
Mighty-Morphing Power-SIMD

Ganesh Dasika1, Mark Woh1, Sangwon Seo1, Nathan Clark2, Trevor Mudge1, and Scott Mahlke1

1Advanced Computer Architecture Laboratory 2College of Computing
University of Michigan - Ann Arbor, MI Georgia Institute of Technology - Atlanta, GA

{gdasika, mwoh, swseo, tnm, mahlke}@umich.edu {nate.clark}@gatech.edu

ABSTRACT

In modern wireless devices, two broad classes of compute-intensive
applications are common: those with high amounts of data-level
parallelism, such as signal processing used in wireless baseband
applications, and those that have little data-level parallelism, such
as encryption. Wide single-instruction multiple-data (SIMD) pro-
cessors have become popular for providing high performance, yet
power efficient data engines for applications with abundant data
parallelism. However, the non-data-parallel applications are rele-
gated to a low-performance scalar datapath on these data engines
while the SIMD resources are left idle. To accelerate both types
of applications, we propose the design of a more flexible SIMD
datapath called SIMD-Morph. In SIMD-Morph, code with data-
level parallelism can be executed across the lanes in the traditional
manner, but the lanes can be morphed into a feed-forward sub-
graph accelerator to execute scalar applications more efficiently.
The morphed SIMD lanes form an accelerator that exploits both
instruction-level parallelism as well as operation chaining to im-
prove the performance of scalar code by exploiting the available
resources in the SIMD lanes. Experimental results show that the
performance impact is a 2.6X improvement for purely non-SIMD
applications and a 1.4X improvement for the non-SIMD-ized por-
tions of applications with data parallelism.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures—Single-instruction-stream, multiple-data-stream processors

(SIMD)

General Terms

Design, Performance

Keywords

Operation chaining, SIMD processing, Data-level parallelism,
Instruction-level Parallelism

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00.

1

10

100

1000

10000

0.1 1 10 100

B
e
tte

r

P
o
w

e
r E

ffic
ie

n
c
y

1 Mops/mW

10 Mops/mW100 Mops/mW

1000 Mops/mW

SODA

(65nm)

SODA

(90nm)

TI C6X

Imagine

VIRAM Pentium M

IBM Cell

P
e
rf

o
rm

a
n

c
e
 (

G
o

p
s

)

Power (Watts)

3G Wireless

4G Wireless

Mobile HD
Video

Figure 1: Performance vs. power requirements for various mo-

bile computing applications.

1. INTRODUCTION
In the coming years, the deployment of mobile computers will

continue to skyrocket. The prime example today is the smart phone,
but in the near future we expect to see the emergence of new classes
of such devices. These devices will improve on the smart phone
by incorporating advanced functionality such as high-bandwidth
Internet access, human-centric interfaces with voice recognition,
high-definition video coding, and interactive conferencing. While
integrating new capabilities is important for attracting customers,
battery lifetime and power dissipation remains paramount.

Untethered devices perform signal processing as one of their pri-
mary computational activities due to their heavy usage of wireless
communication as well as rendering of audio and video signals.
Fourth generation wireless technology (4G) has been proposed by
the International Telecommunications Union to increase the band-
width to maximum data rates of 100 Mbps for high mobility sit-
uations and 1 Gbps for stationary and low mobility scenarios like
Internet hot spots [23]. This translates to an increase in the com-
putational requirements of 10-1000x over previous third generation
wireless technologies (3G), with a power envelope that is limited to
increasing only 2-5x [28].

Figure 1 presents the demands of 3G and 4G computing in terms
of their peak processing throughput requirements and their power
budgets. Conventional processors cannot meet these requirements;
low-power laptop processors, such as the Pentium M, operate be-
low 1 Mop/mW, while digital signal processors, such as the TI
C6x, operate around 10 Mops/mW. Conversely, 3G wireless pro-
tocols, such as W-CDMA and 802.11a, require approximately 100
Mops/mW. The IBM Cell system can provide excellent through-
put, but its power consumption makes it infeasible for mobile de-
vices [21]. Research solutions, such as VIRAM [16] and Imag-

ine [1], can achieve the performance requirements for 3G, but ex-
ceed the power budgets of mobile terminals. SODA improves upon
these solutions and delivers a solution for 3G wireless [18]. Com-
panies such as Phillips [27], Infineon [3], ARM [29], and Sand-
bridge [11] also propose domain-specific systems that can support
3G.

The design of the next generation mobile platforms must address
three critical issues: efficiency, programmability and adaptivity.
The inherent computational efficiency of 3G solutions is insuffi-
cient and must be increased by at least an order of magnitude as
shown in Figure 1. Straight-forward scaling of 3G solutions by
techniques such as increasing the number of cores is part of the so-
lution, but is not enough on its own. Programmability provides the
opportunity for a single platform to support multiple applications
and even multiple standards within each application domain. Fur-
ther, programmability provides faster time to market as hardware
and software development can proceed in parallel, the ability to
fix bugs and add features after manufacturing, and higher chip vol-
umes as a single platform can support a family of mobile devices.
Lastly, hardware adaptivity is necessary to maintain efficiency as
the core computational characteristics of the applications change.
3G solutions rely heavily on the vast amounts of vector parallelism
in wireless signal processing algorithms, but lose most of their ef-
ficiency when vector parallelism is unavailable or constrained.

The AnySP architecture tackles the first two issues using a com-
bination of wide-SIMD execution (64 lanes), efficient data shuf-
fling, and support for common intrinsic functions [30]. Efficiency
and programmability are simultaneously garnered by pushing SIMD
execution to new levels, while applying domain specific customiza-
tions to the datapath. Adaptivity within vectorizable code is also
supported by allowing neighboring lanes to conjoin, creating 32
lanes, each supporting a computation depth of two, or overlaying
multiple narrow vector computation threads using independent ad-
dress generation units. Researchers at ST Microelectronics apply
similar generalizations to SIMD datapaths [20]. However, all of
these solutions ignore non-SIMD-izable computation. Such code is
relegated to execute on a low performance scalar pipeline provided
in the design. For inherently scalar applications such as compres-
sion or encryption, high computational rates cannot be sustained.
Even for highly vectorizable codes, Amdahl’s Law will expose the
non-vectorizable portions of the code as the eventual bottleneck.

One approach to accelerating the scalar code is to enhance the
capabilities of the scalar pipeline. Integrating specialized func-
tional units which more efficiently execute critical portions of an
application’s dataflow graph with instruction set extensions to uti-
lize the new hardware is a popular approach for designing applica-
tion specific instruction processors, or ASIPs. Several commercial
tool chains design ASIPs with instruction set extensions, including
ARM OptimoDE, and ARC Architect. However, this approach fails
to take advantage of the vast hardware resources already present in
the datapath, namely the SIMD execution units, which are mostly
idle when scalar code is executing.

In this paper, we propose a dynamically changeable SIMD data-
path, referred to as SIMD-Morph, that in the base mode can execute
data-parallel code across all the SIMD lanes. However, for scalar
code, the datapath is morphed into a subgraph accelerator similar
to the configurable compute accelerator (CCA) [6]. A CCA con-
sists of an array of simple functional units interconnected in a feed-
forward manner. The CCA executes dataflow subgraphs identified
by the compiler as atomic units. Acceleration is provided in two
ways. First, instruction-level parallelism is exploited by concur-
rently executing independent operations in the subgraphs (horizon-
tal compression). Second, operation chaining executes dependent

1: for(i = 0; i < length; i++)
2: {
3: x = (unsigned char) (x + 1);
4: a = m[x];
5: y = (unsigned char) (y + a);
6: m[x] = b = m[y];
7: m[y] = a;
8: data[i] ^=
9: m[(unsigned char) (a + b)];
10: }

Figure 2: A portion of the rc4 benchmark

1: for (j = 0; j < data_blk_size; j++)
2: {
3: a = crc_accum >> 24;
4: b = *data_blk_ptr;
5: c = a^b;
6: i = c&0xff;
7: d = crc_table[i];
8: e = crc_accum << 8;
9: crc_accum = e ^ d;
10: data_blk_ptr++;
11: }

Figure 3: A portion of the crc benchmark

operations in a single cycle by exploiting slack in the pipeline and
eliminating conventional register forwarding (vertical compression).

The challenges of SIMD-Morph that lead to the central contribu-
tions of this work are as follows:

• The extensions to the SIMD datapath to enable effective ex-
ecution of a scalar subgraph where both horizontal and verti-
cal compression are achieved.

• A design space exploration to define the organization, needed
capabilities, and connectivity of the subgraph accelerator to
maximize utilization of the available functional resources in
the SIMD datapath.

2. MOTIVATION
As embedded devices become more and more pervasive, the types

of computation they are required to perform becomes more varied.
SIMD-ization is one of the most common architectural techniques
used to improve the efficiency, but it is not effective for many styles
of applications, e.g., some types of data encryption and compres-
sion, and many forms of error detection and correction.

To give a specific example, Figure 2 is the critical loop for the
RC4 encryption algorithm, the basis of Secure Sockets Layer (SSL)
and many other popular streaming, secure protocols.

Note that while the data being encrypted is accessed in a se-
quential order (line 8), the value being XORed with the data is the
result of multiple indirect memory accesses to m[y]. This type of
pointer-chasing is difficult to perform efficiently on SIMD acceler-
ators, which are typically designed for contiguous accesses.

As another example, Figure 3 is the main loop from a cyclic re-
dundancy check (CRC) algorithm, commonly used to detect errors
in signal transmissions.

Similar to RC4, CRC has non-contiguous, pointer-chasing mem-
ory accesses (line 7). An additional challenge is that CRC also has
a dependence, crc_accum, that crosses loop iterations thus pre-
venting any significant form of data-level parallelism. Like RC4,

0%

20%

40%

60%

80%

100%

c
jp

e
g

d
jp

e
g

e
p

ic

u
n

e
p

ic

g
7

2
1

d
e

c
o

d
e

g
7

2
1

e
n

c
o

d
e

m
p

e
g

2
d

e
c

m
p

e
g

2
e

n
c

p
g

p
d

e
c

o
d

e

p
g

p
e

n
c

o
d

e

a
v

e
r
a

g
e

%
 C

y
c

le
s

Figure 4: Fraction of cycles spent outside of inner-most loops

CRC would garner little if any benefit from traditional SIMD accel-
erators. Both of these applications are very important to many em-
bedded domains, and augmenting a SIMD datapath to better sup-
port them would prove very beneficial.

Even in applications that are amenable to SIMD acceleration,
often times only their inner-most loops are data-parallel and can
be SIMD-ized. SIMD datapaths are continually getting wider with
Moore’s law [7] but as this happens, the non-SIMD-ized portions
of the application will begin to dominate execution time as per Am-
dahl’s law.

Figure 4 illustrates the importance of this trend. This figure
shows the percentage of time spent outside inner-most loops, i.e.
executing non-SIMD-izable code for several SIMD-izable bench-
marks from the MediaBench Suite [17]. From this figure we can
deduce that even in an ideal system with an infinitely-wide SIMD
machine, over 30% of the application’s execution time is spent on
non-SIMD-ized code. This limits the speedup of these applications
to ≈3x in the best case, and clearly represents an important target
for acceleration.

Several important application domains are not amenable to SIMD-
ization, and even those that are have a significant fraction of non-
SIMD-izable code that is important to accelerate. For these rea-
sons, this paper answers the question, “How can the standard narrow-
scalar-pipeline-with-wide-SIMD-pipeline architectures be modified
to better accelerate a wider variety of applications?”

