Kronecker Descriptor Partitioning for Parallel Algorithms:

Ricardo M. Czekster, Cesar A. F. De Rose, Paulo Fernandes
Antonio M. de Lima, Thais Webber
PUCRS - Awv. Ipiranga, 6681— Porto Alegre — 90619-900 — Brazil

{ricardo.czekster, cesar.derose, paulo.fernandes, antonio.lima, thais.webber}@pucrs.br

Keywords

Kronecker Products, Data Partitioning, Parallel Algorithms.

Abstract

The key operation to obtain stationary and transient solutions of
transition systems described by Kronecker structured formalisms is
the Vector-Descriptor product. This operation is usually performed
with shuffling operations and matrices aggregations to reduce the
floating point multiplications inside iterative methods. Due to the
flexibility of the Split method treating Kronecker product terms,
it is a natural alternative to decompose descriptors within parallel
environments. The main problem is to define the correct task size to
assign to each node and also the shared memory size, since sending
a small task per time can lead to a larger communication overhead.
In this paper we are investigating data partitioning strategies for
a parallel solution of transition systems obtained from Kronecker
descriptors using the Split algorithm.

1. KRONECKER-BASED DESCRIPTOR

Kronecker-based descriptors are used to represent complex transi-
tion systems in a memory-efficient way. A very common appli-
cation of such structure is to describe huge Markovian systems,
mitigating the state space explosion problem often associated to
these representations. These non-trivial structures uses tensor al-
gebra to manipulate its inner low dimension matrices to be used in
performance and reliability evaluation. A myriad of structured for-
malisms [1] is available to the research community, e.g., Stochastic
Petri Nets (SPN), Performance Evaluation Process Algebra (PEPA),
and Stochastic Automata Networks (SAN), to name a few. The
Kronecker descriptor, or simply descriptor, maps an underlined
Continuous Time Markov Chain [7] representing an infinitesimal
generator. The main idea of a Vector-Descriptor Product (VDP)

* Authors are supported by Petrobras (0050.0048664.09.9). Paulo
Fernandes is also supported by the Brazilian government (CNPq
307272/2007-9). The authors thank Felipe M. Franciosi from
Imperial College London (UK) and Pedro M. Velho from UJF
(France) for their development efforts in earlier parallel ap-
proaches. The order of authors is merely alphabetical.

© 2010 SCS. All rights reserved. Reprinted here with permission.

procedure is to multiply a probability vector by a non-trivial struc-
ture, the descriptor, in order to achieve (if possible) a stationary
regime and subsequent performance indices. For the set of for-
malisms equipped with tensor manipulations, the numerical pro-
cesses deal with vector products employing the classic Shuffle al-
gorithm [5, 6] to implicitly access the underlined transition matrix.

A descriptor is decomposed in tensor product terms [6], where each
term corresponds to a set of small matrices and tensor product ope-
rators. VDP can be summarized in multiplying a probability vector
m to a descriptor, i.e., Z;V;lw (7r X [®f\r:1 Q;i)]) To efficiently
perform VDP, specialized algorithms are proposed throughout the
years, namely the traditional Shuffle Algorithm and the flexible
Split Algorithm [3]. The main differentiation between the algo-
rithms concerns the additional memory requirements and the com-
putational cost in terms of needed multiplications.

Figure 1 graphically presents the Split idea [3] when applied to
the multiplication of a vector by a generic tensor term. The al-
gorithm affects all Kronecker product terms inside a descriptor,
at each iteration of a numerical method [7] (e.g. Power method,
Arnoldi, GMRES). The algorithm considers a given cut-parameter
o separating the tensor term in two different sets of matrices. In the
example, 0 = N — 2 is indicating the end of a sparse-like part (on
the matrix Q;N_Q)), which means this part is selected to perform
nonzero elements combinations, ie., aggregating these matrices.
The rest of matrices are selected to be treated with shuffling opera-
tions maintaining the tensor structure.

cut-parameter

o
1

QY © QP o ... v QM7

sparse-like part

o & o o

shuffie-Tike part

Figure 1: Split method with a flexible cut-parameter o

Algorithmically, Split [3] consists of the computation of scalars
or AUNFs (Additive Unitary Normal Factors) by multiplying one
nonzero element of each matrix by the matrices at left of o (from
Q;U to Qég)). According to the elements row indexes used to
generate the AUNFs, a contiguous slice of the input vector is taken
to be multiplied by this scalar. The resulting vector is used as input
vector to the Shuffle-like multiplication by the tensor product term
at right of o (from Q;U‘H) to Qé-N)).

Figure 2 shows the operations flow in a sequential implementa-
tion of the Split method. The first steps (a) and (b) are executed

Page 1

to initially setup the method putting both matrices and the proba-
bility vector in memory. The step (c) referred to the creation of
scalars using the matrices at left of the o to aggregate nonzero va-
lues. These nonzero values are stored in memory (not necessarily
because they can be generated at runtime, used and then discarded,
but this on-the-fly generation increments the numerical operations
involved in the multiplication) with information about their related
indexes in the vector. Steps (d) and (e) are correspondent to the pro-
cessing core where the massive iterative dynamic for huge models
actually occurs, i.e. with massive state spaces (until approximately
100 million states).

‘ Load descriptor Z;\:’SE o 1Q§LJ ‘ @
‘ Initialize vector v and 7 ‘ (b)
‘ Create all AUNFs storing in a list ‘ ()

l

‘ Execute Split for N' + 2E tensor products @
Iterative method convergence test ‘ (e
‘ Results in the probability vector 7 ‘)

Figure 2: Sequential solution for the Split method

Recent developments [4] indicate that reordering the matrices on
the tensor product terms, one can produce faster results for some
cases due to numerical complexity reduction, although the addi-
tional permutation costs. Moreover, due to the flexibility of the
Split method treating Kronecker product terms, it is a natural al-
ternative to decompose descriptors within parallel environments.
The main problem is to define the correct task size to assign to
each node and also the shared memory size, since sending a small
task per time can lead to a larger communication overhead. On the
contrary, transferring a large task can generate unfair load balance.
For the specific case of Split, a potentially huge vector have to be
manipulated while tasks must be assigned to the set of available
processors and possible large communications are derived.

2. DESCRIPTOR PARTITIONING

Numerical solutions are often analyzed to carry out calculations
simultaneously, considering that large problems could be divided
into smaller ones, with or without data dependency. High perfor-
mance computing using parallel processing depends on efficient
problem partitioning and load balance. Partitioning comprises ba-
lancing the computational load and overheads created by data com-
munication on processors in order to minimize the total parallel
computation time. In this paper we investigate data partitioning
strategies for a parallel solution of transition systems obtained from
Kronecker descriptors, implementing the Split algorithm. We are
using clusters as the target architecture running a master-worker [8]
execution scheme. The idea is to distribute a set of matrices to each
node and execute the multiplications concurrently. Each node takes
some time processing its own task, and returns the resulting vector
as soon as possible to the master process.

Figure 3 shows the operations executed by the master and the worker
processes. All processes execute all steps but one, related to the ite-

rative process (f.1 and f.2). In general, each process will be respon-
sible for an interval of tasks which means Kronecker products to
multiply (d) and generated AUNFs (c), in different ways. Also the
intermediary results are consolidated in the probability vector (e)
in which the master process has access to verify convergence and
control the workers (f.1). At the same point, workers wait for the
master to decide if they should continue the multiplication process
or terminate (f.2).

Master/Workers

i

Create AUNFs related to its tasks ‘ (C)

¢

Execute Split for all tasks assigned ‘ @
Update the probability vector 7 ‘ ©
|
(f.1) Master ! Workers (f.2)
,,,,,,,,,,,,,,,,,,,,,,,, | B SNy SR A

|
! Iterative method convergence test
1Send continue or finalize to workers
I

‘ Results in the probability vector ‘ (9)

Figure 3: Parallel solution method

Note that all workers have one local copy of the descriptor as seen
in Figure 2 - step (a), and given the o established for each ten-
sor product, some slices of vectors are initialized in each worker
as step (b). Due to this steps (a) and (b) are omitted in this last
figure. Because a Kronecker descriptor is composed of tensor pro-
duct terms, these are natural candidates for the partitioning. How-
ever, Kronecker product terms can be exploited in different ways.
The Split algorithm [3] allows each tensor product to be partitioned
into smaller work units called AUNFs that can be distributed among
processors. Note that the step (c) suffers a great impact in differ-
ent partitioning approaches, i.e., by Kronecker product terms itself
and by AUNFs quantities, mainly because tensor product terms can
strongly vary matrices types, dimensions, sparsity, and all these
characteristics determine the cut-parameter and consequently the
total number of AUNFs.

2.1 Partitioning per Kronecker Product

One partitioning approach is based on the total number of Kro-
necker products and available processors, i.e., a set of tensor pro-
duct terms are the bag of tasks to be distributed. The computa-
tional cost in multiplications related to each tensor product term

in each node is given by (7, nzj(l)> (Hf\ing n;-i)), where

nzgl) corresponds to the total number of AUNFs in a term j and

HZN:UJ_ 11 ng-i) is the size of the vector to be multiplied. Addition-
ally, the theoretical communication cost of a Kronecker product
in each processor follows the sum of the size of the slice vec-

tors to be multiplied by each AUNF in the iteration is given by

()
nz; i . .
> (Hé\f:gﬁl ngz)). The size of these messages will vary
according to the number of processes allocated and the cost per
AUNF for execution. One can have as many processors or nodes
as the total number of Kronecker products, or even divide quite

equally the work to be done among np nodes.

Page 2

#p=4

@ ®X,Q
j=1 #AUNFs = 6

(b) @, QY
j=2 #AUNFs =28

(o |
(TTT T T I TITTITITITITT]
© oN,Q) @ e,Q

j=3 #AUNFs=6 j=4 #AUNFs =11

Figure 4: Partitioning per Kronecker product

Figure 4 illustrates a model with four Kronecker products (#tprod=4,
j=1...4), each one generating it own list of AUNFs, assigned among
processors, without take into account the load balancing related
to the number of AUNFs actually generated by each one. Steps
(a),(b),(c) and (d) are iterative assignments of Kronecker products
to each processor.

It is possible if the number of Kronecker products is greater than
the number of processors, some processors receive more load to
compute than others. However, this approach derives bottlenecks
related to the load balancing in the nodes because each Kronecker
product can have very different number of AUNFs to be processed.

2.2 Partitioning per AUNFs

A different partitioning approach is to distribute the computation
of each AUNF, or a set of them, to each node. Figure 5 illus-
trates the second partitioning approach which is based on a load
balance that tries to assign equally sized tasks to each node, as fair
as it can. The bag of tasks is actually the total number of gen-
erated scalars (AUNFs) considering the entire descriptor, and those
are sufficiently independent to be multiplied by different processes,
in different vector positions and dimensions. The dimensions are
related to the indexes calculated to each scalar when preprocess-
ing the matrices at the left-hand side of o. In this example, the

© @X,QY
j=3 #AUNFs=6

() @, QY
j=2 #AUNFs =8

P P2
A R . @ &,y

j=4 #AUNFs=11

@ %0

j=1 #AUNFs=6

maxLoad = #AUNFs = #p Pa
#p=4 maxLoad =7 Remainder =3

Figure 5: Partitioning per AUNFs

model presents four Kronecker products (5=1...4), each one gen-
erating separated lists of AUNFs. The total number of AUNFs for
each product is given by the variable #AUNFs as seen in Figure 5.

The parallel execution illustration demonstrates the partitioning ap-
proach by AUNFs in four processors (#p=4). The algorithm pro-
ceeds first calculating a maximum load (maxLoad) per processor,
simply dividing the total number of AUNFs (tAUNFs) by the to-
tal number of processors (#p). The remaining of this division is
also divided by the processors after the first assignment of AUNFs.
The steps are indicated as follows: (a) the first Kronecker product
(y=1) presents six AUNFs then it fits well in the first processor
(p1) because the maximum load calculated is superior; (b) the sec-
ond Kronecker product (j=2) has eight AUNFs then seven AUNFs
are assigned at p> remaining one for later assignment; (c) the next
Kronecker product (j=3) presents also six AUNFs been directly as-
signed to processor p3; (d) finally, the last Kronecker product (j=4)
generates eleven AUNFs placing seven of them at processor pq4, re-
maining four AUNFs.

After these steps the algorithm sums the last AUNFs considering
all Kronecker products (in the example it has still five AUNFs), and
divide the AUNFs among processors as equally as possible, obser-
ving first the processors in which the maximum load is not already
achieved (b) and after distributing the lasting tasks (d). On cer-
tain occasions, a given processor can have more tasks than others
however, in general, the load balancing works favorably well. The
parallel computation cost will be determined by the large amount
of AUNFs and vectors to update in a processor.

3. PRELIMINARY RESULTS

The Split algorithm in both sequential and parallel versions could
be applied to any other modeling formalism that present a Kro-
necker descriptor as structured representation. This numerical anal-
ysis is carried out to identify bottlenecks and drawbacks of parallel
implementations of iterative methods performing vector-descriptor
product. The tests were executed in a cluster architecture contain-
ing seven homogeneous nodes connected in a Gigabit Ethernet net-
work. Each node is composed of two processors Intel Itanium?
(Madison) 1.5GHz, 2GB memory, L3 cache memory 6MB, under
Linux O.S. The prototype was compiled using gcc version 4.2.4
and MPICH library version 1.2.7p1.

Table 1: Kronecker product terms in the descriptor

. Total of | Extra mem. Total of Time
AUNFs (Kb) Mults. (s)

[21] 21 033 32.280.161 | 381
[22:22] | 2,421,009 37,828.27 2,421,009 1.86
[23:23] 40,960 640.00 40,960 0.03
[24:33] 400 6.25 7,873,200 0.64
[34:43] 800 12.50 47,239,200 347
Total time spent in one iteration (s) [10.48 |

\
| Total iterations [2696 | Total time spent (min.) | 470.90 |

Table 1 shows that for a SAN model [2] containing e.g., ten au-
tomata representing workers (N=10) and a buffer automaton of
forty positions (K=40), is generated a total of 43 Kronecker pro-
duct terms in the descriptor to be multiplied by a vector. For each
Kronecker product term j, a different o is determined resulting in
various sets of AUNFs. Note that the sequential execution time of
this model using Split is approximately 6.07 hours.

The partitioning of Kronecker products was balanced enough (Ta-
ble 2), however, the number of AUNFs generated in each node
was very unfair considering the total number of multiplications per
node. Table 3 shows the range of AUNFs per Kronecker product
fairly partitioned among two processors. Note that the total number
of AUNFs in each one is the same consequently the memory spent.
However the different sets of AUNFs present varied sizes of vectors

Page 3

Table 2: Partitioning per Kronecker product
Process p = 1 |

Kronecker | Total of | Extra Mem. Total of Time
products AUNFs (Kb) Mults. (s)
22 2,421,620 | 37,837.81 46,117,311 5.83

Process p = 2

Kronecker | Total of | Extra Mem. Total of Time
products AUNFs (Kb) Mults. (s)

21 41,570 649.53 43,737,220 3.99
Size of vector 7,263,027
Time of the update phase (s) 1.60
Total time spent in one iteration (s) 8.10
Total iterations ‘ 2696 ‘ Total time spent (min.) 363.96

Table 3: Partitioning per AUNFs

Process p =1

Kronecker | Range of AUNFs Total of | Extra Mem. Total of Time
products per term AUNFs (Kb) Mults. (s)
10 [1:1] 10 0.16 16,140,060 1.90
1 [1:1231585] 1,231,585 | 19,243.52 1,231,585 0.99
Total 1,231,595 | 19,243.67 | 17,371,645 3.89
Process p = 2
Kronecker | Range of AUNFs Total of | Extra Mem. Total of Time
products per term AUNFs (Kb) Mults. (s)
11 [1:1] 11 0.17 16,140,101 1.85
10 [1:40] 400 1.56 7,873,200 0.63

10 [1:80] 800 12.54 47,239,200 3.46

1 [1:40960] 40,960 640 40,960 0.03

1 [1231586:2421009] | 1,189,424 18,584.75 1,189,424 0.95
Total 1,231,595 19,243.67 | 72,482,886 6.92
Size of vector 7 7,263,027
Time of the update phase (s) 1.62
Total time spent in one iteration (s) 8.94
Total iterations 2696
Total time spent (min.) 401.70

to multiply. This characteristic provokes different computational
costs in the nodes despite the same load assigned. Notably, for this
class of model the partitioning per Kronecker product term seems
to be better without a correct analysis of the second approach. This
means to consider more variables such as vectors size versus total
of AUNF:s to obtain gains in the parallelization.

