skip to main content
10.1145/1878537.1878552acmotherconferencesArticle/Chapter ViewAbstractPublication PagesspringsimConference Proceedingsconference-collections
research-article

Clustering method incorporating network topology and dynamics

Authors Info & Claims
Published:11 April 2010Publication History

ABSTRACT

Clustering is useful in elucidating associations among agents of networks and has been advantageously applied in numerous fields including biology, chemistry, sociology, and economics. Most clustering algorithms have been applied to (weighted) networks with a fixed topology. However, many networks are constructed to simulate particular dynamics on them; e.g., transmission of disease, vehicular transportation, electricity supply, and economic transfers in financial markets. These dynamics affect the large-scale structure that emerges from the underlying network. We present a clustering method that incorporates not only the weighted network topology, but also the particular dynamics for an application domain. The approach is general and can be used with any dynamic process that can be simulated on a network.

We apply this method to several networks to validate it: a benchmark network, various toy networks, and two large realistic synthetic networks. These span four, five, and two orders of magnitude in numbers of agents and links, and average degree, respectively, and possess vastly different degree distributions. The largest network includes over 580,000 agents and 13 million edges. The results show that different structures arise from variations in dynamics processes for a fixed network, and reflect the changes in the process itself. We observe a sharp transition from unclustered to well-clustered communities as dynamical parameters vary.