3. SIMD-MORPH

3.1 Hardware
The baseline SIMD architecture used is shown in Figure 5. This

baseline is modified in the manner shown in Figure 6 to create the
SIMD-Morph architecture. The 16 SIMD lanes are grouped in 4
Configurable Execution Groups (CEGs) of 4 elements each, named
CEG0 (lanes 0 to 3) through CEG3 (lanes 12 to 15). The FUs
in all the lanes are capable of executing the same operations as
before but now each CEG has an added memory unit capable of
executing scalar loads and stores. Each FU may receive its inputs
from 8 possible sources: the 4 outputs of the previous CEG, any
of the other 3 FUs in its row or from an 8-bit constant register (not
pictured). In addition, the memory FUs may receive loaded data
from memory.

Register data is transferred into the SIMD datapath via CEG0’s
4 inputs directly from the scalar register file. Register data is trans-
ferred out of the SIMD datapath via CEG3’s outputs. Despite the

Scalar Pipeline

L1

Program
Memory

Controller

SIMD

Local
Memory

DMA

SIMD

Functional

Units

SIMD

Register

File

Scalar

Memory

AGU Pipeline

Figure 5: Baseline SIMD+Scalar Processor

increased complexity of adding connections from the scalar regis-
ter file to the SIMD datapath, this method is a better solution than
adding extra ports to the SIMD register file. This is because the
code that will require this functionality is not SIMD-parallel and
would normally be executed on the scalar pipeline so adding these
connections to the SIMD register file will require extra cycles to
copy data between the two register files, thereby reducing perfor-
mance.

Figure 7 shows a representation of lines 6-9 of the crc bench-
mark shown in Figure 3 on the SIMD-Morph hardware. The live-in
values in this case are the variables crc_accum, c and the base
pointer crc_table. This pointer is used to issue the load from
crc_table[i] (line 7 in the code). The shaded nodes are idle
and are not used for any computation. The live-out value is the
updated value of crc_accum. The mov operations are used to
transfer operands from where they are generated to where they are
read.

3.2 Configuration
A control memory is required in order to store the various con-

figuration bits required for SIMD-Morph. The requirements of the
different components are broken down as follows:

• To specify opcodes, each element requires 5 bits to support
the various arithmetic and logic operations. The memory
units require an additional bit to support various load and
store instructions. This is a total of 21 bits per CEG, or 84
bits total.

• Each FU has 2 ports, each of which can receive inputs from
1 of 7 possible sources (requiring a 3-bit mux per port). Fur-
ther, 1 global bit is required to specify whether the FU re-
ceives its inputs in “SIMD-Morph mode” (from other FUs
and the scalar register file) or in “normal mode” (from the
SIMD register file). Each FU can also receive an 8-bit literal
value as input. The total bits required to specify inputs is,
therefore 225 bits (1 + 8*16 + 3*2*16).

• The very last row outputs back to the 2 write ports in the
scalar register file. Each of these ports may receive its in-
puts from any of the 4 elements in CEG3, requiring 4 bits of
control.

The total number of bits required to configure SIMD-Morph is,
therefore, 225 + 84 + 4, or 313 bits.

Scalar
Register

File
SIMD Register File

Configurable

Execution

Group

Configurable

Execution

Group

Configurable

Execution

Group

Configurable

Execution

Group

Load/Store Queue

4x32b

2x32b

4x32b 4x32b 4x32b

Original SIMD

Interconnect

Added

Interconnect

8x8 Crossbar

FU FU FU
FU/

MEM

Input from Previous Stage

Output to
Next Stage

4-2 Mux
Final Stage

Output to Scalar

Register File

T
o

 L
o

a
d

/S
to

re
 Q

u
e
u

e

Configurable Execution Group

SIMD Datapath

Figure 6: SIMD-Morph Modifications

3.3 Compilation
Effectively utilizing accelerators such as SIMD-Morph requires

tool chain support, and so it is important to introduce the compila-
tion strategy used during design space exploration. Compiling an
application to make use of computation accelerators boils down to
two steps: enumerating portions of the application’s dataflow graph
(DFG) that can be executed on the accelerator, and selecting which
portions to accelerate.

“Enumeration” consists of generating a set of subgraphs from
a given DFG, and determining if they can run on an accelerator.
Generating a set of subgraphs is difficult because the number of
possible subgraphs grows exponentially with the size of the DFG.
Determining if the subgraphs can run on an accelerator, i.e., deter-
mining if they perform the same computation, is essentially equiv-
alence checking, which is NP-complete. The problem is further
complicated if the accelerators perform a superset of the desired
computation (e.g., an accelerator for dot-products could also accel-
erate multiply-accumulates in an application).

“Selecting” which subgraphs to accelerate is also difficult. Typ-
ically, the selection problem is formulated to push as much com-
putation as possible onto the accelerators, while ensuring that there
is no overlap between subgraphs. That is, given a set of enumer-
ated subgraphs, find the group that covers the largest portion of the
DFG while minimizing the number of nodes appearing in multiple
subgraphs. This problem is also NP-complete and is quite similar
to the well known technology mapping problem in VLSI design.
Clearly, mapping applications to subgraphs is a challenging com-
pilation problem.

Previous work has shown that greedy solutions work poorly, par-
ticularly when the accelerator is large, like SIMD-Morph is [8]. For
that reason, we leveraged a more thorough compilation approach
very similar to previous work [8]. Essentially, the compiler per-
forms an exhaustive search of the design space to enumerate and
select the best possible set of subgraphs for acceleration. Several
pruning heuristics keep the compilation time reasonable for the vast
majority of cases, and timeouts prevent corner cases from taking
an intractable amount of time. This more thorough compilation
strategy ensures that the design space exploration is as accurate as
possible.

