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ABSTRACT 
Capturing program and data traces during program execution 
unobtrusively in real-time is crucial in debugging and testing of 
cyber-physical systems. However, tracing a complete program 
unobtrusively is often cost-prohibitive, requiring large on-chip 
trace buffers and wide trace ports. Whereas program execution 
traces can be efficiently compressed in hardware, compression of 
data address and data value traces is much more challenging due 
to limited redundancy. In this paper we describe two hardware-
based filtering techniques for data traces: cache first-access 
tracking for load data values and data address filtering using 
partial register-file replay. The results of our experimental 
analysis indicate that the proposed filtering techniques can 
significantly reduce the size of the data traces (~5-20 times for the 
load data value trace, depending on the data cache size; and ~5 
times for the data address trace) at the cost of rather small 
hardware structures in the trace module.  

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.2.5: [Testing and Debugging]: 
Debugging aids, Tracing. E.4 [Coding and Information 
Theory]: Data Compaction and Compression. 

General Terms 
Algorithms, Design, Verification. 

Keywords 
Debugging, Program Tracing, Compression. 

 

1. INTRODUCTION 
Ever increasing complexity of both hardware and software and 
tightening time-to-market impose a number of challenges to 
embedded system verification and debugging. According to one 
estimate, software developers spend 50%-75% of their 

development time in program debugging [1], yet it is estimated 
that the U.S. loses approximately $20-$60 billion a year due to 
software bugs and glitches. Software developers face a limited 
visibility of on-chip modules caused by limited I/O bandwidth, 
high internal complexity, and high operating frequencies. To meet 
these challenges and get reliable and high-performance products 
to the market on time, software developers increasingly rely upon 
on-chip resources for debugging and program tracing. However, 
even limited hardware support for debugging and tracing is 
associated with extra cost in chip area for capturing and buffering 
traces, for integrating these modules into the rest of the system, 
and for sending out the information through dedicated trace ports 
[2]. These costs often make system-on-a-chip (SOC) designers 
reluctant to invest in additional chip area solely devoted to 
debugging and tracing. 

The IEEE’s Industry Standard and Technology Organization has 
proposed a standard for a global embedded processor debug 
interface (Nexus 5001) [3]. This standard specifies four classes of 
operation – higher numbered classes progressively support more 
complex debug operations but require more on-chip resources. 
Thus, Class 1 provides basic debug features for run-control 
debugging, including single-stepping, breakpoints, and access to 
processor registers and memory while the processor is not 
running. Class 1 is traditionally implemented through a JTAG 
interface. However, this approach is time-consuming and 
obtrusive; it interferes with the “native” program execution and 
can cause original bugs to disappear. More importantly, it is not 
applicable to debugging real-time embedded systems where 
setting breakpoints is simply not an option. Class 2 provides 
debug support for nearly unobtrusive capturing and tracing 
program execution (control-flow) in real-time. Class 3 provides 
support for memory and I/O read/write tracing in real-time, while 
Class 4 provides resources for direct processor control through the 
trace port.  

Many embedded processor vendors have developed modules with 
advanced tracing and debugging capabilities and integrated them 
into their embedded platforms, e.g., ARM’s Embedded Trace 
Macrocell [4], MIPS’s PDTrace [5], and OCDS from Infineon [6]. 
The trace and debug infrastructure on a chip typically includes 
logic that captures address, data, and control signals, logic to filter 
and compress the trace information, buffers to store the traces, and 
logic that emits the content of the trace buffer through a trace port 
to an external trace unit or host machine. In this paper we focus on 
data traces (Class 3 operation in Nexus). While program execution 
traces are very useful to pinpoint a bug location, often a full data 
trace is required to faithfully replay the program offline. Tracing 
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data writes only is useful to identify unexpected and erroneous 
writes to the memory from a specific core. Tracing load values 
only is, under certain conditions, sufficient to deterministically 
reconstruct the whole program offline. Data address traces 
captured in real-time are of special interest in multi-core systems 
as they offer valuable information about shared memory access 
patterns and possible data race conditions.  