References

  1. M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 7, 2006.Google ScholarGoogle Scholar
  2. A. Apolloni, K. Channakeshava, L. Durbeck, M. Khan, C. Kuhlman, B. Lewis, and S. Swarap. A study of information diffusion over a realistic social network model. In The 2009 IEEE International Conference on Social Computing (Social Com-09), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. K. Atkins, J. Chen, V. Kumar, M. Macauley, and A. Marathe. Locational market power in network constrained markets. Journal of Economic Behavior and Organization, 70(1-2):416--430, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  4. K. Atkins, J. Chen, V. Kumar, and A. Marathe. Structure of electrical networks: A graph theory based analysis. Int. J. Critical Infrastructure, 5:265, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  5. C. Barrett, R. Beckman, K. Berkbigler, K. Bisset, B. Bush, K. Campbell, S. Eubank, K. Henson, J. Hurford, D. Kubicek, M. Marathe, P. Romexo, J. Smith, L. Smith, P. Speckman, P. Stretz, G. Thayer, E. Eeckhout, and M. Williams. TRANSIMS: Transportation analysis simulation system. Los Alamos National Laboratory Unclassified Report, Tech. Rep. LA-UR-00-1725, 2001.Google ScholarGoogle Scholar
  6. C. Barrett, R. Beckman, M. Khan, V. Kumar, M. Marathe, P. Stretz, T. Dutta, and B. Lewis. Generation and analysis of large synthetic social contact networks. In Proceedings of the 2009 Winter Simulation Conference, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. K. Bisset, J. Chen, X. Feng, A. Vullikanti, and M. Marathe. Epifast: A fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In Proceedings of the 23rd ACM International Conference on Supercomputing (ICS '09), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. J. Stat. Mech., page P10008, 2008.Google ScholarGoogle Scholar
  9. G. Boender, T. Hagenaars, A. Bouma, G. Nodelijk, A. Elbers, M. de Jong, and M. van Boven. Risk maps for the spread of highly pathogenic avian influenza in poultry. PLoS Computational Biology, 3(4):704--712, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  10. U. Brandes, D. Delling, M. Gaertler, R. Grke, M. Hoefer, Z. Nikoloski, and D. Wagner. On finding graph clusterings with maximum modularity. In Proceedings 33rd Intl. Workshop Graph-Theoretic Concepts in Computer Science (WG 2007), volume LNCS 4769, pages 121--132, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering algorithms. In Proceedings of the 11th European Symposium on Algorithms (ESA '03), volume LNCS 2832, pages 568--579, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. Bruhn, J. Cajka, G. Smith, R. Curry, S. Dunipace, W. Wheaton, P. Cooley, and D. Wagener. Generating realistic livestock and poultry operations to support development of infectious disease control strategies. In ESRI 2007 Conference, 2007.Google ScholarGoogle Scholar
  13. Damon Centola and Michael Macy. Complex contagions and the weakness of long ties. American Journal of Sociology, 113(3):702--734, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  14. L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas. Comparing community structure identification. J. Statistical Mechanics: Theory and Experiment, 2005.Google ScholarGoogle Scholar
  15. S. Fortunato and M. Barthelemy. Resolution limit in community detection. PNAS, 104(1):36--41, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Galstyan, V. Musoyan, and P. Cohen. Maximizing influence propagation in networks with community structure. Physical Review E, 79(056102), 2009.Google ScholarGoogle Scholar
  17. G. Gfeller, J. Chappelier, and P. De Los Rio. Finding instabilities in the community structure of complex networks. Physical Review E, 72(056135), 2005.Google ScholarGoogle Scholar
  18. M. Granovetter. The strength of weak ties. American Journal of Sociology, 78:1360--1380, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Guimera, M. Sales-Pardo, and L. Amaral. Modularity from fluctuations in random graphs and complex networks. Physical Review E, 70(025101), 2004.Google ScholarGoogle Scholar
  20. M. Halloran, N. Ferguson, I. Longini S. Eubank, D. Cummings, B. Lewis, S Xu, C. Fraser, A. Vullikanti, T. Germann, D. Wagener, R. Beckman, K. Kadau, C. Barrett, C. Macken, D. Burke, and P. Cooley. Modeling targeted layered containment of an influenza pandemic in the united states. PNAS, 105(12):4639--4644, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  21. B. Karrer, E. Levina, and M. Newman. Robustness of community structure in networks. Physical Review E, 77:046119, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Kumpula, J.-P. Onnela, J. Saramaki, K. Kashi, and J. Kertesz. Emergence of communities in weighted networks. Physical Review Letters, 99(228701), 2007.Google ScholarGoogle Scholar
  23. J. Kumpula, J.-P. Onnela, J. Saramaki, J. Kertesz, and K. Kashi. Model of community emergence in weighted social networks. Computer Physics Communication, 180:517, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. Kumpula, J. Saramaki, K. Kaski, and J. Kertesz. Limited resolution in complex network community detection with potts model approach. European Physical Journal B, 56:41--45, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Lancichinetti and S. Fortunato. Community detection algorithms: a comparative analysis. submitted.Google ScholarGoogle Scholar
  26. A. Lancichinetti and S. Fortunato. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Physical Review E, 80:016118, 2009.Google ScholarGoogle Scholar
  27. A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community detection algorithms. Physical Review E, 78:046110, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Le Menach, E. Veru, R. Grais, D. Smith, and A. Flahault. Key strategies for reducing spread of avian influenza among commercial poultry holdings: lessons for transmission to humans. Proceedings of the Royal Society B, 273:2467--2475, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  29. J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Statistical properties of community structure in large social and information networks. In WWW 2008, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. I. Longini, A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D. Cummings, and M. Halloran. Containing pandemic influenza at the source. Science, 309(5737):1083--1087, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  31. M. Newman. Mixing patterns in networks. Physical Review E, 67(026126), 2003.Google ScholarGoogle Scholar
  32. M. Newman. Detecting community structure in networks. European Physical Journal B, 38:321--330, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  33. M. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review E, 69:026113, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  34. G. Palla, A.-L. Barabasi, and T. Vicsek. Quantifying social group evolution. Nature, 446:664--667, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  35. J. Pereira-Leal, A. Enright, and C. Ouzounis. Detection of functional modules from protein interaction networks. PROTEINS: Structure, Function, and Bioinformatics, 54:49--57, 2004.Google ScholarGoogle Scholar
  36. M. Rosvall and C. Bergstrom. Maps of random walks on complex networks reveal community structure. PNAS, 105(4):1118--1123, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Schaeffer. Graph clustering. Computer Science Review, 1:27--64, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Truscott, T. Garske, I. Chis-Ster, J. Guitian, D. Pfeiffer, L. Snow, J. Wilesmith, N. Ferguson, and A. Ghani. Control of highly pathogenic h5n1 avian influenza outbreak in the gb poultry flock. Proceedings of the Royal Society B, 274:2287--2295, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. van Dongen. Graph clustering by flow simulation. Ph.D. Thesis, Universiteit Utrecht, Utrecht, The Netherlands, 2000.Google ScholarGoogle Scholar
  40. W. Zachary. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4):452--473, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  1. Clustering method incorporating network topology and dynamics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      SpringSim '10: Proceedings of the 2010 Spring Simulation Multiconference
      April 2010
      1726 pages
      ISBN:9781450300698

      Publisher

      Society for Computer Simulation International

      San Diego, CA, United States

      Publication History

      • Published: 11 April 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)2

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader