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ABSTRACT
In this paper we address the problem of activity detection
in unsegmented image sequences. The main contribution of
the proposed method is the use of an implicit representa-
tion of the spatiotemporal shape of the activity which relies
on the spatiotemporal localization of characteristic ensem-
bles of feature descriptors. Evidence for the spatiotemporal
localization of the activity is accumulated in a probabilis-
tic spatiotemporal voting scheme. We use boosting in order
to select characteristic ensembles per class. This leads to
a set of class specific codebooks where each codeword is an
ensemble of features. During training, we store the spatial
positions of the codeword ensembles with respect to a set
of reference points, as well as their temporal positions with
respect to the start and end of the action instance. During
testing, each activated codeword ensemble casts votes con-
cerning the spatiotemporal position and extend of the ac-
tion, using the information that was stored during training.
Mean Shift mode estimation in the voting space provides
the most probable hypotheses concerning the localization of
the subjects at each frame, as well as the extend of the ac-
tivities depicted in the image sequences. We present exper-
imental results for a number of publicly available datasets,
that demonstrate the efficiency of the proposed method in
localizing and classifying human activities.

1. INTRODUCTION
Activity detection has been a long lasting subject of re-

search in the field of computer vision, due to its impor-
tance in applications such as video retrieval, surveillance,
and Human-Computer Interaction. Robust activity detec-
tion using computer vision remains a very challenging task,
due to different conditions that might be prevalent during
the conduction of an activity, such as a moving camera, dy-
namic background, occlusions and clutter. For an overview
of the different approaches we refer the reader to [1] [2].

The success of interest points in object detection and lo-
calization have inspired a number of methods in the area of
activity recognition. Typical examples include space-time
interest points [3], space-time cuboids [4][5], spatiotempo-
ral salient points [6], SIFT features [7] and features that
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are based on the human visual system [8]. Interest points
have been successfully used in approaches that employ vi-
sual codebooks for human activity representation [9] [10]. A
visual codebook is usually created by clustering extracted
feature descriptors in the training set. Each of the result-
ing centers is considered to be a codeword and the set of
codewords forms the codebook. In this way, the informa-
tion depicted in images and videos can be summarized as a
histogram of visual words. Despite their success, an obvious
disadvantage of such methods is that, by using histograms,
the information concerning the spatiotemporal arrangement
of the descriptors is lost. To deal with this issue, a number
of methods encode the spatiotemporal relationships between
the extracted codewords. For instance, Leibe et al. [11] pro-
pose an implicit shape model for object detection, where
the relative position of each word with respect to the object
center is maintained. In [12], a similar voting scheme is im-
plemented for activity recognition and localization. Sivic et
al. [13] propose the use of doublet codewords, while Boiman
and Irani [14] propose a matching method based on feature
ensembles for irregular scene detection. Finally, areas in
images(videos) that share similar geometric properties and
similar spatio(temporal) layouts are matched in [15], using
a self similarity descriptor and the algorithm of [14].

In this paper, we extend the work of Leibe et al. [11] by
proposing a voting scheme in the space-time domain that
allows both the temporal and spatial localization of activ-
ities. Our method uses an implicit representation of the
spatiotemporal shape of an activity that relies on the spa-
tiotemporal localization of ensembles of spatiotemporal fea-
tures. The latter are localized around spatiotemporal salient
points [6]. We model the feature ensembles using a modi-
fied star graph model that is similar to the one proposed
in [14], but compensates for scale changes using the scales
of the features within each ensemble. During training, we
create codebooks of characteristic ensembles for each class,
and store the spatiotemporal positions at which each code-
word is activated in the training set. This is performed with
respect to a set of reference points, and with respect to the
start/end of the action instance. During testing, each ac-
tivated codeword ensemble casts probabilistic votes to the
location in time where the activity starts and ends, as well
as towards the location of the utilized reference points in
space. By doing so, we create a set of class-specific voting
spaces. We use a Mean Shift algorithm [16] at each voting
space in order to extract the most probable hypotheses con-
cerning the spatiotemporal extend of the activities. Each
hypothesis corresponds to a spatiotemporal volume, and is
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Figure 1: Overview of the spatiotemporal voting process.