The existing commercially available trace modules rely either on 
hefty on-chip buffers to store execution traces of sufficiently large 
program segments, or on wide trace ports that can sustain a large 
amount of trace data in real-time. However, large trace buffers 
and/or wide trace ports significantly increase the system 
complexity and cost. Moreover, the number and speed of I/O pins 
dedicated to tracing cannot keep pace with the increase in number 
of processor cores and their speed.   

To illustrate challenges associated with data tracing, we profile 
seventeen representative benchmarks from the MiBench suite [7] 
assuming the ARM instruction set. Table 1 shows the instruction 
count (IC), the frequency of loads (LD.f) and stores (ST.f), as well 
as the trace port bandwidth when tracing load and store data 
values (LD.DVT and ST.DVT), and load and store data addresses 
(LD.DAT and ST.DAT). The bandwidth is expressed in the 
average number of bits required per each instruction executed 
(bits/ins). The average trace port bandwidth for tracing load data 
values is 8.2 bits/ins, ranging from 3.2 to 14.8 bits/ins. Note: the 
average is the weighted arithmetic mean; a benchmark weight is 
proportional to its number of load instructions divided by the total 
number of loads in all benchmarks. For example, an 8 KB trace 
buffer could capture load values for less than 1,000 instructions 
(8 KB/8.2 bits), which is often insufficient to locate software 
bugs. This estimation is based on the average bandwidth and does 
not accommodate for possible bursts in trace events (e.g., a 
benchmark may have a number of consecutive load instructions 
that needs to be traced). Tracing data addresses also requires 
significant trace port bandwidth: the average bandwidth is 7.84 
bits/ins for load addresses and 3.37 bits/ins for store addresses. 
For some benchmarks, data address traces may require lower 
bandwidth than data value traces, which is counter-intuitive. 
However, this is due to ARM’s multiple load/store instructions, 
where we trace a single address and multiple data values, and due 
to double-word loads and stores.  

Filtering and compressing data traces at runtime in hardware can 
reduce requirements for on-chip trace buffers and trace port 
communication bandwidth. However, existing commercial 
solutions offer very rudimentary trace compression. For example, 
Nexus [3] and ARM’s ETM implement differential compression 
of instruction and data addresses, where only a difference between 
consecutive addresses is recorded. Data values are traced 
uncompressed. 

Trace reduction has been widely studied in academia. A number 
of trace-specific compression techniques have been proposed [8-
10]. However, they are mainly focused on software-based 
compression, combining trace-specific compression with a 
general-purpose compression algorithm, such as gzip or bzip2. 
Such solutions would be impractical and cost-prohibitive for real-
time tracing. Several proposals address reduction of trace 
messages captured on SOCs buses, but they provide fairly limited 
compression ratios [11]. Whereas several academic proposals 
have addressed real-time hardware-based compression of program 
execution traces [12-14], the more challenging problem of real-

time hardware-based reduction of data address and value traces 
has not been directly addressed so far.  

In this paper, we describe two cost-effective filtering mechanisms 
that can significantly reduce the size of the data traces used in 
debugging. In Section 2, we introduce the cache first-access 
tracking mechanism for filtering load data values. This 
mechanism utilizes an approach similar to the first-load 
mechanism presented by Narayanasamy et al. [15], but it is 
modified to make it suitable for real-time tracing in embedded 
systems. It relies on on-chip data caches augmented by first-load 
tracking bits that determine whether a load value needs to be 
traced out of the chip, or it can be inferred by the software 
debugger (Section 2.1). Our experimental analysis (Section 2.2) 
shows that the proposed filtering mechanism reduces the size of 
the load data value trace 12.4 times in a system with a 16 KB data 
cache and 20.6 times in a system with 64 KB data cache.  