Parttioning per Product —— Partitioning per AUNF ———

Ideal —— Ideal

2 4 6 8 10 12 2 4 6 8 10 12 14
Number of Processors

(b) Section 2.2 approach

Number of Processors

(a) Section 2.1 approach

Figure 6: (a) Partitioning per Product, (b) Partitioning per AUNFs

The Figure 6 shows the parallel results for the model presented in
both partitioning strategies. The best gains in terms of performance
were verified when the partitioning approach by Kronecker pro-
ducts is used as shown on Tables 2 and 3, improving the workload
distribution between the cluster nodes. The speed up curve began to
degrade from 8 processors due to communication costs and vector
updates that increased proportionally to the number of processes.
Moreover, the obtained gain executing more tasks in parallel was
not covered by the high transmission cost of vectors.

4. CONCLUSION

Theoretical performance analysis of parallel implementations shows
that some approaches can significantly decrease the execution time
of most sequential algorithms. The major attraction to use the Split
algorithm concern its flexibility, offering more effective paralleliza-

tion alternatives since the multiplication can be executed indepen-
dently of the result of other Kronecker product terms, or even other
AUNFs. In a parallel algorithmic version, a node could receive a
bag of tasks with pre-computed scalars to multiply by the vector 7.

As mentioned in the paper, there are many issues to address in fu-
ture works concerning communication, memory costs and work-
load distribution. For example, it seems natural to verify not only
the total number of AUNFs to compute, but also take in account the
number of required multiplications in each Kronecker product, in
order to produce a more efficient load balancing. Or, for that matter,
it seems right to admit that even the adequate cut-parameter in a se-
quential implementation may not be necessarily a good choice for
parallel implementations. The current study is clearly concerned
with communication issues mainly because the size of vectors to
update can vary depending on the chosen o value. Shifting o to the
right position in each Kronecker product term causes the reduction
of the vectors size to be updated. This diminishes the communi-
cation costs and not necessarily increases the quantities of AUNFs
necessary to perform the task.

A more demanding future work consists taking in account the fact
that memory constraints can be overcome using other paradigms
with shared memory for the vectors and different load balance ap-
proaches. A hybrid approach using MPI and OpenMP could en-
hance the speedup of a parallel solution reducing the communica-
tion and memory costs in clusters with multicore architectures. Ob-
viously, the work presented in this paper will benefit from a further
investigation of communication costs and better balanced choices
to distribute the available tasks. At least the working prototypes of
Split parallel implementation already allow us to foresee a perfor-
mance increase when solving large transition systems stored and
manipulated as descriptors.

5. REFERENCES

[1] Formal Methods for Performance Evaluation, SFM 2007,
Bertinoro, Italy, Advanced Lectures. In M. Bernardo and
J. Hillston, editors, SFM, volume 4486 of LNCS. Springer,
May/June 2007.

[2] L. Baldo, L. Brenner, L. G. Fernandes, P. Fernandes, and
A. Sales. Performance Models for Master/Slave Parallel
Programs. Electronic Notes In Theoretical Computer Science
(ENTCS), 128(4):101-121, April 2005.

[3] R. M. Czekster, P. Fernandes, J.-M. Vincent, and T. Webber.
Split: a flexible and efficient algorithm to vector-descriptor
product. In ValueTools’07, volume 321 of ACM International
Conference Proceedings Series, 2007.

[4] R. M. Czekster, P. Fernandes, and T. Webber. GTAexpress: a
Software Package to Handle Kronecker Descriptors. In
QEST2009. IEEE Computer Society, September 2009.

[5] M. Davio. Kronecker Products and Shuffle Algebra. IEEE

Transactions on Computers, 30(2):116-125, February 1981.

P. Fernandes, B. Plateau, and W. J. Stewart. Efficient

descriptor-vector multiplication in Stochastic Automata

Networks. Journal of the ACM, 45(3):381-414, May 1998.

[7] W.]. Stewart. Probability, Markov Chains, Queues, and
Simulation: The Mathematical Basis of Performance
Modeling. Princeton University Press, NJ, USA, 2009.

[8] B. Wilkinson and M. Allen. Parallel Programming:
techniques and applications using networked workstations
and parallel computers. Prentice-Hall, Upper Saddle River,
NJ, 1999.

[6

—_

Page 4

