
Hardware-Based Data Value and Address Trace
Filtering Techniques

Vladimir Uzelac
Tensilica, Inc

255-6 Scott Blvd.
Santa Clara, CA 95054

vuzelac@tensilica.com

Aleksandar Milenković
University of Alabama in Huntsville

301 Sparkman Dr.
Huntsville, AL 35899

+1 256 824-6830

milenka@uah.edu

ABSTRACT
Capturing program and data traces during program execution
unobtrusively in real-time is crucial in debugging and testing of
cyber-physical systems. However, tracing a complete program
unobtrusively is often cost-prohibitive, requiring large on-chip
trace buffers and wide trace ports. Whereas program execution
traces can be efficiently compressed in hardware, compression of
data address and data value traces is much more challenging due
to limited redundancy. In this paper we describe two hardware-
based filtering techniques for data traces: cache first-access
tracking for load data values and data address filtering using
partial register-file replay. The results of our experimental
analysis indicate that the proposed filtering techniques can
significantly reduce the size of the data traces (~5-20 times for the
load data value trace, depending on the data cache size; and ~5
times for the data address trace) at the cost of rather small
hardware structures in the trace module.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.2.5: [Testing and Debugging]:
Debugging aids, Tracing. E.4 [Coding and Information
Theory]: Data Compaction and Compression.

General Terms
Algorithms, Design, Verification.

Keywords
Debugging, Program Tracing, Compression.

1. INTRODUCTION
Ever increasing complexity of both hardware and software and
tightening time-to-market impose a number of challenges to
embedded system verification and debugging. According to one
estimate, software developers spend 50%-75% of their

development time in program debugging [1], yet it is estimated
that the U.S. loses approximately $20-$60 billion a year due to
software bugs and glitches. Software developers face a limited
visibility of on-chip modules caused by limited I/O bandwidth,
high internal complexity, and high operating frequencies. To meet
these challenges and get reliable and high-performance products
to the market on time, software developers increasingly rely upon
on-chip resources for debugging and program tracing. However,
even limited hardware support for debugging and tracing is
associated with extra cost in chip area for capturing and buffering
traces, for integrating these modules into the rest of the system,
and for sending out the information through dedicated trace ports
[2]. These costs often make system-on-a-chip (SOC) designers
reluctant to invest in additional chip area solely devoted to
debugging and tracing.

The IEEE’s Industry Standard and Technology Organization has
proposed a standard for a global embedded processor debug
interface (Nexus 5001) [3]. This standard specifies four classes of
operation – higher numbered classes progressively support more
complex debug operations but require more on-chip resources.
Thus, Class 1 provides basic debug features for run-control
debugging, including single-stepping, breakpoints, and access to
processor registers and memory while the processor is not
running. Class 1 is traditionally implemented through a JTAG
interface. However, this approach is time-consuming and
obtrusive; it interferes with the “native” program execution and
can cause original bugs to disappear. More importantly, it is not
applicable to debugging real-time embedded systems where
setting breakpoints is simply not an option. Class 2 provides
debug support for nearly unobtrusive capturing and tracing
program execution (control-flow) in real-time. Class 3 provides
support for memory and I/O read/write tracing in real-time, while
Class 4 provides resources for direct processor control through the
trace port.

Many embedded processor vendors have developed modules with
advanced tracing and debugging capabilities and integrated them
into their embedded platforms, e.g., ARM’s Embedded Trace
Macrocell [4], MIPS’s PDTrace [5], and OCDS from Infineon [6].
The trace and debug infrastructure on a chip typically includes
logic that captures address, data, and control signals, logic to filter
and compress the trace information, buffers to store the traces, and
logic that emits the content of the trace buffer through a trace port
to an external trace unit or host machine. In this paper we focus on
data traces (Class 3 operation in Nexus). While program execution
traces are very useful to pinpoint a bug location, often a full data
trace is required to faithfully replay the program offline. Tracing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10...$10.00.

data writes only is useful to identify unexpected and erroneous
writes to the memory from a specific core. Tracing load values
only is, under certain conditions, sufficient to deterministically
reconstruct the whole program offline. Data address traces
captured in real-time are of special interest in multi-core systems
as they offer valuable information about shared memory access
patterns and possible data race conditions.

The existing commercially available trace modules rely either on
hefty on-chip buffers to store execution traces of sufficiently large
program segments, or on wide trace ports that can sustain a large
amount of trace data in real-time. However, large trace buffers
and/or wide trace ports significantly increase the system
complexity and cost. Moreover, the number and speed of I/O pins
dedicated to tracing cannot keep pace with the increase in number
of processor cores and their speed.

To illustrate challenges associated with data tracing, we profile
seventeen representative benchmarks from the MiBench suite [7]
assuming the ARM instruction set. Table 1 shows the instruction
count (IC), the frequency of loads (LD.f) and stores (ST.f), as well
as the trace port bandwidth when tracing load and store data
values (LD.DVT and ST.DVT), and load and store data addresses
(LD.DAT and ST.DAT). The bandwidth is expressed in the
average number of bits required per each instruction executed
(bits/ins). The average trace port bandwidth for tracing load data
values is 8.2 bits/ins, ranging from 3.2 to 14.8 bits/ins. Note: the
average is the weighted arithmetic mean; a benchmark weight is
proportional to its number of load instructions divided by the total
number of loads in all benchmarks. For example, an 8 KB trace
buffer could capture load values for less than 1,000 instructions
(8 KB/8.2 bits), which is often insufficient to locate software
bugs. This estimation is based on the average bandwidth and does
not accommodate for possible bursts in trace events (e.g., a
benchmark may have a number of consecutive load instructions
that needs to be traced). Tracing data addresses also requires
significant trace port bandwidth: the average bandwidth is 7.84
bits/ins for load addresses and 3.37 bits/ins for store addresses.
For some benchmarks, data address traces may require lower
bandwidth than data value traces, which is counter-intuitive.
However, this is due to ARM’s multiple load/store instructions,
where we trace a single address and multiple data values, and due
to double-word loads and stores.

