 tiles)
img JPEG JPEG2000 avr A-POCS A-POCS+SA E-POCS E-POCS+SA
Lena 33.13 33.39 34.72 34.94 35.16 35.32 35.57
Lena 32.24 30.87 32.87 32.99 33.35 33.45 33.72
Lena 29.90 33.39 32.89 33.53 34.15 34.09 34.63

Cameraman 27.86 28.05 29.37 29.43 29.98 29.89 30.32
Cameraman 30.13 29.58 31.38 31.50 32.03 31.96 32.33
Cameraman 29.15 32.9 32.4 33.23 33.73 33.73 34.18

Peppers 31.01 29.74 31.86 31.72 32.61 32.46 32.96
Peppers 28.57 28.47 30.01 29.93 30.69 30.60 31.17
Peppers 29.62 31.29 31.97 32.06 32.80 32.74 33.29

Table 4: CO results in PSNR (32×32 blocks)
JPEG JPEG2000 avr (a) (b) (c)
33.13 33.41 34.71 35.15 35.66 35.80
32.24 30.89 32.87 33.20 33.69 33.82
30.93 29.92 31.73 32.01 32.51 32.64

order to evaluate the goodness of each objective function we
first tested these techniques on tiles of size 32×32, using
Boyd and Vandenberghe’s CVX solver [8].

The results of these experiments are detailed in Table
4, where columns (a)-(c) show the outcomes obtained by
minimizing the objective functions described in Section 2.3:
Sparseness constraint (a), Joint closeness to centroids (b)
and Average of close-to-a-centroid points (c). It is worth
pointing out that problem (a) can be formulated as a linear
problem, see [1] for details. The best experimental results
have been achieved by minimizing function (c), which is a
more accurate implementation of the method based on E-
POCS and described in the previous section. As a conse-
quence of this remark we have not further investigated the
effectiveness of Convex Optimization techniques on tiles of
size 64×64, being E-POCS much less computationally de-
manding but very close in terms of performance.

4. CONCLUSIONS
In this paper we have investigated the application of the

method of Projections Onto Convex Sets (POCS) and Con-
vex Optimization (CO) techniques in order to recover an im-
age from JPEG and JPEG2000 lossy versions. Using such
methods, it is possible to extract from the lossy versions of
the image one single reconstruction which is consistent with
all received descriptions. We performed several numerical
tests and showed that it is possible to recover the original
image with higher quality than simply averaging the images
reconstructed from every description. We found that CO
techniques lead to problems with high computational com-
plexity when using the JPEG2000 wavelet transform and
this limits the maximum allowable size of the tiles. Fur-
ther work will be devoted in this direction to find possible
strategies or workarounds to this problem.

Starting from the obtained results, future work will focus
on applying the considered techniques to the more concrete
and interesting problem of video coding, since this is surely
the most important application scenario in peer to peer net-
works.
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