3.4 Baseline Observations
In this work, benchmarks are generally classified into two cat-

egories. The “media” benchmarks are the same as those in Fig-

mov

mov

mov

mov

ld

&

crc_table[i]

crc_table

8

crc_accum

<<

<<
2

c 0xff

^

out

Figure 7: Graphical representation of a portion of the crc

benchmark on SIMD-Morph

.

ure 4 and are from the Mediabench benchmark suite. The rest are
from the MiBench [13], SPECINT2000 and NetBench [19] suites.
These benchmarks were chosen as they were representative of ap-
plications that are normally run on mobile devices.

For the media benchmarks, the SIMD-izable inner loops are not
considered as they are assumed to execute on a normally configured
SIMD datapath. The other benchmarks demonstrate limited data-
level parallelism and, therefore, the entirety of the benchmarks are
considered for execution under SIMD-Morph.

Figure 8 shows the distribution of various sizes of subgraphs in
each of the applications in increments of 4. The overwhelming
majority of subgraphs, 83%, are between 1 and 4 operations. Ap-
proximately 16% of subgraphs have between 5 and 8 ops and just
over 1% of subgraphs have more than 8 operations.

Factoring in the speedup contributed by each of these subgraphs
presents only a slightly different story. In Figure 9, each segment
shows the % of overall cycles saved came from subgraphs of vari-
ous sizes. The speedup contribution of 1 to 4-operation subgraphs
is 71.5% and that of 5 to 6-operation subgraphs is 26%. This indi-
cates that while there while there are few subgraphs larger than 4
operations in size, their speedup contribution is significant.

Figures 10 and 11 illustrate the distribution of maximum depths
of subgraphs and the speedups obtained by varying the subgraph

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c
jp

e
g

d
jp

e
g

e
p

ic

u
n

e
p

ic

g
7

2
1

d
e

c
o

d
e

g
7

2
1

e
n

c
o

d
e

m
p

e
g

2
d

e
c

m
p

e
g

2
e

n
c

p
g

p
d

e
c
o

d
e

p
g

p
e

n
c
o

d
e

b
it

c
o

u
n

t

b
lo

w
fi
s
h

d
ij
k
s
tr
a

m
d
5

p
c
1

rc
4

s
h
a

1
6
4
.g
z
ip

1
8
1
.m

c
f

1
9
7
.p
a
rs
e
r

2
5
6
.b
z
ip
2

c
rc

ip
c
h
a
in
s

a
v
e
ra
g
e

%
 s
u
b
g
ra
p
h
s

13-16 ops 9-12 ops 5-8 ops 1-4 ops

Figure 8: Distribution of subgraphs consisting of various num-

bers of operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
d
e
c
o
d
e

g
7
2
1
e
n
c
o
d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
g
p
d
e
c
o
d
e

p
g
p
e
n
c
o
d
e

b
it
c
o
u
n
t

b
lo
w
fi
s
h

d
ij
k
s
tr
a

m
d
5

p
c
1

rc
4

s
h
a

1
6
4
.g
z
ip

1
8
1
.m

c
f

1
9
7
.p
a
rs
e
r

2
5
6
.b
z
ip
2

c
rc

ip
c
h
a
in
s

a
v
e
ra
g
e

%
 c
y
c
le
s
sa
v
e
d

13-16 ops 9-12 ops 5-8 ops 1-4 ops

Figure 9: % Cycles saved by subgraphs consisting of various

numbers of operations

depths. The subgraph depths for the benchmarks in consideration
ranged from 1 operation to 5, although the execution frequency
of the 5-deep subgraphs (there is one in each of g721encode
and g721decode) was so small that it is not noticeable in these
graphs.

On average, approximately 85% of the subgraphs have depths
of 3 operations or fewer. The performance contribution paints a
similar picture as well, with 80% of the performance improvement
coming from subgraphs with depths of 3 operations or fewer.

Finally, Figure 12 shows the distribution of memory operations
in the subgraphs. Over 90% of the subgraphs use only 2 of the
4 available memory units. However, over 60% of subgraphs have
at least one memory operation, indicating that support for memory
operations is still important, although it is unlikely that reducing
the number of operations supported will have a significant impact
on performance.

There is one salient point from all of these results: the baseline
design is grossly over-provisioned. Further, the following may be
considered:

• The maximum number of operations can be reduced, reduc-
ing the overall latency of SIMD-Morph

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
d
e
c
o
d
e

g
7
2
1
e
n
c
o
d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
g
p
d
e
c
o
d
e

p
g
p
e
n
c
o
d
e

b
it
c
o
u
n
t

b
lo
w
fi
s
h

d
ij
k
s
tr
a

m
d
5

p
c
1

rc
4

s
h
a

1
6
4
.g
z
ip

1
8
1
.m

c
f

1
9
7
.p
a
rs
e
r

2
5
6
.b
z
ip
2

c
rc

ip
c
h
a
in
s

a
v
e
ra
g
e

%
 s
u
b
g
ra
p
h
s

5 rows 4 rows 3 rows 2 rows 1 row

Figure 10: Distribution of subgraphs consisting of various

depths of operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
d
e
c
o
d
e

g
7
2
1
e
n
c
o
d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
g
p
d
e
c
o
d
e

p
g
p
e
n
c
o
d
e

b
it
c
o
u
n
t

b
lo
w
fi
s
h

d
ij
k
s
tr
a

m
d
5

p
c
1

rc
4

s
h
a

1
6
4
.g
z
ip

1
8
1
.m

c
f

1
9
7
.p
a
rs
e
r

2
5
6
.b
z
ip
2

c
rc

ip
c
h
a
in
s

a
v
e
ra
g
e

%
 c
y
c
le
s
sa
v
e
d

5 rows 4 rows 3 rows 2 rows 1 row

Figure 11: % Cycles saved by subgraphs consisting of various

depths of operations

• Reducing the number of operations will also reduce the com-
plexity of the interconnect network, further reducing latency
and power

• Reducing the maximum depth of subgraphs by eliminating
connections between some groups will prevent some sub-
graphs from executing but could potentially allow more, shal-
lower subgraphs to execute. Increasing the number of sub-
graphs, however, could require increasing the number of live-
in and live-out values

• Reducing the number of memory units will reduce the com-
plexity of SIMD-Morph but will potentially severely limit
the number of subgraphs that can be executed.