Filtering and compressing data traces at runtime in hardware can
reduce requirements for on-chip trace buffers and trace port
communication bandwidth. However, existing commercial
solutions offer very rudimentary trace compression. For example,
Nexus [3] and ARM’s ETM implement differential compression
of instruction and data addresses, where only a difference between
consecutive addresses is recorded. Data values are traced
uncompressed.

Trace reduction has been widely studied in academia. A number
of trace-specific compression techniques have been proposed [8-
10]. However, they are mainly focused on software-based
compression, combining trace-specific compression with a
general-purpose compression algorithm, such as gzip or bzip2.
Such solutions would be impractical and cost-prohibitive for real-
time tracing. Several proposals address reduction of trace
messages captured on SOCs buses, but they provide fairly limited
compression ratios [11]. Whereas several academic proposals
have addressed real-time hardware-based compression of program
execution traces [12-14], the more challenging problem of real-

time hardware-based reduction of data address and value traces
has not been directly addressed so far.

In this paper, we describe two cost-effective filtering mechanisms
that can significantly reduce the size of the data traces used in
debugging. In Section 2, we introduce the cache first-access
tracking mechanism for filtering load data values. This
mechanism utilizes an approach similar to the first-load
mechanism presented by Narayanasamy et al. [15], but it is
modified to make it suitable for real-time tracing in embedded
systems. It relies on on-chip data caches augmented by first-load
tracking bits that determine whether a load value needs to be
traced out of the chip, or it can be inferred by the software
debugger (Section 2.1). Our experimental analysis (Section 2.2)
shows that the proposed filtering mechanism reduces the size of
the load data value trace 12.4 times in a system with a 16 KB data
cache and 20.6 times in a system with 64 KB data cache.

In Section 3, we introduce a data address filtering mechanism
based on a partial program replay. The trace module maintains a
structure that tracks whether general-purpose registers can be
inferred by the software debugger based on the traced data
addresses and the program binary (Section 3.1); only data
addresses that cannot be inferred are traced out. The proposed
filtering is combined with a simple differential encoding to further
reduce the size of the data address trace. Our experimental
analysis (Section 3.3) shows that the proposed mechanism offers
5-fold data address trace reduction over the uncompressed address
trace.

The main contributions of this work are as follows.

• We introduce a hardware-based mechanism for filtering load
data values called the cache first-access tracking mechanism.
When coupled with the corresponding changes of the
software debugger, it enables cost-effective and unobtrusive
data tracing in real-time.

• We introduce a novel hardware-based mechanism for data
address filtering that utilizes a partial program replay. When
coupled with the corresponding changes of the software

Table 1. Data value and address trace characteristics for
MiBench programs.

 IC LD.f ST.f LD.DVT ST.DVT LD.DAT ST.DAT
 [mil.] [%] [%] bits/ins bits/ins bits/ins bits/ins
adpcm_c 732.5 12.7 0.9 3.21 0.08 4.07 0.29
bf_e 544.1 20.6 11.4 8.24 7.12 6.58 3.65
cjpeg 104.6 26.7 7.8 7.40 2.52 8.54 2.50
djpeg 23.4 33.1 12.4 7.48 2.51 10.60 3.97
fft 631.0 18.2 8.5 7.63 4.96 5.83 2.72
ghostscript 708.1 23.3 13.1 7.64 5.80 7.45 4.20
gsm_d 1299.3 15.9 10.1 4.63 3.23 5.08 3.22
lame 1285.1 30.0 16.5 14.77 6.77 9.60 5.29
mad 287.1 27.5 7.5 8.26 2.49 8.79 2.41
rijndael_e 320.0 39.1 8.2 11.18 3.51 12.51 2.62
rsynth 824.9 40.2 13.9 13.12 5.19 12.85 4.43
sha 140.9 16.1 8.4 4.77 1.79 5.17 2.69
stringsearch 3.7 11.9 16.1 4.20 6.14 3.82 5.15
tiff2bw 143.3 26.8 13.4 3.85 2.76 8.58 4.28
tiff2rgba 151.7 39.5 26.8 8.16 8.63 12.65 8.57
tiffdither 833.0 20.6 7.1 5.13 1.82 6.58 2.27
tiffmedian 541.3 31.0 7.1 6.96 1.87 9.93 2.26
Average 24.6 10.5 8.20 4.18 7.84 3.37

debugger, it significantly reduces the trace port bandwidth
requirements.

• We perform a detailed experimental analysis that shows the
proposed hardware-based filtering techniques outperform a
software compressor when compressing load data value and
address traces. The cache first-access tracking requires over
~5-20 times less bandwidth on the trace port than when
tracing the uncompressed load data value trace (depending
on the data cache size). The proposed data address filtering
requires over 5 times less bandwidth on the trace port than
when tracing raw data addresses. The proposed techniques
require relatively little hardware resources dedicated to
tracing, but instead require close integration of these
resources with the processor core and advanced software
debuggers.

2. LOAD VALUES FILTERING THROUGH
CACHE FIRST-ACCESS TRACKING
A software debugger can replay program execution
deterministically offline if the following four conditions are met:
(a) it includes an instruction set simulator (ISS) for the target
processor; (b) it has access to the program binary, (c) it has access
to the load value trace captured on the target processor, and (d) it
knows the initial state of general- and special-purpose registers.
Consequently, capturing the load data value trace on the target
processor and reading the trace out of chip are critical in program
debugging. However, as shown in the previous section, tracing
load data values in real-time may be cost-prohibitive or
impossible. In addition, compressing load values using general-
purpose compression algorithms will yield little benefits due to
limited redundancy in data traces: e.g., the software gzip utility
achieves the average compression ratio of only 3.5 for our
benchmarks. It should be noted that implementing general-
purpose compression algorithms in hardware would be cost
prohibitive and infeasible for real-time compression.