In Section 3, we introduce a data address filtering mechanism 
based on a partial program replay. The trace module maintains a 
structure that tracks whether general-purpose registers can be 
inferred by the software debugger based on the traced data 
addresses and the program binary (Section 3.1); only data 
addresses that cannot be inferred are traced out. The proposed 
filtering is combined with a simple differential encoding to further 
reduce the size of the data address trace. Our experimental 
analysis (Section 3.3) shows that the proposed mechanism offers 
5-fold data address trace reduction over the uncompressed address 
trace.  

The main contributions of this work are as follows. 

• We introduce a hardware-based mechanism for filtering load 
data values called the cache first-access tracking mechanism. 
When coupled with the corresponding changes of the 
software debugger, it enables cost-effective and unobtrusive 
data tracing in real-time.  

• We introduce a novel hardware-based mechanism for data 
address filtering that utilizes a partial program replay. When 
coupled with the corresponding changes of the software 

Table 1. Data value and address trace characteristics for 
MiBench programs. 

 IC LD.f ST.f LD.DVT ST.DVT LD.DAT ST.DAT 
 [mil.] [%] [%] bits/ins bits/ins bits/ins bits/ins 
adpcm_c 732.5 12.7 0.9 3.21 0.08 4.07 0.29 
bf_e 544.1 20.6 11.4 8.24 7.12 6.58 3.65 
cjpeg 104.6 26.7 7.8 7.40 2.52 8.54 2.50 
djpeg 23.4 33.1 12.4 7.48 2.51 10.60 3.97 
fft 631.0 18.2 8.5 7.63 4.96 5.83 2.72 
ghostscript 708.1 23.3 13.1 7.64 5.80 7.45 4.20 
gsm_d 1299.3 15.9 10.1 4.63 3.23 5.08 3.22 
lame 1285.1 30.0 16.5 14.77 6.77 9.60 5.29 
mad 287.1 27.5 7.5 8.26 2.49 8.79 2.41 
rijndael_e 320.0 39.1 8.2 11.18 3.51 12.51 2.62 
rsynth 824.9 40.2 13.9 13.12 5.19 12.85 4.43 
sha 140.9 16.1 8.4 4.77 1.79 5.17 2.69 
stringsearch 3.7 11.9 16.1 4.20 6.14 3.82 5.15 
tiff2bw 143.3 26.8 13.4 3.85 2.76 8.58 4.28 
tiff2rgba 151.7 39.5 26.8 8.16 8.63 12.65 8.57 
tiffdither 833.0 20.6 7.1 5.13 1.82 6.58 2.27 
tiffmedian 541.3 31.0 7.1 6.96 1.87 9.93 2.26 
Average   24.6 10.5 8.20 4.18 7.84 3.37 

 



debugger, it significantly reduces the trace port bandwidth 
requirements.  

• We perform a detailed experimental analysis that shows the 
proposed hardware-based filtering techniques outperform a 
software compressor when compressing load data value and 
address traces. The cache first-access tracking requires over 
~5-20 times less bandwidth on the trace port than when 
tracing the uncompressed load data value trace (depending 
on the data cache size). The proposed data address filtering 
requires over 5 times less bandwidth on the trace port than 
when tracing raw data addresses. The proposed techniques 
require relatively little hardware resources dedicated to 
tracing, but instead require close integration of these 
resources with the processor core and advanced software 
debuggers.  

 

2. LOAD VALUES FILTERING THROUGH 
CACHE FIRST-ACCESS TRACKING 
A software debugger can replay program execution 
deterministically offline if the following four conditions are met: 
(a) it includes an instruction set simulator (ISS) for the target 
processor; (b) it has access to the program binary, (c) it has access 
to the load value trace captured on the target processor, and (d) it 
knows the initial state of general- and special-purpose registers. 
Consequently, capturing the load data value trace on the target 
processor and reading the trace out of chip are critical in program 
debugging. However, as shown in the previous section, tracing 
load data values in real-time may be cost-prohibitive or 
impossible. In addition, compressing load values using general-
purpose compression algorithms will yield little benefits due to 
limited redundancy in data traces: e.g., the software gzip utility 
achieves the average compression ratio of only 3.5 for our 
benchmarks. It should be noted that implementing general-
purpose compression algorithms in hardware would be cost 
prohibitive and infeasible for real-time compression.  

Data caches are routinely used in mid- to high-end embedded 
processors to reduce latency of memory-referencing instructions 

by exploiting temporal and spatial locality. A data cache can be 
augmented to help reduce load value trace size. We do not need to 
trace a data value for each load instruction if the software 
debugger includes an exact model of the data cache1 used in the 
target processor (with the same organization and update policies). 
Rather, the debugger can retrieve the load value from its software 
copy of the data cache. Thus, tracing load data values is required 
only for certain events in the data cache. For example, if a load 
causes a miss in the data cache, we need to trace its data value. In 
addition, if a load hits in the data cache, we still may need to trace 
it out to the debugger, if this is the first load access to that 
particular address. Consequently, we need to expand our data 
cache on the target processor so that for each data object we can 
keep track whether it has been already read (and thus can be 
inferred by the debugger) or not (it has to be traced out to the 
debugger).   

We expect this filtering mechanism to significantly reduce the 
number of load values that needs to be traced out, thus reducing 
the required trace port bandwidth. We call this mechanism cache 
first-access tracking. It is based on a mechanism used in the 
BugNet [15] with some modifications to make it suitable for real-
time tracing in embedded systems. The BugNet is designed to log 
relevant information about program execution on production runs 
(released software) and to communicate these logs back to the 
developer after system crashes. Its first-access track mechanism is 
used as an architectural extension to help reduce the amount of 
information that needs to be recorded in the log. The BugNet 
relies on a check-pointing mechanism and its first-load log 
requires hundreds of kilobytes of storage. The log is kept in main 
memory, and thus the logging itself is an obtrusive process. 
However, our goal is to examine whether a similar mechanism 
can ensure real-time continual and unobtrusive tracing of load 
data values in embedded systems.  

                                                                 
1 Without lack of generality we assume that our system include 

only first level data cache.  The mechanism can be easily 
extended to systems with a multi-level cache hierarchy.  
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Figure 1.  Cache first-access tracking mechanism: system view. 



2.1 Cache First-Access Tracking Mechanism  
Figure 1 shows the system view of the cache first-access 
mechanism. The target platform executes a program on a 
processor core. The processor has a data cache that is extended so 
that each cache block includes corresponding first-access flags. 
Generally, we need a flag for the smallest addressable unit, which 
is typically a byte. Consequently, a 32-byte cache block requires 
32 single-bit first-access flags that are attached to the cache block. 
A trace module, coupled with the processor and its data cache, 
monitors cache events caused by load and store instructions 
(misses and hits) and the state of corresponding first-access 
tracking flags. 

Figure 2 describes the trace module operation. For each load 
instruction, it checks whether it hits or misses in the data cache. If 
we have a load cache hit and the corresponding first-access flags 
are set2 (an FA hit event), then we do not need to trace the load 
value because it can be inferred by the software debugger. In that 
case we send only a single header bit to a trace buffer that 
indicates that a data value can be inferred (line 4). Otherwise, if 
the corresponding first-access flags are cleared (or at least one of 
them is cleared), the requested load data value is traced out 
together with a header bit indicating a trace module miss event 
(lines 6-8). If we have a cache miss caused by a load instruction, 
the cache block is fetched from memory, and thus all first-access 
flags associated with that block need to be cleared. The load value 
is traced out and the FA flags are set accordingly. Please note that 
we could further reduce required trace port bandwidth by not 
sending the header bit on each FA hit event. Instead, we could use 
a counter that counts consecutive hit events and report the counter 
value only when we have a trace miss event. However, here we 
opted for a simpler approach that guarantees easier 
synchronization between the trace module and the software 
debugger at the cost of the slightly increased trace port bandwidth. 

The cache first-access flags are also updated on store instructions 
and on signals triggered outside of the processor core, e.g., cache 
block invalidations caused by the cache controller (Figure 2). 
Each store will set the corresponding first-access flags because its 
value in the cache becomes known (and can be inferred by the 
debugger). Note: here we assume a data cache with write-allocate, 
write-back policies. External signals can invalidate a cache block 
at any point of time. In that case, the trace module needs to clear 
all first-access flags that belong to that line. This action does not 
need to be synchronized with the software debugger – the 
debugger always checks the trace input first.   

The software debugger running on the host machine reads and 
decodes the trace records and replays the program. The debugger 
relies on its ISS with the software model of the data cache, 
program binary, and the load data value trace received from the 
target for program replay. Its operation is described in Figure 3. 
For each load instruction the debugger checks the next trace 
record from the target. If it reads a header bit ‘1’ (indicating an 
FA hit), the debugger reads the data value from its software copy 
of the data cache. Otherwise, the load data value is read from the 
trace record and the cache is updated accordingly, including the 
FA bits as well. For a store instruction, the debugger sets the FA 
flags accordingly.  

                                                                 
2 In case of a load that reads a 32-bit word we need to check all 

four first-access flags (for each byte in the word).  

The proposed mechanism requires modest additional hardware 
resources. The major complexity overhead comes from the 
storage needed for first-access flags (1/8th of the data cache 
capacity). However, in a system with 64 KB data cache, this 
overhead reaches 8 KB of storage devoted to first-access flags. To 
reduce this overhead, we may consider different granularity for 
first-access flags. For example, a single first-access bit can guard 
an entire 32-bit word, thus reducing the storage overhead to 1/32th 
of the data cache capacity. In benchmarks with a significant 
number of byte- or half-word loads this change will result in an 
increased trace port bandwidth (only a word access can set the 
corresponding first-access flag). In this paper we assume that each 
byte in the cache has its own first-access flag, but further 
exploration is needed to determine optimal granularity of first-
access flags.  

It should be noted that in this work we assume that first-access 
flags are attached to cache blocks. However, if the design of the 
data cache can not be changed, an alternative design can be used 
where the first-access flags are physically placed inside the trace 
module instead being attached to the data cache. A well-defined 
interface between the data cache and the trace module would 
ensure exchange of control signals. The former approach is less 
complex because we do not need a separate address decoding 
logic for the first-access flags, but requires changes in the data 
cache design; the later may better fit current design practices 
where the trace module includes all debug infrastructure.  

1. // For each load that reads N bytes 
2. if (CacheHit) { 
3.  if (corresponding N FA flags are set)  
4.   Emit(’1’) into Trace Buffer; 
5.  else { 
6.   Emit(’0’) into Trace Buffer;  
7.   Emit Load Value into Trace Buffer; 
8.   Set corresponding N FA flags; 
9.  } 
10. else { // cache miss event 
11.  Clear FA bits for newly fetched cache block; 
12.  Perform steps 6-8; 
13. } 
 
1. // For each store that writes N bytes 
2. Set corresponding N FA bits; 
 
1. // For external invalidation request 
2. Clear FA bits for entire cache block; 

Figure 2. Trace module operation. 

1. // For each load that reads N bytes 
2. Get the next trace record; 
3. if (header == ’1’) 
4.  if (corresp. FA bits in SW cache are set)  
5.   Retrieve data value from SW cache; 
6.  else 
7.   ERROR in Tracing; // illegal event 
8. else {  
9.  Read N bytes from trace record; 
10.  Update SW cache; 
11.  Set corresponding N FA flags in SW cache; 
12. } 
 
13. // For each store that writes N bytes 
14. Update SW cache; 
15. Set corresponding N SW cache FA bits; 

Figure 3. Software debugger operation. 