4. DESIGN-SPACE EXPLORATION AND

RESULTS
The overall design-space was explored in order to best under-

stand the bottlenecks of the design. The features that were varied
include:

• The number of register inputs

• The number of register outputs

Configuration #inputs #outputs #Mem #Ops Topology Control bits required

baseline 4 2 4 16 Default 313

config2 2 2 4 16 Default 313

config3 3 2 4 16 Default 313

config4 5 2 4 16 Default 313

config5 6 2 4 16 Default 317

config6 4 2 0 16 Default 309

config7 4 2 1 16 Default 310

config8 4 2 2 16 Default 311

config9 4 2 4 16 2 groups of 8 313

config10 4 2 2 8 1 group of 8 157

config11 4 2 1 4 1 group of 4 79

config12 4 1 4 16 Default 311

config13 4 3 4 16 Default 315

config14 4 4 4 16 Default 317

Table 1: Configurations used in design-space exploration. Entries in bold indicate deviations from the baseline.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
d
e
c
o
d
e

g
7
2
1
e
n
c
o
d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
g
p
d
e
c
o
d
e

p
g
p
e
n
c
o
d
e

b
it
c
o
u
n
t

b
lo
w
fi
s
h

d
ij
k
s
tr
a

m
d
5

p
c
1

rc
4

s
h
a

1
6
4
.g
z
ip

1
8
1
.m

c
f

1
9
7
.p
a
rs
e
r

2
5
6
.b
z
ip
2

c
rc

ip
c
h
a
in
s

a
v
e
ra
g
e

%
 s
u
b
g
ra
p
h
s

4 ops 3 ops 2 ops 1 ops 0 ops

Figure 12: Distribution of subgraphs consisting of various

numbers of memory operations

• The number of memory units in SIMD-Morph

• The interconnect topology

For the purposes of design-space exploration, a limited number
of benchmarks were selected which were representative of the var-
ious benchmark suites in consideration: The Mediabench bench-
marks g721encode and mpeg2dec, the Netbench benchmark
crc, the encryption benchmark rc4, and the SPECINT2000 bench-
mark 164.gzip. Each variation is compared to the baseline re-
sults shown in Section 3.

4.1 Varying Register Inputs
For these experiments, the number of register inputs was varied

between 2, 3, 4 (the baseline), 5 and 6 as indicated by the config-
urations config2, config3, config4 and config5. Every
extra read port on the scalar register file contributes muxing cost
and also increases the encoding space required in the configuration
memory. However, increasing the number of inputs also increases
the number of parallel, independent operations that can be executed
on SIMD-Morph and provide improved utilization and speedup.

Figure 13 shows the results of this exploration, with the sec-
ond column showing the data for the baseline 4-input configura-
tion. While there is significant improvement for rc4, most of the

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

g721encode mpeg2dec crc rc4 164.gzip

P
e
rf
. v

s
.

s
c

a
la

r
p

ro
c

e
s
s
o

r

2 inputs 3 inputs 4 inputs 5 inputs 6 inputs

Figure 13: Performance impact of varying the number of reg-

ister inputs

benchmarks show a very limited increase in performance; the prin-
ciple reason for this being that the memory ports allow data to
be “live-in” from memory arrays, reducing the sensitivity to the
amount of live-in register data. The difference observed between
the 2-input and 3-input performance of all the benchmarks shown,
however, justifies the added cost of adding at least one extra port
to a conventional 2-read-port register file. However, because per-
formance saturates when using a 4-read-port register file, this is the
preferred configuration. In our experiments, the power consumed
by the scalar register file increases approximately linearly with the
number of read ports, as shown in Figure 14.

4.2 Varying Number of Memory Units
The memory units in SIMD-Morph access memory via a multi-

ported load/store queue. This system helps prevent inter-lock and
overlapping accesses in the event of memory aliasing when execut-
ing pointer-intensive code. Increasing the number of units there-
fore requires appropriate modifications to the memory system. Fur-
ther, address generation support needs to be added to elements in
the SIMD datapath in order to support base+displacement memory
operations. For these experiments, the number of memory units
in SIMD-Morph was varied between 0, 1, 2 and 4 (the baseline)
units as indicated by the configurations config6, config7, and
config8.

Figure 15 shows the results of this exploration, with the 4th col-
umn showing the data for the baseline 4-memory unit configura-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

r2w2 r3w2 r4w2 r5w2 r6w2

N
o
rm

a
li
ze
d

 P
o

w
e

r

Figure 14: Register file power with varying number of register

inputs, normalized to the 4-port baseline

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

g721encode mpeg2dec crc rc4 164.gzip

P
e
rf
. v

s
.

s
c

a
la

r
 p

r
o

c
e

s
s
o

r

0 ports 1 port 2 ports 4 ports

Figure 15: Impact of varying the number of memory units on

speedup

tion. There is obviously a noticeable correlation between the per-
formance impact of changing the number of memory units and the
% of subgraphs that have the corresponding number of memory
operations, shown in Figure 12. For instance, 164.gzip is most
sensitive to the number of units and it also has the most number
of subgraphs that have at least 1 memory operation in them. Simi-
larly, g721encode is the least sensitive and fewer than 30% of its
subgraphs have memory operations. The power impact of varying
the number of memory ports is quite negligible as shown in Fig-
ure 16 so there is very little incentive to reduce the total number of
memory operations in SIMD-Morph.