Data caches are routinely used in mid- to high-end embedded
processors to reduce latency of memory-referencing instructions

by exploiting temporal and spatial locality. A data cache can be
augmented to help reduce load value trace size. We do not need to
trace a data value for each load instruction if the software
debugger includes an exact model of the data cache1 used in the
target processor (with the same organization and update policies).
Rather, the debugger can retrieve the load value from its software
copy of the data cache. Thus, tracing load data values is required
only for certain events in the data cache. For example, if a load
causes a miss in the data cache, we need to trace its data value. In
addition, if a load hits in the data cache, we still may need to trace
it out to the debugger, if this is the first load access to that
particular address. Consequently, we need to expand our data
cache on the target processor so that for each data object we can
keep track whether it has been already read (and thus can be
inferred by the debugger) or not (it has to be traced out to the
debugger).

We expect this filtering mechanism to significantly reduce the
number of load values that needs to be traced out, thus reducing
the required trace port bandwidth. We call this mechanism cache
first-access tracking. It is based on a mechanism used in the
BugNet [15] with some modifications to make it suitable for real-
time tracing in embedded systems. The BugNet is designed to log
relevant information about program execution on production runs
(released software) and to communicate these logs back to the
developer after system crashes. Its first-access track mechanism is
used as an architectural extension to help reduce the amount of
information that needs to be recorded in the log. The BugNet
relies on a check-pointing mechanism and its first-load log
requires hundreds of kilobytes of storage. The log is kept in main
memory, and thus the logging itself is an obtrusive process.
However, our goal is to examine whether a similar mechanism
can ensure real-time continual and unobtrusive tracing of load
data values in embedded systems.

1 Without lack of generality we assume that our system include

only first level data cache. The mechanism can be easily
extended to systems with a multi-level cache hierarchy.

Load Value

Cache
Hit

HW Trace
Module

CPU

Set/Reset
FA flags

R/W

DA

DV

Load Value
from Cache

ISS

Software
Debugger

L1D Cache Program
Binary

Cache
Block

FA
Flags

FA
Flags

Target System Debug Host

Cache
Block

FA
Flags

SW L1D Cache

DA DV

Figure 1. Cache first-access tracking mechanism: system view.

2.1 Cache First-Access Tracking Mechanism
Figure 1 shows the system view of the cache first-access
mechanism. The target platform executes a program on a
processor core. The processor has a data cache that is extended so
that each cache block includes corresponding first-access flags.
Generally, we need a flag for the smallest addressable unit, which
is typically a byte. Consequently, a 32-byte cache block requires
32 single-bit first-access flags that are attached to the cache block.
A trace module, coupled with the processor and its data cache,
monitors cache events caused by load and store instructions
(misses and hits) and the state of corresponding first-access
tracking flags.

Figure 2 describes the trace module operation. For each load
instruction, it checks whether it hits or misses in the data cache. If
we have a load cache hit and the corresponding first-access flags
are set2 (an FA hit event), then we do not need to trace the load
value because it can be inferred by the software debugger. In that
case we send only a single header bit to a trace buffer that
indicates that a data value can be inferred (line 4). Otherwise, if
the corresponding first-access flags are cleared (or at least one of
them is cleared), the requested load data value is traced out
together with a header bit indicating a trace module miss event
(lines 6-8). If we have a cache miss caused by a load instruction,
the cache block is fetched from memory, and thus all first-access
flags associated with that block need to be cleared. The load value
is traced out and the FA flags are set accordingly. Please note that
we could further reduce required trace port bandwidth by not
sending the header bit on each FA hit event. Instead, we could use
a counter that counts consecutive hit events and report the counter
value only when we have a trace miss event. However, here we
opted for a simpler approach that guarantees easier
synchronization between the trace module and the software
debugger at the cost of the slightly increased trace port bandwidth.

The cache first-access flags are also updated on store instructions
and on signals triggered outside of the processor core, e.g., cache
block invalidations caused by the cache controller (Figure 2).
Each store will set the corresponding first-access flags because its
value in the cache becomes known (and can be inferred by the
debugger). Note: here we assume a data cache with write-allocate,
write-back policies. External signals can invalidate a cache block
at any point of time. In that case, the trace module needs to clear
all first-access flags that belong to that line. This action does not
need to be synchronized with the software debugger – the
debugger always checks the trace input first.

The software debugger running on the host machine reads and
decodes the trace records and replays the program. The debugger
relies on its ISS with the software model of the data cache,
program binary, and the load data value trace received from the
target for program replay. Its operation is described in Figure 3.
For each load instruction the debugger checks the next trace
record from the target. If it reads a header bit ‘1’ (indicating an
FA hit), the debugger reads the data value from its software copy
of the data cache. Otherwise, the load data value is read from the
trace record and the cache is updated accordingly, including the
FA bits as well. For a store instruction, the debugger sets the FA
flags accordingly.

2 In case of a load that reads a 32-bit word we need to check all

four first-access flags (for each byte in the word).

The proposed mechanism requires modest additional hardware
resources. The major complexity overhead comes from the
storage needed for first-access flags (1/8th of the data cache
capacity). However, in a system with 64 KB data cache, this
overhead reaches 8 KB of storage devoted to first-access flags. To
reduce this overhead, we may consider different granularity for
first-access flags. For example, a single first-access bit can guard
an entire 32-bit word, thus reducing the storage overhead to 1/32th
of the data cache capacity. In benchmarks with a significant
number of byte- or half-word loads this change will result in an
increased trace port bandwidth (only a word access can set the
corresponding first-access flag). In this paper we assume that each
byte in the cache has its own first-access flag, but further
exploration is needed to determine optimal granularity of first-
access flags.

It should be noted that in this work we assume that first-access
flags are attached to cache blocks. However, if the design of the
data cache can not be changed, an alternative design can be used
where the first-access flags are physically placed inside the trace
module instead being attached to the data cache. A well-defined
interface between the data cache and the trace module would
ensure exchange of control signals. The former approach is less
complex because we do not need a separate address decoding
logic for the first-access flags, but requires changes in the data
cache design; the later may better fit current design practices
where the trace module includes all debug infrastructure.

1. // For each load that reads N bytes
2. if (CacheHit) {
3. if (corresponding N FA flags are set)
4. Emit(’1’) into Trace Buffer;
5. else {
6. Emit(’0’) into Trace Buffer;
7. Emit Load Value into Trace Buffer;
8. Set corresponding N FA flags;
9. }
10. else { // cache miss event
11. Clear FA bits for newly fetched cache block;
12. Perform steps 6-8;
13. }

1. // For each store that writes N bytes
2. Set corresponding N FA bits;

1. // For external invalidation request
2. Clear FA bits for entire cache block;

Figure 2. Trace module operation.

1. // For each load that reads N bytes
2. Get the next trace record;
3. if (header == ’1’)
4. if (corresp. FA bits in SW cache are set)
5. Retrieve data value from SW cache;
6. else
7. ERROR in Tracing; // illegal event
8. else {
9. Read N bytes from trace record;
10. Update SW cache;
11. Set corresponding N FA flags in SW cache;
12. }

13. // For each store that writes N bytes
14. Update SW cache;
15. Set corresponding N SW cache FA bits;

Figure 3. Software debugger operation.

2.2 Experimental Evaluation
In this section we analyze the effectiveness of the cache first-
access mechanism in filtering load data values. As a measure of
effectiveness we use trace port bandwidth calculated in bits per
executed instruction. The bandwidth depends on several
parameters: data cache hit rate, first-access hit rate, load data size
(byte, word, double word, and so on), and frequency of load
instructions. We also measure the first-access hit rate. As
workload we use seventeen benchmarks from the MiBench suite
[7]. Our analysis is performed using a functional SimpleScalar
ARM simulator [16]. The ARM instruction set includes multiple-
load and multiple-store instructions. In calculating trace port
bandwidth in bits/ins, a multiple load/store instruction is counted
as multiple independent instructions.

Figure 4 shows the average first-access hit rate (left) and the trace
port bandwidth (right) when tracing filtered load data values as a
function of data cache size (varying from 4 KB to 64 KB) and
cache block size (32 B and 64 B). Table 2 shows the first-access
hit rate and the trace port bandwidth when tracing filtered data
values for individual benchmarks as a function of data cache size
for fixed 32 B cache blocks. In all cases we assume a 4-way set-
associative data cache with write-allocate and write-back policies
and a pseudo-LRU replacement policy. The average first-access
hit rate is rather high even with very small caches. With a 4 KB
data cache, on average 82% of loads require no tracing. With
larger caches this number is over 90%, being 94% and 98% on
average for 16 KB and 64 KB caches, respectively. However, we
can see that some benchmarks, most notably tiff2bw and tiff2rgba
(Table 2), have rather low first-access hit rates (~0% for very
small caches), in spite of relatively high data cache hit rates.
These two benchmarks process a significant number of byte-size
operands that are accessed sequentially. Thus, traversing a 32 B
cache block may result in a single data cache miss followed by 31
cache hits (the data cache hit rate is thus rather high, ~96% for
this example). However, the first-access flags are all cleared on
the miss, resulting in 32 first-access misses (the first-access hit
rate is thus 0% for this example). With larger caches the hit rate

goes up, and thus the number of first-access hits increases (the
cache blocks with first-access flags set are not evicted from the
cache).

The trace port bandwidth varies from 0.15 bits/ins (adpmc_c) to
8.47 bits/ins (tiff2rgba) for a 4 KB data cache, and from 0.13 to
4.39 bits/ins for a 64 KB cache. For all benchmarks except three
(tiff2rgba, tiff2bw, and tiffmedian), the required trace port
bandwidth is less than 1 bits/ins for a system with 16 KB data
cache. For a system with 32 KB data cache, all benchmarks
except one (tiff2rgba) require less than 1 bits/ins on the trace port,
promising real-time, continual, and unobtrusive tracing of load
data values using a very narrow trace port. For example, for a
processor that executes one instruction per cycle (IPC=1), a
single-pin trace port working at the processor speed would enable

0.0

0.2

0.4

0.6

0.8

1.0

4KB 8KB 16KB 32KB 64KB
Cache Size

First-Access Hit Rate

BlockSize=32B
BlockSize=64B

0.1

1.0

10.0

4KB 8KB 16KB 32KB 64KB
Cache Size

Trace Port Bandwidth (bits/ ins)
BlockSize=32B
BlockSize=64B

Figure 4. Cache first-access hit rate (a) and trace port bandwidth (b).

Table 2. First-load hit rate and trace port bandwidth.

 First Load Hit Rate Trace Port Bandwidth (bits/ins)
 4KB 8KB 16KB 32KB 64KB 4KB 8KB 16KB 32KB 64KB gzip

adpcm_c 0.98 1.00 1.00 1.00 1.00 0.15 0.13 0.13 0.13 0.13 0.78
bf_e 0.93 0.98 1.00 1.00 1.00 0.74 0.32 0.27 0.27 0.27 1.99
cjpeg 0.73 0.80 0.83 0.85 0.86 1.38 0.85 0.69 0.62 0.59 1.18
djpeg 0.77 0.86 0.93 0.99 1.00 1.37 0.86 0.57 0.39 0.34 1.34
fft 0.99 0.99 0.99 0.99 0.99 0.29 0.27 0.27 0.27 0.27 1.61
ghostscript 0.98 0.99 0.99 0.99 0.99 0.33 0.32 0.30 0.30 0.29 0.62
gsm_d 1.00 1.00 1.00 1.00 1.00 0.17 0.17 0.16 0.16 0.16 1.34
lame 0.73 0.88 0.95 0.97 0.98 4.34 2.02 1.13 0.79 0.66 5.66
mad 0.80 0.95 0.98 1.00 1.00 2.02 0.70 0.43 0.30 0.29 3.58
rijndael_e 0.64 0.94 1.00 1.00 1.00 4.98 1.16 0.45 0.40 0.40 4.73
rsynth 0.97 0.98 0.98 0.98 0.98 0.67 0.52 0.47 0.46 0.46 3.90
sha 0.97 0.99 1.00 1.00 1.00 0.35 0.21 0.17 0.17 0.17 1.94
stringsearch 0.96 0.97 0.99 0.99 0.99 0.33 0.29 0.21 0.19 0.19 0.70
tiff2bw 0.01 0.05 0.63 1.00 1.00 4.05 3.84 2.33 0.29 0.27 1.17
tiff2rgba 0.01 0.01 0.23 0.61 0.68 8.47 8.47 7.77 5.27 4.39 2.48
tiffdither 0.83 0.87 0.94 1.00 1.00 0.78 0.68 0.45 0.22 0.21 1.29
tiffmedian 0.51 0.53 0.74 0.91 0.98 2.48 2.38 1.69 0.78 0.41 1.78
Average 0.82 0.88 0.94 0.97 0.98 1.53 0.93 0.66 0.46 0.40 2.40

unobtrusive program tracing for all except one benchmark. The
proposed mechanism reduces the trace port bandwidth even for
tiff2rgba (e.g, over 50% in a system with 32 KB cache).
Unfortunately, tracing this benchmark would still require a wider
trace port.

We also determine a compression ratio achieved by the proposed
filtering: it is calculated as the size of the uncompressed load data
value trace divided by the size of the filtered output trace
(including the header bit). We conclude that the proposed filtering
achieves excellent total compression ratio: it is 5.3 for a system
with 4 KB cache, 12.4 with 16 KB, and 20.6 with 64 KB. To
illustrate the effectiveness of the proposed filtering we compare it
with the software gzip utility when using it to compress the raw
load data value trace. The fast gzip (gzip -1) achieves the average
trace port bandwidth of 2.40 bits/ins (Table 2, last column). The
proposed filtering mechanism outperforms the fast gzip for over
3.6 times in a system with 16 KB data cache, over 5.2 times in a
system with 32 KB data cache, and 6 times in a system with
64 KB data cache. Please note that hardware implementation of
the software gzip would be cost prohibitive in both required
additional on-chip area and the compression latency.

The trace buffer in the proposed trace module (Figure 1) serves
only to temporarily store trace records before they are read out
through the trace port. The exact buffer size depends on the
processor model (IPC), the number of data pins on the trace port,
trace port speed, and benchmark characteristics (e.g., the
frequency and density of load instructions and their locality). A
detailed cycle-accurate simulation of the processor and trace
module would be needed to determine the worst-case scenario for
the trace buffer size. However, an ad-hoc analysis based on our
functional simulation model indicates that a 64-byte buffer would
be more than sufficient to amortize all possible bursts of first-
access misses, enabling unobtrusive tracing in real-time (assuming
a processor executing on average one instruction per processor
clock cycle and a trace port working at the processor clock speed).
This buffer would be several orders of magnitude smaller than
buffers used to capture uncompressed load data value trace for a
limited program segment.

3. DATA ADDRESS FILTERING
THROUGH PARTIAL PROGRAM REPLAY
In the previous section we have shown that the load data value
trace is sufficient to deterministically replay programs if the
software debugger has a fully functional instruction set simulator.
However, software designers may choose to capture only
addresses of memory referencing instructions. They are valuable
in memory hierarchy optimizations, providing insights in data
access patterns, data sharing, and synchronization. In addition, we
may not have readily available sophisticated debuggers
augmented with the instruction set simulators and data cache
simulators as discussed in the previous section.

Unfortunately, tracing of uncompressed data addresses requires a
rather high trace port bandwidth as shown in Table 1, LD.DAT
and ST.DAT columns. Here we introduce a filtering method that
identifies data addresses that can be inferred by the software
debugger during a partial program replay offline. Data addresses
that can be inferred are not traced out of the chip, thus
significantly reducing trace port bandwidth requirements. In
inferring data addresses, the software debugger relies only on
information contained in the program binary and on the
previously traced data addresses. Note: consequently, in this
section we assume tracing data addresses only.

Figure 5 shows a system view of the proposed data address
filtering. A trace module is connected to the target processor
through an interface that includes the following information:
Instruction Type, Source Operands, Destination Operands, and an
Exception control signal. The exception control signal serves to
disable the control logic for register validation. If the software
debugger is unable to trace the system calls or exception service
routines, the trace module should disable the register validation
unit in the trace module by configuring corresponding control
registers.

The trace module maintains a valid bit vector associated with
general-purpose registers. A register is flagged as valid only if its
content can be inferred from the binary and the previously
encountered data addresses; otherwise it is flagged as invalid. A

Figure 5. Data address filtering through partial replay: System view.

Register Validation Unit (RVU) is responsible for setting or
resetting individual register valid flags based on its current state
and the instruction execution information received from the
processor. For each memory referencing instruction, the RVU also
decides whether to enable or disable tracing of its data address. If
tracing is required, a data address is stored in a trace output buffer
and traced out of the chip.

Depending on the instruction type, the RVU performs the
following operations.

• For a non memory-referencing instruction, it marks
destination register(s) valid if all source registers are valid.
The ARM instruction set architecture used in our study
allows for up to 4 source registers, and up to 3 destination
registers.

• For a memory referencing instruction, source registers are
used to calculate the data address. If all source registers are
valid, the data address is not traced, as it can be inferred by
the software debugger; otherwise the data address needs to
be traced out. If all but one source register is valid, the
invalid register can be marked as valid, as its value can be
calculated by the software debugger based on the data
address to be traced and the content of other known source
registers. For a load instruction, its destination register is
always invalidated as its value is unknown after the load.

The software debugger on its side needs to partially replay the
program binary3. It includes an instruction set simulator (ISS)
with a software copy of the register file. The debugger
encompasses a Register Calculation and Validation unit that is
responsible to maintain and update the content and status
(valid/invalid) of each general-purpose register. This unit
performs reverse operations to those that are performed inside the
processor for address calculation; it takes the traced data
addresses as an input and tries to determine the content of
individual registers using the information available from the
program binary.

3.1 Register Validation
Register validation principles are applied to both the trace module
and the software debugger. A destination register is set as valid in
the following cases.

• An instruction specifies an immediate source operand. E.g.,
{MOV R4, #2} initializes the register R4; therefore, it is
marked as valid and can be inferred by the software
debugger.

• An instruction performs an operation on valid source
registers. E.g., {MOV R4, R5} copies value in R5 to R4; if
R5 is valid, R4 is marked as valid too, and R4 is loaded with
the value of R5, R4=R5.

• A register is validated using a received data address, DA.
E.g., {LDR R5, [R4,#2]} loads a value into register R5
from the memory address DA=R4+2. If the register R4 is not
valid, the data address is traced. However, once the data
address DA is sent out, R4 can be inferred by the software
debugger as R4=DA-2 and is thus set as valid.

3 Partial replay capability is much simpler to implement than a

fully functional instruction set simulator.

Table 3 illustrates the proposed data address filtering using a
partial replay with register validation. We consider a sequence of
events and the state of general-purpose registers in both the trace
module and the software debugger while executing five
instructions as shown in the second column of Table 3. We
assume that all registers are initially invalid (both in the trace
module and the software debugger). The first instruction is a non
memory-referencing (MR=N), and thus no data address is traced
(TDA=N). It loads an immediate constant #0 to register R1. Both
the trace module and the software debugger set R1 as valid (R1.V)
and the software debugger sets R1 to zero.

The second instruction is a load (MR=Y) that reads an operand
from the memory location at the address DA, DA=(R2+5). The
register R2 is flagged as invalid and thus the data address needs to
be traced out (TDA=Y). On the other side, the software debugger
cannot calculate the data address and it expects it from the trace
port; upon receiving the data address, DA, it calculates the value
of register R2, R2=DA-5, and sets its valid bit (R2.V). The
register R5 is loaded from memory, so its content is not known,
and its valid bit is flagged as invalid (R5.I).

The third instruction is a non memory-referencing one that
calculates R4, R4=R2+R1; the valid bit of register R4 (R4.V) is
set because both the input operands R2 and R1 are valid. The
fourth instruction loads the register R8 with an operand from
memory at the address DA=R2+R1. The trace module does not
need to trace out the DA, because the software debugger can
calculate it based on R2 and R1 that are both valid. The register
R8 is marked as invalid (R8.I). Finally, the last instruction moves
the content of R7 to R2; the source register is invalid, and the
register R2 is thus marked as invalid (R2.I).

3.2 Effects of Addressing Modes on Register
Validation
Register validation is architecture dependant. In our analysis we
use the ARM instruction set architecture (ISA), which supports a
very rich set of addressing modes. Thus, in this section we
specifically address the effects of the ARM addressing modes on
the register validation process.

Effects of offset type. In general, a data address is calculated using
a base and an offset. The base corresponds to the value of a
specified base register. The offset can be an immediate value, the
value of a specified index register, or the result of an operation
performed on a specified index register. For example, in the
instruction {LDR R5, [R2, R4, lsl #2]}, the base
corresponds to the value of register R2 (R2 is the base register),

Table 3. Data address trace filtering example.

 Trace Module Debug Host
 Instruction Statu

s
MR/
TDA

DA Statu
s

 Regs. Statu
s

DA

1 MOV R1,#0 - N/N - R1.V R1=0 R1.V -
2 LDR R5,R2,#

5
R2.I Y/Y R2+5 R2.V,

R5.I
 R2=DA-5 R2.V,

R5.I
DA

3 ADD R4,R2,R
1

R1.V,
R2.V

N/N - R4.V R4=R1+R
2

R4.V -

4 LDR R8,R2,R
1

R1.V,
R2.V

Y/N - R8.I R8.I R2+R
1

5 MOV R2,R7 R7.I N/N - R2.I R2.I -

while the offset corresponds to the value in register R4 that is
shifted left for two bits (R4 is an offset register). Below we
discuss the register validation process depending on the type of
the address offset.

• In case of an immediate offset (the offset field is specified in
the instruction itself), the base register is always marked as
valid, as its value is known since the data address is known.
For example, the validation process for the instruction
{LD R2, [R4, #5]}, which loads R2 from the memory
address DA=R4+5, will mark R4 as valid; the software
debugger will set its value to {DA-5}.

• In case of a register offset (the offset field specifies a register
and an operation on it), the base register can be validated
only if the offset register is valid. For example, the register
validation for the instruction {LD R2, [R4, R5]}, which
loads R2 from the memory address {R4+R5}, will mark R4
as valid and the software debugger will set its value to
{DA-R5} only if R5 is valid.

To validate the offset register, the process is similar, but may
involve additional steps in case of a calculated offset (the offset is
the result of an operation on the offset register). For example, if
the data address is calculated as {DA = R2 + f(R4)}, where R2
is the base and R4 is the offset register and f is an operation on the
offset register, the software debugger can calculate R4 only if the
function f has an inverse function f-1, {R4 = f-1(DA-R2)}.

For ARM architecture, function f is usually a shift operation on an
offset register. Shift operations are as follows: shift left, shift
right, rotate right, no shift, and zero. Some shift operations are not
invertible. For example, the shift right or left operation can drop
some bits and the inverse shift operation cannot recreate the
original register values. The rotate operation uses information
from the status register, thus validation process must be performed
on the status register too. Memory referencing instructions in our
benchmarks do not use the rotate operation, thus we do not
consider them in the validation process.

Effects of indexing. The ARM instruction set supports three basic
indexing modes; Pre-, Post- and Auto-Indexing. Both the data
address calculation and the register validation depend on the
indexing type.

In Pre-Indexing mode the data address is calculated from the base
register and the result of an operation on an offset register. E.g.,
for instruction {LD R5, [R4, R3]}, which uses Pre-Indexing
mode, the DA is calculated as {DA = R4 + R3}. Thus, the DA can
be calculated only if both the base and offset registers are valid.
After this instruction, the base register R4 is marked as valid if the
register R3 is valid, and vice versa, the offset register R3 is
marked valid if the register R4 is valid.

In Auto-Indexing mode, the data address is also created from the
base register and the result of an operation on the offset register.
Upon completion of the instruction, the base register is updated.
E.g., in instruction {LD R5, [R4, R3, lsl #2]!}, which
uses Auto-Indexing mode, the data address DA is
{DA = R4 + (R3<<2)} and R4 takes the value of DA,
{R4 = DA}. Thus, the DA can be calculated only if both the offset
and the base registers are valid. The base register is always
marked as valid after an auto-indexing instruction.