2.2 Experimental Evaluation 
In this section we analyze the effectiveness of the cache first-
access mechanism in filtering load data values. As a measure of 
effectiveness we use trace port bandwidth calculated in bits per 
executed instruction. The bandwidth depends on several 
parameters: data cache hit rate, first-access hit rate, load data size 
(byte, word, double word, and so on), and frequency of load 
instructions. We also measure the first-access hit rate. As 
workload we use seventeen benchmarks from the MiBench suite 
[7]. Our analysis is performed using a functional SimpleScalar 
ARM simulator [16]. The ARM instruction set includes multiple-
load and multiple-store instructions. In calculating trace port 
bandwidth in bits/ins, a multiple load/store instruction is counted 
as multiple independent instructions. 

Figure 4 shows the average first-access hit rate (left) and the trace 
port bandwidth (right) when tracing filtered load data values  as a 
function of data cache size (varying from 4 KB to 64 KB) and 
cache block size (32 B and 64 B). Table 2 shows the first-access 
hit rate and the trace port bandwidth when tracing filtered data 
values for individual benchmarks as a function of data cache size 
for fixed 32 B cache blocks. In all cases we assume a 4-way set-
associative data cache with write-allocate and write-back policies 
and a pseudo-LRU replacement policy. The average first-access 
hit rate is rather high even with very small caches. With a 4 KB 
data cache, on average 82% of loads require no tracing. With 
larger caches this number is over 90%, being 94% and 98% on 
average for 16 KB and 64 KB caches, respectively. However, we 
can see that some benchmarks, most notably tiff2bw and tiff2rgba 
(Table 2), have rather low first-access hit rates (~0% for very 
small caches), in spite of relatively high data cache hit rates. 
These two benchmarks process a significant number of byte-size 
operands that are accessed sequentially. Thus, traversing a 32 B 
cache block may result in a single data cache miss followed by 31 
cache hits (the data cache hit rate is thus rather high, ~96% for 
this example). However, the first-access flags are all cleared on 
the miss, resulting in 32 first-access misses (the first-access hit 
rate is thus 0% for this example). With larger caches the hit rate 

goes up, and thus the number of first-access hits increases (the 
cache blocks with first-access flags set are not evicted from the 
cache).  

The trace port bandwidth varies from 0.15 bits/ins (adpmc_c) to 
8.47 bits/ins (tiff2rgba) for a 4 KB data cache, and from 0.13 to 
4.39 bits/ins for a 64 KB cache. For all benchmarks except three 
(tiff2rgba, tiff2bw, and tiffmedian), the required trace port 
bandwidth is less than 1 bits/ins for a system with 16 KB data 
cache. For a system with 32 KB data cache, all benchmarks 
except one (tiff2rgba) require less than 1 bits/ins on the trace port, 
promising real-time, continual, and unobtrusive tracing of load 
data values using a very narrow trace port. For example, for a 
processor that executes one instruction per cycle (IPC=1), a 
single-pin trace port working at the processor speed would enable 
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Figure 4. Cache first-access hit rate (a) and trace port bandwidth (b). 

Table 2. First-load hit rate and trace port bandwidth. 

 First Load Hit Rate  Trace Port Bandwidth (bits/ins) 
 4KB 8KB 16KB 32KB 64KB  4KB 8KB 16KB 32KB 64KB gzip 