Activated codewords cast spatial and temporal votes with re-

spect to the center and spatial lower bound of the subject and

the start/end frame of the action instance. Mean shift is sub-

sequently used in order to extract hypotheses concerning the

position of a reference point in each frame and the temporal

boundaries of an action instance.

verified by performing action category classification with a
Relevance Vector Machine (RVM) [17]. An overview of the
proposed spatiotemporal voting process is depicted in Fig. 1.

The remainder of this paper is organized as follows. In
section 2 we present our approach. That is, the creation of
our spatiotemporal models for each class and the way they
are used to perform detection. Section 3 includes our exper-
imental results, and finally, section 4 concludes the paper.

2. SPATIOTEMPORAL VOTING
We propose to use a probabilistic voting framework in

order to spatiotemporally localize human activities. This
framework, described in section 2.4, is based on class-specific
codebooks of feature ensembles, where each feature is a vec-
tor of optical flow and spatial gradient descriptors. We de-
scribe the utilized feature extraction process in section 2.1,
while section 2.2 describes how these features are combined
into ensembles and how ensembles are compared to each
other. Each codebook is created using a feature selection
process based on boosting, which selects a set of discrimina-
tive ensembles for each class, and is associated with a class-
specific spatiotemporal localization model, which encodes
the locations and scales at which each codeword is activated
in the training set. This process is described in section 2.3.
During testing, each activated codeword casts spatiotempo-
ral probabilistic votes, according to the information that was
stored during training. Subsequently, mean shift is used in
order to extract the most probable hypotheses concerning
the spatiotemporal localization of an activity. Each hypoth-
esis is then classified using Relevance Vector Machines. This
process is described in section 2.6.

2.1 Features
The proposed framework can be utilized with any kind of

local descriptors. Here, we use optical flow and spatial gra-
dient descriptors, extracted around automatically detected
spatiotemporal salient points. We use the algorithm of [6]
in order to extract the set of spatiotemporal salient points,
which we denote with S = {(ci , si)}. Here, ci is the spa-
tiotemporal position of the ith point and si is its spatiotem-
poral scale. For robustness against camera motion, we de-
tect the salient points on the filtered version of the optical
flow field. More specifically, we locally subtract the median
of the optical flow within a small spatial window. To form
our descriptors, we take into account the optical flow and

spatial gradient vectors that fall within the area of support
of each salient point. Using their horizontal and vertical
components, we convert these vectors into angles and bin
them into histograms using a bin size of 10 degrees.

2.2 Feature ensemble similarity
Let ed = (cd, {vi

d, lid}i=1...M) be an ensemble consisting
of M features, where cd is the spatiotemporal center of the
ensemble, and vi

d, lid are, respectively, the descriptor vector
and the spatiotemporal location of the ith feature. Similar
to [14], we model the joint probability P (ed, eq) between the
database ensemble ed and the query ensemble eq as:

P (ed, eq) ∝ P (cd, v1
d, ..., l1d, ..., cq, v

1
q , ..., l1q , ...). (1)

The likelihood in Eq. 1 can be factored as:

P (cd, v1
d, ..., l1d, ..., cq, v

1
q , ..., l1q , ...) =

α
∏
i

max
j

(P (ljq|lid, cd, cq)P (vj
q |vi

d))P (vi
d|lid). (2)

The first term in eq. 2 expresses the similarity in the ensem-
ble topology, and the second term expresses the similarity
in their descriptor values. We model the first term as:

P (ljq|lid, cq, cd) = z−1
1 exp(−((ljq − cq)S

j
q − (lid − cd)Si

d)T ·
S−1((ljq − cq)S

j
q − (lid − cd)Si

d)),
(3)

where z1 is a normalization term, S is a fixed covariance
matrix controlling the allowable deviations in the relative
feature locations and Si

d, Sj
q are diagonal matrices contain-

ing the inverse spatiotemporal scales of the points located at
locations lid, ljq respectively. By normalizing the distance be-
tween the individual features and the ensemble center with
the spatiotemporal scales of the features, we achieve invari-
ance to scaling variations. We model the second term in the
maximum in eq. 2, using an exponential distribution:

P (vj
q |vi

d) ∝ z−1
2 exp

(
−z−1

3 D(vj
q , vi

d)
)

, (4)

where z2, z3 are normalization terms, and D(., .) is the χ2

distance. Finally, similar to [14], we model the last term of
eq. 2 using examples from the database:

P (vd|ld) =

{
1 (vd, ld) ∈ DB
0 otherwise ,

(5)

where vd, ld are an arbitrary descriptor and location.

2.3 Feature Selection and Codebook Creation
We use Gentleboost [18] in order to select characteris-

tic ensembles that will form the codewords for each class-
specific codebook E. Our goal is to select feature ensembles
that appear with high likelihood in the positive and with low
likelihood in the negative examples. To do so, we randomly
sample L (e.g. 5000) ensembles from the positive examples.
Using Eq. 1, we match these ensembles to the remaining
ones in the positive set and the ones in the negative set and
keep the N ′ best matches from each one, in order to make
the selection tractable. This procedure results in N ′Mp pos-
itive training vectors of dimension 1×L and N ′Mn negative
training vectors of the same dimension, where Mp and Mn

are the total number of the positive and negative image se-
quences in the training set respectively. Using these training
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vectors, Gentleboost selects a set of characteristic ensembles
for the positive class. By performing this process we end up
with a set of characteristic ensembles for each class. For
each class-specific codebook, we iterate through the train-
ing sequences that belong to the same class as the codebook
and activate each ensemble ed whose likelihood of match is
above a threshold. Subsequently, we store all the positions
θd at which each ed was activated relative to a set of ref-
erence points in space and time. In addition, we also store
a diagonal matrix Sd containing the spatiotemporal scale
at which codeword ensemble ed was activated. The scale is
taken as the average of the scales of the features that consti-
tute ed. During testing, {θd}, Sd are used in order to cast
votes concerning the spatiotemporal extend of an activity in
the test set, given that the codeword ed is activated.

2.4 Probabilistic framework
Our goal is to acquire a probability distribution over a

set of parameters {θs}, {θt} that define, respectively, the
location in space-time of a human activity depicted in an
unknown image sequence. In order to do so, we propose the
use of a spatiotemporal voting scheme, which is an extension
in time of the model proposed in [11]. In the proposed model,
an activated codeword in the test set casts probabilistic votes
for possible values of θs, θt , according to information stored
during training. We use feature ensembles as codewords,
modeled using the star-graph model of [14]. In the following,
and without loss of generality, we drop the subscripts θs, θt ,
and describe our probabilistic framework for the generalized
parameter θ. The probability of θ can be formulated as:

P (θ) =
Q∑

q=1

P (θ|eq)P (eq), (6)

where {eq} is the set of observed ensembles and P (eq) is
the prior probability of observing eq. We model the latter
as a uniform distribution. Each observed ensemble eq is
matched against each codeword ed from the codebook E.

By marginalizing P (θ|eq) on ed ∈ E we get:

P (θ|eq) =
∑

ed∈E

P (θ|ed, eq)P (ed|eq). (7)

The term P (ed|eq) expresses the likelihood of match between
codeword ed and the observed ensemble eq, and is calculated
according to the process of section 2.2. After matching eq

to ed, we consider P (θ|ed, eq) as being independent of eq.
P (θ|ed) expresses the probabilistic vote on location θ given
that the activated codebook entry is ed. Let us denote with
{θd} the set of the votes associated with the activated code-
book entry ed. P (θ|ed) can be modeled as:

P (θ|ed) = wd

∑

θd

P (θ|θd, ed)P (θd|ed), (8)

where wd is a weight learned during training, which ex-
presses how important the ensemble ed is, in accurately lo-
calizing the action in space and time. The way wd is calcu-
lated is described in section 2.5. The first term of Eq. 8 is
independent of ed, since votes are cast using the θd values.
Votes are cast according to the following equation:

θ = θq + SqS
−1
d θd, (9)

where Sq, Sd are diagonal matrices containing the scale of
the eq, ed ensembles respectively and θq denotes the location
of the observed ensemble eq. The concept of eq. 9 for the
spatial case is depicted in Fig. 3(b). By normalizing with
SqS

−1
d we achieve invariance to scale differences between

the observed and the activated ensemble codeword. Since
we only use the stored θd and Sd values for casting our
votes, we can model P (θ|θd) as:

P (θ|θd) = δ(θ − θq − SdS−1
q θd), (10)

where δ(.) is the Dirac delta function. Finally, we model
P (θd|ed) using a uniform distribution, that is, P (θd|ed) =
1/V , where V is the number of θd values associated with ed.

For the spatial case, Sq, Sd contain the spatial scales of the
test and database ensembles respectively, while θq denotes
the spatial location of the observed ensemble in absolute
coordinates. Therefore, θ encodes the displacement from
the center and lower bound of the subject. Similarly for
the temporal case, Sq, Sd contain temporal scales, while θq

denotes the temporal location of the observed ensemble with
respect to either the start or the end of the image sequence.
Therefore, θ can encode two scalar temporal offsets, one to
the start and one to the end of the action.

2.5 Localization accuracy
In this section we will describe a methodology to learn wd,

that is, the weight used in eq. 8 and expresses the importance
of ensemble ed in accurately localizing an activity in space
and time. More specifically, we would like to favor votes
from ensembles that are informative (i.e. characteristic of
the location at which they appear) and suppress votes from
ensembles that are commonly activated. Let us denote by
Pd(l) the probability that the ensemble ed was activated
at location l. This distribution is learned during training.
Then, the votes of each ensemble ed are weighted as:

wd = e−
∫

Pd(l) log Pd(l)dl, (11)
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Figure 3: Voting example. (a) During training, the position

θd and average spatiotemporal scale Sd of the activated en-

semble is stored with respect to one or more reference points.

(b) During testing, votes are cast using the stored θd values,

normalized by SqS−1
d in order to account for scale changes.

where the exponent is the Shannon entropy of l. In this way,
ensembles that are informative will have a distribution with
low entropy, since their votes will be concentrated in a few
values, resulting in a large weight.

2.6 Activity detection
Using the probabilistic framework of section 2.4, the pro-

posed algorithm initially casts spatial votes for each class-
specific codebook-model pair, according to the information
stored in the training stage. We use Mean Shift to localize
the most probable centers/lower bounds of the subjects at
each frame, and apply a Kalman filter [19] in order to smooth
the point estimates from frame to frame. Using these esti-
mates, we fit a bounding box around the subject, as depicted
in Fig. 2. To reduce the influence of clutter, we cast tem-
poral votes by only taking into account the ensembles that
contributed to the most probable center in the spatial voting
space. Finally, using mean shift on the resulting temporal
voting spaces, the most probable hypotheses concerning the
temporal extend of the activity are extracted.