In Post-Indexing mode, the data address DA is calculated from the
base register only. The base register is updated with information
from both the base and the offset registers. E.g., in instruction
{LD R5, [R4], R3, lsl #2}, which uses Post-Indexing
mode, the data address DA is {DA = R4 + (R3<<2)} and R4 is
updated as follows: {R4 = R4 + (R3<<2)}. Thus, the DA can be
calculated only if the base register is known (R4). The base
register can be validated only if both the base and offset registers
are valid.

The ARM instruction set also includes multiple-load and multiple-
store instructions. These instructions specify a set of general-
purpose registers that are loaded or stored from multiple
consecutive memory locations defined by the starting address.
These instructions use the immediate offset addressing mode.
Once the starting data address is known, the remaining data
addresses are calculated relative to this address (fixed stride).
Thus, only the starting address is traced if it cannot be inferred by
the debugger.

A fairly sophisticated set of addressing modes in the ARM
instruction set results in somewhat complex register validation
logic. However, other architectures may not present such
challenges. For example, the MIPS instruction set features a fairly
small set of simple addressing modes (register-displacement) and
the register validation logic is quite simple.

3.3 Experimental Evaluation
The goal of our experimental evaluation is to determine the
percentage of memory referencing instructions whose data
addresses can be filtered out using the proposed mechanism. We
consider both load and store data addresses. We also report the
average trace port bandwidth requirements when tracing data
addresses and the total compression ratio.

Table 4 shows the filtering rates for loads (LD), stores (ST), and
all memory referencing instructions (Total). The average filtering
rate for loads4 is 70%, ranging from 28% (for bf_e) to 100% (for
tiff2bw, tiff2rgba). The filtering rates for store instructions are
slightly higher. The forth column shows the filtering rates for all
memory referencing instructions: the average is 74%, ranging
from as low as 36% (bf_e) to 100% (tiff2bw and tiff2rgba). We
can expect that these relatively high filtering rates significantly
reduce trace port bandwidth requirements.

Table 4, DAF column, shows the trace port bandwidth
requirements when tracing only non-filtered data addresses for
each individual benchmark. We consider data addresses for all
memory referencing instructions (load and stores). The required
bandwidth depends on both the address filtering rate and the
frequency of memory-referencing instructions. It ranges from as
low as 0.05 bits/ins (tiff2bw) to relatively high 6.56 bits/ins (bf_e)
and it is 2.94 bits/ins on average. Some benchmarks see a small
gain from the proposed address filtering; for example, bf_e filters
only 36% of all data addresses and requires 6.56 bits/ins instead of
10.23 bits/ins with uncompressed tracing. However, for some
benchmarks (tiff2rgba, tiffbw) the filtering reduces the required
trace port bandwidth for several orders of magnitude.

4 We use weighted average where a benchmark weight is directly

proportional to the number of load instructions in that
benchmark, relative to the total number of loads in all
benchmarks.

We may further reduce the size of the data addresses that need to
be traced (i.e., non-filtered data addresses). The upper address bits
of data addresses rarely change, so we can apply a differential
encoding. The incoming data address is XOR-ed with the previous
data address and the difference is divided into 8-bit chunks. If the
upper difference bits are all zeros, we do not trace them and use a
single-bit header bit to indicate whether an 8-bit address chunk is
the terminating chunk of an address or not. The column
(DAFDiff) gives the trace port bandwidth after this simple
enhancement is applied. It further reduces the required trace port
bandwidth: the average is reduced from 2.94 to 2.26 bits/ins.

To stress the effectiveness of the proposed filtering method, we
give compression ratios for four data address reduction techniques
(the last four columns of Table 4). We consider our address
filtering mechanism (DAF and DAFDiff), a Nexus-like
differential encoding method, and the software utility gzip (with
-1 switch for fast compression) when compressing a complete
data address trace. We can see that the proposed filtering method
outperforms even the software utility gzip for majority of the
benchmarks: it achieves the average compression ratio of ~5 when
combined with differential encoding. The gzip achieves
compression ratio of ~3.5, and the Nexus-like encoding only ~1.6.

A drawback of the proposed filtering mechanism is that it requires
a close integration with the processor core to be able to carry out
register validation in hardware. However, the proposed
mechanism does not require any additional compression structures
and its implementation cost is relatively small (logic in RVU). In
addition, the proposed filtering scheme could be combined with
other compressor structures, e.g., predictors that recognize regular
strides [17].

4. CONCLUSIONS
Modern embedded systems rely on on-chip resources to enable
and expedite software debugging and testing. Data traces
collected on the target system are often required during debugging
for deterministic program replay. However, capturing and tracing
out full data traces at program speeds require large on-chip trace
buffers and wide trace ports.

In this paper we introduce and analyze two filtering techniques
aimed at reducing load data value traces and data address traces.
Our cache first-access tracking mechanism significantly reduces
the size of the load value trace: from 5.3 times for a system with a
4 KB data cache to 20.6 times for a system with 64 KB data
cache. Our data address filtering based on a partial program replay
reduces the size of the data address trace for ~5 times when
combined with a simple differential encoding.

These results indicate that trace modules implementing the
proposed filtering techniques would make possible a continual
real-time and unobtrusive program tracing. Even better reduction
ratios are desired and possible when these filtering mechanisms
are combined with cost-effective hardware trace compressors;
however, examining these approaches is left to future research.

5. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their valuable suggestions. This work was supported in part by a
National Science Foundation grant CNS-0855237.

6. REFERENCES
[1] Tassey, G. (2002, May). The Economic Impacts of

Inadequate Infrastructure for Software Testing. Available:
http://www.rti.org/pubs/software_testing.pdf

[2] Hopkins, A. B. T. and McDonald-Maier, K. D., "Debug
Support Strategy for Systems-on-Chips with Multiple
Processor Cores," IEEE Trans. Comput. 55, 2 (Feb. 2006),
174-184. DOI= http://dx.doi.org/10.1109/TC.2006.22.