4.3 Varying Interconnect Topology
The data from Section 3 indicates that the performance impact of

subgraphs with a large number of operations and with long chains
of operation is, at best, minimal. In response to this, different
SIMD-Morph topologies were explored, varying the interconnec-
tion network between the elements and also varying the total num-
ber of elements. These are indicated by configurations config9,
config10 and config11. In config9, each group of 8 el-
ements does not communicate with the other, but one 4-element
CEG within each group still feeds another. The configurations
config10 and config11 explore the notion of not using all
16 lanes of the SIMD datapath but using 8 or 4, respectively, in-
stead. The performance impact of these configurations is shown in
Figure 17. The most important observation from this graph is that
there is virtually no difference between the 2x8 and 1x8 configura-
tion; i.e. once the maximum depth of subgraphs is halved, having
extra units has no added benefit, so one may as well configure 8

0.95

0.96

0.97

0.98

0.99

1.00

0 ports 1 port 2 ports 4 ports

N
o

rm
a

li
ze

d
 P

o
w

e
r

0.000.00

Figure 16: Normalized power impact of varying the number

of memory units relative to the 4-port baseline. Note that the

y-axis does not start at 0.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

g721encode mpeg2dec crc rc4 164.gzip

P
e
rf
. v

s
.

s
c

a
la

r
 p

r
o

c
e

s
s
o

r

1x16 Topology 2x8 Topology 1x8 Topology 1x4 Topology

Figure 17: Impact of varying the interconnect topology on

speedup

elements in the SIMD-Morph style in order to save on overheads.
The power savings from moving to a 1x16 configuration to a 2x8
configuration is also negligible as seen in Figure 18.

4.4 Varying Register Outputs
For these experiments, the number of register outputs was var-

ied between 1, 2 (the baseline), 3 and 4. The modified configura-
tions are indicated by configurations config12, config13 and
config14. Every extra write port on the scalar register file con-
tributes muxing cost and also increases the encoding space required
in the configuration memory. There is also extra overhead associ-
ated with forwarding values from the write ports to the read ports.
However, much like with increasing the number of inputs, increas-
ing the number of outputs also increases the number of parallel, in-
dependent operation chains that can be executed on SIMD-Morph,
providing improved utilization and speedup, as shown in Figure 19.

Memory access support in SIMD-Morph allows for reduced use
of register live-outs especially in situations where final values are
written to memory arrays. For this reason, the benchmarks here are,
to a point, insensitive to the number of outputs. A minimum of 1 or
2 is required to support incrementing loop counter or pointer val-
ues. A notable exception to this is, of course, crc, where few hot
loops store values out to memory but values are live-out from one
loop iteration to the next. Figure 20 shows the normalized power
consumption of varying the number of write ports to the register
file, indicating an approximately linear relationship between the
number of ports and power consumed.

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1x16 Topology 2x8 Topology 1x8 Topology 1x4 Topology

N
o

rm
a

li
ze

d
 P

o
w

e
r

Figure 18: Normalized power impact of varying the topology

relative to the 1x16 baseline. Note that the y-axis does not start

at 0.

1

1.5

2

2.5

3

3.5

g721encode mpeg2dec crc rc4 164.gzip

P
e
rf
. v

s
.

s
c

a
la

r
 p

r
o

c
e

s
s
o

r

1 output 2 outputs 3 outputs 4 outputs

Figure 19: Impact of varying the number of register outputs on

speedup

5. RESULTS
The simplest configuration that allows for the maximum perfor-

mance from SIMD-Morph has 4 input values, 3 output values and
4 memory ports, using the baseline 1x16 interconnect topology.
Performance saturation from using more complex configurations is
illustrated in Figure 21, which shows no change in performance
when using more than 4 input values and a negligible performance
improvement when using more than 3 output values. This config-
uration is config13 in Table 1. Figure 22 illustrates the perfor-
mance:power efficiency of each of the configurations used in the
design-space exploration . This figure, too, illustrates the optimal
efficiency of config13.

The overall performance improvement when using the optimal-
efficiency configuration of SIMD-Morph is shown in Figure 23.
For the benchmarks from the Mediabench suite, only the non-SIMD-
ized portions of the code are considered for acceleration on SIMD-
Morph, while for the other benchmarks, the entire application is
considered. For this reason, the averages of the two categories are
displayed separately. The average speedup for the media applica-
tions is 1.4X, while the average speedup for the other applications
is 2.6X.

SIMD-Morph was synthesized on a 90nm technology with a tar-
geted clock frequency of 200 MHz using Synopsys Design Com-
piler and Synopsys Physical Compiler. Power consumption was
measured using Synopsys Primetime-PX. The chosen baseline as-
sumes a processor with 16-wide SIMD datapath and a 16-entry
scalar register file with three read ports and two write ports, the
power consumption of which is 63.48mW. The baseline SIMD-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r4w1 r4w2 r4w3 r4w4

N
o
rm

a
li
ze
d

 P
o

w
e

r

Figure 20: Register file power with varying number of register

outputs, normalized to the 2-port baseline

1.4

1.5

1.6

1.7

1.8

1.9

2

0 1 2 3 4 5 6 7

P
e
rf
. v

s
.

s
c

a
la

r
 p

r
o

c
e

s
s
o

r

Inputs Outputs Mem Ports

Figure 21: Average performance improvements with varying

configurations

Morph configuration, illustrated in Figure 6 is connected to a scalar
register file with four read ports and two write ports, the power con-
sumption of which is 71.01mW – a power overhead of 11.9% for
the modified components. The efficiency-optimal configuration,
config13, with three write ports instead of two in the scalar reg-
ister file has a power consumption of 71.53mW – a power overhead
of 12.7% for the modified components. The power consumption of
the scalar datapath and the SIMD register files is not accounted for
here as they are not modified in this work; accounting for the power
consumption of these components will reduce this power overhead.
The average performance/power efficiency improvement of using
the optimal SIMD-Morph configuration is 1.75X.

6. RELATED WORK
Utilizing instruction set extensions to improve the computational

efficiency of applications is a well studied field. Examples of in-
dustry standard domain specific instruction set extensions such as
Intel’s SSE or AMD’s 3DNow! multimedia instructions are com-
monplace in modern systems. Techniques for generating domain
specific extensions are typically ad-hoc, where an architect exam-
ines a family of target applications and determines what extensions
can be expected to provide increased performance.

In contrast to domain specific extensions, many techniques for
generating application specific instruction set extensions have been
proposed [2, 4, 9, 12, 14, 26]. Each of these algorithms provide
either exact formulations or heuristics to effectively identify those
portions of an application’s dataflow graph that can efficiently be
implemented in hardware. These techniques are not directly ap-

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e
rf
/p
o
w
e
r

e
ffi

c
ie

n
c

y

v
s

sc
a

la
r

p
ro

c
e

ss
o

r

Configura#on

Figure 22: Average performance/power efficiency improve-

ment of SIMD-Morph with the different datapath configura-

tions

1.0

1.5

2.0

2.5

3.0

3.5

4.0

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
d
e
c
o
d
e

g
7
2
1
e
n
c
o
d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
g
p
d
e
c
o
d
e

p
g
p
e
n
c
o
d
e

b
it
c
o
u
n
t

b
lo
w
fi
s
h

d
ij
k
s
tr
a

m
d
5

p
c
1

rc
4

s
h
a

1
6
4
.g
z
ip

1
8
1
.m

c
f

1
9
7
.p
a
rs
e
r

2
5
6
.b
z
ip
2

c
rc

ip
c
h
a
in
s

a
v
e
ra
g
e
 m
e
d
ia

a
v
e
ra
g
e
 o
th
e
r

S
p
e
e
d
u
p

Figure 23: Speedup from using SIMD-Morph using the optimal

configuration. “Average media” refers to the average speedup

obtained from accelerating the outer loops of Mediabench ap-

plications while “average other” refers to the average speedup

obtained from accelerating the entirety of the other applica-

tions. The speedup seen in pc1 is 9.5X but is capped at 4X in

this graph.

plicable to this work, because they do not take into account the
underlying structure of the execution hardware.

Much attention has been given to the structure of a CCA (config-
urable compute accelerator) design for accelerating dataflow sub-
graphs. The research in [31] proposed using a fine granularity CCA
based on slightly specialized FPGA-like elements. Restricting the
interconnect of the FPGA-like elements reduces the delay of a CCA
without radically affecting the number of subgraphs that can be
mapped onto the accelerator. While the flexibility to map many
subgraphs onto configurable hardware is appealing, there are sig-
nificant drawbacks of a large number of control bits and the sub-
stantial delay of FPGA-like elements. A key observation is that
the flexibility of an FPGA is generally more than is necessary for
dataflow graph acceleration.

Once a CCA execution engine is developed, techniques are need-
ed to map dataflow subgraphs onto the execute engines. Many
hardware based frameworks exist for this process. Most of these
arose from the observation that in systems with a trace cache, the
latency of the fill unit has a negligible performance impact until it
becomes very large (on the order of 10,000 cycles [10]). That is,
once instructions retire from the pipeline and a trace is constructed,

there is ample time before that trace will be needed again. Two
recently proposed schemes [5, 24] used this latency to perform the
mapping of dataflow subgraphs onto specialized execution hard-
ware. While the trace cache provides an excellent place for map-
ping subgraphs into the instruction stream, it is far too large and
inefficient for embedded domains.

A simplified dynamic subgraph mapping system was described
in [15, 25]. These papers used the design proposed in [22] as
the baseline of their system, which greatly simplifies the mapping
problem. Because our goal was to allow for more flexibility than
their CCA design allowed for, our presented identification algo-
rithm is much more complex.

The key difference between this paper and prior work is that in-
stead of proposing a CCA architecture, we propose an architecture

framework into which many CCA architectures fit. This frame-
work provides a clean interface between a processor pipeline and
a CCA, enabling easy customization of a CCA for the expected
system workload. We demonstrate how the framework can pro-
cess a dataflow subgraph to generate CCA instruction on the fly,
without the costs associated with a trace cache. Beyond the archi-
tecture framework, we describe the compilation process, by which
subgraphs are identified in applications and communicated to the
architecture framework.

7. CONCLUSION
Modern wireless devices are often equipped with wide SIMD

processors in order to exploit data-level parallelism that is very of-
ten present in the media applications that these devices need to ex-
ecute. However, not all portions of these applications is amenable
to SIMD-izing. Further, several other, non-media applications are
often run on these devices as well and during their executing only
the scalar portion of the processor is used while the SIMD datapath
is left idle. SIMD-Morph is a design which allows the SIMD dat-
apath to be used in these situations as well. This design modifies
a standard 32-bit, 16-wide SIMD datapath by adding connectivity
between the different lanes in order to exploit instruction-level par-
allelism in sections of code that would normally be executed on the
scalar pipeline of a SIMD processor. The performance benefit of
SIMD-Morph is evaluated in two ways: speedup obtained from ex-
ecuting outer loops of applications when the inner loops are easily
SIMD-ized and also the speedup obtained from executing purely
sequential code on a substrate that is normally used to execute code
with data-level parallelism. The performance impact for these two
scenarios is a very impressive 1.4X and 2.6X, respectively.

Acknowledgements

We thank the anonymous referees who provided excellent feed-
back. This research was supported by National Science Foundation
grant CNS-0964478, ARM Ltd, and Google.

8. REFERENCES
[1] J. H. Ahn et al. Evaluating the Imagine stream architecture.

In Proc. of the 31st Annual International Symposium on

Computer Architecture, pages 14–25, June 2004.

[2] K. Atasu, L. Pozzi, and P. Ienne. Automatic
application-specific instruction-set extensions under
microarchitectural constraints. In Proc. of the 40th Design

Automation Conference, pages 256–261, June 2003.

[3] H.-M. Bluethgen, C. Grassmann, W. Raab, and U. Ramacher.
A programmable platform for software-defined radio.
International Symposium on System-on-Chip, pages 15–,
Nov. 2003.

[4] P. Brisk et al. Instruction generation and regularity extraction
for reconfigurable processors. In Proc. of the 2002

International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, pages 262–269, 2002.

[5] N. Clark et al. Application-specific processing on a
general-purpose core via transparent instruction set
customization. In Proc. of the 37th Annual International

Symposium on Microarchitecture, pages 30–40, Dec. 2004.

[6] N. Clark et al. An architecture framework for transparent
instruction set customization in embedded processors. In
Proc. of the 32nd Annual International Symposium on

Computer Architecture, pages 272–283, June 2005.

[7] N. Clark et al. Liquid SIMD: Abstracting SIMD hardware
using lightweight dynamic mapping. In Proc. of the 13th

International Symposium on High-Performance Computer

Architecture, pages 216–227, 2007.

[8] N. Clark, A. Hormati, S. Mahlke, and S. Yehia. Scalable
subgraph mapping for acyclic computation accelerators. In
Proc. of the 2006 International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems, pages
147–157, Oct. 2006.

[9] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. In Proc. of

the 36th Annual International Symposium on

Microarchitecture, pages 129–140, Dec. 2003.

[10] D. Friendly, S. Patel, and Y. Patt. Putting the fill unit to work:
Dynamic optimizations for trace cache microprocessors. In
Proc. of the 25th Annual International Symposium on

Computer Architecture, pages 173–181, June 1998.

[11] J. Glossner, E. Hokenek, and M. Moudgill. The Sandbridge
Sandblaster Communications Processor. In 3rd Workshop on

Application Specific Processors, pages 53–58, Sept. 2004.

[12] D. Goodwin and D. Petkov. Automatic generation of
application specific processors. In Proc. of the 2003

International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, pages 137–147, 2003.

[13] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In Proc. of the 4th

IEEE Workshop on Workload Characterization, pages
10–22, Dec. 2001.

[14] I. Huang. Co-Synthesis of Instruction Sets and

Microarchitectures. PhD thesis, University of Southern
California, 1994.

[15] Q. Jacobson and J. E. Smith. Instruction pre-processing in
trace processors. In Proc. of the 5th International Symposium

on High-Performance Computer Architecture, pages
125–133, 1999.

[16] C. Kozyrakis and C. Patterson. Vector vs. superscalar and
VLIW architectures for embedded multimedia benchmarks.
In Proc. of the 35th Intl. Symposium on Microarchitecture,
pages 283–293, Nov. 2002.

[17] C. Lee, M. Potkonjak, and W. Mangione-Smith.
MediaBench: A tool for evaluating and synthesizing
multimedia and communications systems. In Proc. of the

30th Annual International Symposium on Microarchitecture,
pages 330–335, 1997.

[18] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, and
C. Chakrabarti. SODA: A low-power architecture for
software radio. In In Proc. of the 33rd Annual International

Symposium on Computer Architecture, pages 89–101, 2006.

[19] G. Memik, W. H. Mangione-Smith, and W. Hu. NetBench: A
benchmarking suite for network processors. In Proc. of the

2001 International Conference on Computer Aided Design,
pages 39–42, 2001.

[20] P. Paulin. Real-life challenges on mapping high-end video to
mp-soc, 2009. 9th International Forum on Embedded
MPSoC and Multicore.

[21] D. Pham et al. The design and implementation of a first
generation CELL processor. In IEEE Intl. Solid State

Circuits Symposium, Feb. 2005.

[22] J. Phillips and S. Vassiliadis. High-performance 3-1 interlock
collapsing ALU’s. IEEE Transactions on Computers,
43(3):257–268, 1994.

[23] I. T. U. M. Recommendation. Framework and overall

objectives of the future development of IMT-2000 and

systems beyond IMT-2000".
http://www.ieee802.org/secmail/pdf00204.pdf.

[24] P. Sassone and D. S. Wills. Dynamic strands: Collapsing
speculative dependence chains for reducing pipeline
communication. In Proc. of the 37th Annual International

Symposium on Microarchitecture, pages 7–17, Dec. 2004.

[25] Y. Sazeides, S. Vassiliadis, and J. E. Smith. The performance
potential of data dependence speculation & collapsing. In
Proc. of the 29th Annual International Symposium on

Microarchitecture, pages 238–247. IEEE Computer Society,
1996.

[26] F. Sun et al. Synthesis of custom processors based on
extensible platforms. In Proc. of the 2002 International

Conference on Computer Aided Design, pages 641–648,
Nov. 2002.

[27] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman,
and M. Weiss. Vector processing as an enabler for
software-defined radio in handheld devices. EURASIP J.

Appl. Signal Process., 2005(1):2613–2625, 2005.

[28] M. Woh et al. The next generation challenge for software
defined radio. In Proc. of the 7

thInternational Symposium on

Systems, Architectures, Modeling, and Simulation, pages
343–354, July 2007.

[29] M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge,
C. Chakrabarti, R. Bruce, D. Kershaw, A. Reid, M. Wilder,
and K. Flautner. From soda to scotch: The evolution of a
wireless baseband processor. Proceedings. 41th Annual

IEEE/ACM International Symposium on Microarchitecture,

2008. MICRO-41., pages 152–163, Nov. 2008.

[30] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and
K. Flautner. AnySP: Anytime Anywhere Anyway Signal
Processing. In Proc. of the 36th Annual International

Symposium on Computer Architecture, pages 128–139, June
2009.

[31] S. Yehia and O. Temam. From sequences of dependent
instructions to functions: An approach for improving
performance without ILP or speculation. In Proc. of the 31st

Annual International Symposium on Computer Architecture,
pages 238–249, June 2004.