We perform a hypothesis verification stage in order to as-
sign a label to each extracted hypothesis. Let us denote with
etm the maximum response of the m spatial voting space at
frame t, as this is given by mean shift mode, where m denotes
the class. Furthermore, let us denote an extracted hypoth-
esis with Fij , where i, j are the frame indexes at which the
activity starts and ends respectively. Our hypothesis verifi-
cation step relies on the calculation of the following measure:

Rijm =
1

(tj − ti)

tj∑

t=ti

etm. (12)

That is, each Rijm is the average sum of the mean shift
output of the m spatial voting space, between frames ti, tj .
Using Rijm, we define a thin plate spline kernel for an RVM
classification scheme. That is,

Kijm = Rijm log Rijm. (13)

We train L different classifiers, in an one against all fash-
ion. Each classifier outputs a conditional probability of class
membership given the hypothesis, Pm(l|Fij), 1 ≤ m ≤ L.
Each hypothesis Fij is then assigned to the class for which
this conditional probability is maximized. That is,

(a) (b)

Figure 4: Confusion Matrix for (a) KTH and (b) HoHA.

Class(Fij) = arg max
m

(Pm(l|Fij)). (14)

3. EXPERIMENTAL RESULTS

3.1 Training set
We consider a single repetition of an activity as an action

instance, e.g. a single hand-clap. To create a training set,
we manually select a subset of action instances for each class
and we register them in space and time, by spatially resiz-
ing the selected instances so that the subjects in them have
the same size. Moreover, we linearly stretch the selected in-
stances so that the depicted actions in each class have the
same duration. Finally, we manually localize and store the
subject centers and lower bounds in the registered training
set, where each center is defined as the middle of the torso.

3.2 Classification
We use activity instances pre-segmented in time to evalu-

ate the classification accuracy of our algorithm and compare
it to the state of the art. We use the process of section 2.6 to
perform classification, where each hypothesis corresponds to
a pre-segmented example. In Fig. 4(a), the confusion matrix
for the KTH dataset is depicted. The largest degree of con-
fusion is between jogging and running. The average recall
rate achieved by the RVM classifier for the KTH dataset is
88%. By contrast, using just the measure of eq. 12 and a 1-
NN classifier, the average recall rate was about 75.2%. The
largest improvement was noted on the running class, with
an increase from 53% to 85% in the recall rate.

In Fig. 4(b), we present the confusion matrix for the HoHa
dataset. Due to the small number of representative exam-
ples, we discard classes GetOutOfCar, HandShake, SitUp. It
can be observed that there are several confusions between
classes that are not very similar. The largest confusion, how-
ever, is between HugPerson and Kiss, since both involve two
persons coming progressively closer to each other.

3.3 Localization

3.3.1 Spatial Localization
In this section we evaluate the accuracy of the proposed

algorithm in localizing a subject at each frame of an im-
age sequence. Here, we assume, that the activity class that
the subject is performing is given. Following the process
of section 2.6, the proposed algorithm is able to provide
an estimate of the subject center and lower bound for each
frame of a sequence. To account for the smooth motion of



the subjects, we apply a Kalman filter to the estimates of
the subject location. The results achieved for each class of
the KTH dataset are depicted in Fig. 5. The worst per-
forming class in these experiments is running, which, for the
same distance from the ground truth yields around 55% ac-
curacy in the localization of the subject center. By applying
a Kalman filter on the raw estimates, we achieve an increase
in performance of about 10% for the boxing, handclapping
and handwaving classes, while there was a smaller increase in
the performance of the jogging, running and walking classes.