adpcm_c 0.98 1.00 1.00 1.00 1.00  0.15 0.13 0.13 0.13 0.13 0.78 
bf_e 0.93 0.98 1.00 1.00 1.00  0.74 0.32 0.27 0.27 0.27 1.99 
cjpeg 0.73 0.80 0.83 0.85 0.86  1.38 0.85 0.69 0.62 0.59 1.18 
djpeg 0.77 0.86 0.93 0.99 1.00  1.37 0.86 0.57 0.39 0.34 1.34 
fft 0.99 0.99 0.99 0.99 0.99  0.29 0.27 0.27 0.27 0.27 1.61 
ghostscript 0.98 0.99 0.99 0.99 0.99  0.33 0.32 0.30 0.30 0.29 0.62 
gsm_d 1.00 1.00 1.00 1.00 1.00  0.17 0.17 0.16 0.16 0.16 1.34 
lame 0.73 0.88 0.95 0.97 0.98  4.34 2.02 1.13 0.79 0.66 5.66 
mad 0.80 0.95 0.98 1.00 1.00  2.02 0.70 0.43 0.30 0.29 3.58 
rijndael_e 0.64 0.94 1.00 1.00 1.00  4.98 1.16 0.45 0.40 0.40 4.73 
rsynth 0.97 0.98 0.98 0.98 0.98  0.67 0.52 0.47 0.46 0.46 3.90 
sha 0.97 0.99 1.00 1.00 1.00  0.35 0.21 0.17 0.17 0.17 1.94 
stringsearch 0.96 0.97 0.99 0.99 0.99  0.33 0.29 0.21 0.19 0.19 0.70 
tiff2bw 0.01 0.05 0.63 1.00 1.00  4.05 3.84 2.33 0.29 0.27 1.17 
tiff2rgba 0.01 0.01 0.23 0.61 0.68  8.47 8.47 7.77 5.27 4.39 2.48 
tiffdither 0.83 0.87 0.94 1.00 1.00  0.78 0.68 0.45 0.22 0.21 1.29 
tiffmedian 0.51 0.53 0.74 0.91 0.98  2.48 2.38 1.69 0.78 0.41 1.78 
Average 0.82 0.88 0.94 0.97 0.98  1.53 0.93 0.66 0.46 0.40 2.40 
 



unobtrusive program tracing for all except one benchmark. The 
proposed mechanism reduces the trace port bandwidth even for 
tiff2rgba (e.g, over 50% in a system with 32 KB cache). 
Unfortunately, tracing this benchmark would still require a wider 
trace port. 

We also determine a compression ratio achieved by the proposed 
filtering: it is calculated as the size of the uncompressed load data 
value trace divided by the size of the filtered output trace 
(including the header bit). We conclude that the proposed filtering 
achieves excellent total compression ratio: it is 5.3 for a system 
with 4 KB cache, 12.4 with 16 KB, and 20.6 with 64 KB. To 
illustrate the effectiveness of the proposed filtering we compare it 
with the software gzip utility when using it to compress the raw 
load data value trace. The fast gzip (gzip -1) achieves the average 
trace port bandwidth of 2.40 bits/ins (Table 2, last column). The 
proposed filtering mechanism outperforms the fast gzip for over 
3.6 times in a system with 16 KB data cache, over 5.2 times in a 
system with 32 KB data cache, and 6 times in a system with 
64 KB data cache. Please note that hardware implementation of 
the software gzip would be cost prohibitive in both required 
additional on-chip area and the compression latency.   

The trace buffer in the proposed trace module (Figure 1) serves 
only to temporarily store trace records before they are read out 
through the trace port. The exact buffer size depends on the 
processor model (IPC), the number of data pins on the trace port, 
trace port speed, and benchmark characteristics (e.g., the 
frequency and density of load instructions and their locality). A 
detailed cycle-accurate simulation of the processor and trace 
module would be needed to determine the worst-case scenario for 
the trace buffer size. However, an ad-hoc analysis based on our 
functional simulation model indicates that a 64-byte buffer would 
be more than sufficient to amortize all possible bursts of first-
access misses, enabling unobtrusive tracing in real-time (assuming 
a processor executing on average one instruction per processor 
clock cycle and a trace port working at the processor clock speed). 
This buffer would be several orders of magnitude smaller than 
buffers used to capture uncompressed load data value trace for a 
limited program segment.  

3. DATA ADDRESS FILTERING 
THROUGH PARTIAL PROGRAM REPLAY 
In the previous section we have shown that the load data value 
trace is sufficient to deterministically replay programs if the 
software debugger has a fully functional instruction set simulator. 
However, software designers may choose to capture only 
addresses of memory referencing instructions. They are valuable 
in memory hierarchy optimizations, providing insights in data 
access patterns, data sharing, and synchronization. In addition, we 
may not have readily available sophisticated debuggers 
augmented with the instruction set simulators and data cache 
simulators as discussed in the previous section.  