[3] IEEE-ISTO. The Nexus 5001 Forum Standard for a Global
Embedded Processor Debug Interface, (2003).
http://www.nexus5001.org/standard

[4] ARM. Embedded Trace Macrocell Architecture
Specification, ARM IHI 0014O (2007).
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014o/I
HI0014O_etm_v3_4_architecture_spec.pdf

[5] MIPS. MIPS PDtrace Specification, MD00439 (2009).
http://www.mips.com/products/product-
materials/processor/mips-architecture/

[6] Infineon. TC1775 System Units 32-Bit Single-Chip
Microcontroller, User’s Manual, V2.0 (2001).
www.infineon.com

[7] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M.,
Mudge, T., and Brown, R. B., "MiBench: A free,
commercially representative embedded benchmark suite," in
IEEE 4th Annual Workshop on Workload Characterization
(Austin, TX, Dec. 2001). IEEE Computer Society, 3-14.
DOI= http://dx.doi.org/10.1109/WWC.2001.15

[8] Milenkovic, A. and Milenkovic, M., "Stream-Based Trace
Compression," IEEE Computer Architecture Letter 2, 1 (Jan.
2003), 9-12. DOI= http://dx.doi.org/10.1109/L-CA.2002.9.

[9] Burtscher, M., Ganusov, I., Jackson, S. J., Ke, J.,
Ratanaworabhan, P., and Sam, N. B., "The VPC Trace-
Compression Algorithms," IEEE Trans. Comput. 54, 11
(2005), 1329-1344. DOI=
http://dx.doi.org/10.1109/TC.2005.186.

Table 4. Data address filtering evaluation.

Filtering
Rates

TP
Bandwidth

Compression
Ratio

 LD ST Total DAF
DAF
Dif DAF

DAF
Dif Nexus gzip-1

adpcm_c 0.71 1.00 0.73 1.17 0.98 3.75 4.44 1.64 3.46
bf_e 0.28 0.50 0.36 6.56 3.93 1.56 2.60 2.19 4.84
cjpeg 0.63 0.67 0.64 4.02 3.24 2.75 3.41 1.34 4.48
djpeg 0.65 0.94 0.73 3.94 3.49 3.70 4.17 1.34 3.77
fft 0.64 0.68 0.65 2.97 1.93 2.88 4.44 2.14 19.9
ghostscript 0.64 0.87 0.72 3.25 2.70 3.59 4.31 1.76 18.14
gsm_d 0.82 0.84 0.83 1.40 1.22 5.94 6.78 1.54 23.3
lame 0.69 0.90 0.76 3.50 3.16 4.25 4.70 1.49 5.7
mad 0.83 0.79 0.82 1.98 1.49 5.66 7.54 1.43 3.54
rijndael_e 0.53 0.78 0.57 6.46 4.43 2.34 3.41 1.4 3.2
rsynth 0.65 0.79 0.68 5.46 4.00 3.17 4.32 1.41 21.53
sha 0.97 0.97 0.97 0.23 0.15 33.79 52.29 2.27 8.35
stringsearch 0.55 0.91 0.76 2.15 1.78 4.18 5.05 1.9 8.83
tiff2bw 1.00 1.00 1.00 0.05 0.04 239.14 304.53 1.66 2.55
tiff2rgba 1.00 1.00 1.00 0.07 0.05 305.23 387.74 1.02 2.79
tiffdither 0.73 0.94 0.78 1.91 1.69 4.63 5.25 1.39 4.41
tiffmedian 0.88 0.75 0.85 1.80 1.36 6.77 8.98 1.73 3.49
Average 0.70 0.83 0.74 2.94 2.26 3.82 4.97 1.59 3.46

[10] Barr, K. C. and Asanovic, K., "Branch trace compression for
snapshot-based simulation," in International Symposium on
Performance Analysis of Systems and Software (Austin, TX,
Mar. 2006). ISPASS '06. IEEE Computer Society, 25-36.
DOI=

[11] Kao, C.-F., Huang, I.-J., and Lin, C.-H., "An Embedded
Multi-resolution AMBA Trace Analyzer for Microprocessor-
based SoC Integration," in Proceedings of the 44th annual
Design Automation Conference (San Diego, California
2007). DAC '07. ACM, 477-482. DOI=
http://doi.acm.org/10.1145/1278480.1278604

[12] Uzelac, V. and Milenkovic, A., "A Real-Time Program Trace
Compressor Utilizing Double Move-to-Front Method," in
Proceedings of the 46th Annual Design Automation
Conference (San Francisco, California 2009). DAC '09.
ACM, 738-743. DOI=
http://doi.acm.org/10.1145/1629911.1630102

[13] Uzelac, V., Milenković, A., Milenković, M., and Burtscher,
M., "Real-time, Unobtrusive, and Efficient Program
Execution Tracing with Stream Caches and Last Stream
Predictors," in International Conference on Computer
Design (Lake Tahoe, California, USA 2009). ICCD '09.
IEEE Press, 173-178.

[14] Kao, C.-F., Huang, S.-M., and Huang, I.-J., "A Hardware
Approach to Real-Time Program Trace Compression for
Embedded Processors," IEEE Transactions on Circuits and
Systems 54, 3 (Mar. 2007), 530-543.

[15] Narayanasamy, S., Pokam, G., and Calder, B., "BugNet:
Continuously Recording Program Execution for
Deterministic Replay Debugging," SIGARCH Comput.
Archit. News 33, 2 (2005), 284-295. DOI=
http://doi.acm.org/10.1145/1080695.1069994.

[16] Austin, T., Larson, E., and Ernst, D., "SimpleScalar: An
Infrastructure for Computer System Modeling," IEEE
Computer 35, 2 (Feb. 2002), 59-67. DOI=
http://dx.doi.org/10.1109/2.982917.

[17] Milenković, M., Milenković, A., and Burtscher, M.,
"Algorithms and Hardware Structures for Unobtrusive Real-
Time Compression of Instruction and Data Address Traces,"
in Proceedings of the 2007 Data Compression Conference
(Snowbird, UT, 27-29 Mar. 2007). DCC '07. IEEE Computer
Society, 55-65. DOI=
http://dx.doi.org/10.1109/DCC.2007.10