3.3.2 Temporal localization
In this section we evaluate the ability of the proposed algo-

rithm in localizing in time instances of a known activity that
occur in an image sequence. For this experiment, we apply
the process of section 2.6, and compare each extracted hy-
pothesis with the ground truth annotation. Each extracted
hypothesis specifies the frames at which the action instance
starts and ends. The error of each hypothesis was calcu-
lated as the difference in frames between the ground truth
and the start/end frames specified by the hypothesis. In this
way, we construct Fig. 6, which plots the percentage of the
recovered hypotheses as a function of this frame difference.
We compare these results with the ones acquired by the al-
gorithm of [15]. By implementing their algorithm, we com-
pute self-similarity descriptors for all sequences in the KTH
dataset and apply their progressive elimination algorithm to
match a query to each sequence. Matching was performed
using 5 query sequences per class and averaging the acquired
results. This gives us an estimate of the spatiotemporal ex-
tend of each recovered instance. The localization accuracy
achieved is depicted in Fig. 6. As can be seen from the fig-
ure, the results achieved are similar to the ones achieved by
the algorithm of [15] for boxing and slightly better for jog-
ging and running. For handwaving and handclapping, 70%
of the hypotheses extracted by the proposed algorithm are
localized within 3 frames from the ground truth on average,
in comparison to 15% achieved by [15].

Finally, we performed experiments on hand-raising detec-
tion using the political debates dataset of [20]. Hand raising
activities in political debates could potentially be an impor-
tant cue for agreement/disagreement detection. Here, we
consider a single raising and lowering of the speaker’s hand
as a single hand-raising activity instance. We used 10 hand
raising instances in order to train the corresponding model,
and tested the proposed algorithm on 20 test sequences of
political debates. The latter include view-point and scene
changes, camera zoom and videos where the onset and offset
of the action were out of the camera’s view. The localization
results that we achieved are depicted in Fig. 7(b), while in
Fig. 7(a) a still frame of a hand raising instance is shown.
As can be seen from Fig. 7(a), the proposed algorithm was
able to localize 90% of the extracted hypotheses within 10
frames from the ground truth annotation.

3.4 Joint Localization and Recognition
In this section, we present experimental evaluation for lo-

calizing and classifying human activities that occur in an
unsegmented image sequence, where both the localization
and the class of the activities in the sequence are unknown.
Given an image sequence, each model created during train-
ing, results in a different voting space for this sequence. Us-
ing mean shift, a set of hypotheses is extracted from each
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Figure 7: (a) Instance of hand-raising. (b) Achieved tem-

poral localization result for the hand-raising instances.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Re
ca

ll

1−Precision

 

 

boxing
handclapping
handwaving
jogging
running
walking

Figure 8: ROC curves corresponding to each class of the

KTH dataset.

voting space, and classified to a specific action category.
Each hypothesis corresponds to an interval in time in which
the activity takes place, and is assigned a weight, equal to
the response of the voting space at the extraction point.
A low weight on a hypothesis means that the proposed al-
gorithm does not have a strong belief on its validity. By
setting up a threshold on the weights, we can control which
of the hypotheses are considered as being valid. By varying
this threshold, we construct the ROC curves of Fig. 8, for
each class of the KTH dataset. Note that all curves are well
above the main diagonal, meaning that the number of true
positives is always larger than the number of false positives.

4. CONCLUSIONS
In this work we presented a framework for the localiza-

tion and classification of actions. The proposed method uti-
lizes class-specific codebooks of characteristic ensembles and
class-specific spatiotemporal models that encode the spa-
tiotemporal positions at which the codewords in the code-
book are activated during training. The codebook-model
pairs are utilized during testing, in order to accumulate ev-
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Figure 5: Spatial localization results achieved for the subject center and lower bound. Applying a Kalman filter to the raw

outcomes of the mean shift mode estimator lead to an increase in the localization performance. x-axis: distance from ground
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ground truth was less or equal to the values in the x-axis.
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Figure 6: Comparative temporal localization results for the 6 classes of the KTH dataset, between the proposed algorithm

(ST-Voting) and the Self-Similarity with Progressive Elimination (SS-PE) algorithm of [15]. x-axis: distance from ground truth

annotation in frames. y-axis: percentage of recovered instances.

idence for the spatiotemporal localization of the activity in
a probabilistic spatiotemporal voting scheme. We presented
results on publicly available datasets that demonstrate the
efficiency of the proposed algorithm in human activity de-
tection. Finally, we demonstrated the effectiveness of the
proposed method by presenting comparative classification
and localization results with the state of the art.
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