Unfortunately, tracing of uncompressed data addresses requires a 
rather high trace port bandwidth as shown in Table 1, LD.DAT 
and ST.DAT columns. Here we introduce a filtering method that 
identifies data addresses that can be inferred by the software 
debugger during a partial program replay offline. Data addresses 
that can be inferred are not traced out of the chip, thus 
significantly reducing trace port bandwidth requirements. In 
inferring data addresses, the software debugger relies only on 
information contained in the program binary and on the 
previously traced data addresses. Note: consequently, in this 
section we assume tracing data addresses only.  

Figure 5 shows a system view of the proposed data address 
filtering. A trace module is connected to the target processor 
through an interface that includes the following information: 
Instruction Type, Source Operands, Destination Operands, and an 
Exception control signal. The exception control signal serves to 
disable the control logic for register validation. If the software 
debugger is unable to trace the system calls or exception service 
routines, the trace module should disable the register validation 
unit in the trace module by configuring corresponding control 
registers.  

The trace module maintains a valid bit vector associated with 
general-purpose registers. A register is flagged as valid only if its 
content can be inferred from the binary and the previously 
encountered data addresses; otherwise it is flagged as invalid. A 

 
Figure 5. Data address filtering through partial replay: System view. 



Register Validation Unit (RVU) is responsible for setting or 
resetting individual register valid flags based on its current state 
and the instruction execution information received from the 
processor. For each memory referencing instruction, the RVU also 
decides whether to enable or disable tracing of its data address. If 
tracing is required, a data address is stored in a trace output buffer 
and traced out of the chip.  

Depending on the instruction type, the RVU performs the 
following operations.  

• For a non memory-referencing instruction, it marks 
destination register(s) valid if all source registers are valid. 
The ARM instruction set architecture used in our study 
allows for up to 4 source registers, and up to 3 destination 
registers. 

• For a memory referencing instruction, source registers are 
used to calculate the data address. If all source registers are 
valid, the data address is not traced, as it can be inferred by 
the software debugger; otherwise the data address needs to 
be traced out. If all but one source register is valid, the 
invalid register can be marked as valid, as its value can be 
calculated by the software debugger based on the data 
address to be traced and the content of other known source 
registers. For a load instruction, its destination register is 
always invalidated as its value is unknown after the load.  

The software debugger on its side needs to partially replay the 
program binary3. It includes an instruction set simulator (ISS) 
with a software copy of the register file. The debugger 
encompasses a Register Calculation and Validation unit that is 
responsible to maintain and update the content and status 
(valid/invalid) of each general-purpose register. This unit 
performs reverse operations to those that are performed inside the 
processor for address calculation; it takes the traced data 
addresses as an input and tries to determine the content of 
individual registers using the information available from the 
program binary.  

3.1 Register Validation  
Register validation principles are applied to both the trace module 
and the software debugger. A destination register is set as valid in 
the following cases. 

• An instruction specifies an immediate source operand. E.g., 
{MOV R4, #2} initializes the register R4; therefore, it is 
marked as valid and can be inferred by the software 
debugger. 

• An instruction performs an operation on valid source 
registers. E.g., {MOV R4, R5} copies value in R5 to R4; if 
R5 is valid, R4 is marked as valid too, and R4 is loaded with 
the value of R5, R4=R5. 

• A register is validated using a received data address, DA. 
E.g., {LDR R5, [R4,#2]} loads a value into register R5 
from the memory address DA=R4+2. If the register R4 is not 
valid, the data address is traced. However, once the data 
address DA is sent out, R4 can be inferred by the software 
debugger as R4=DA-2 and is thus set as valid. 

                                                                 
3 Partial replay capability is much simpler to implement than a 

fully functional instruction set simulator. 

Table 3 illustrates the proposed data address filtering using a 
partial replay with register validation. We consider a sequence of 
events and the state of general-purpose registers in both the trace 
module and the software debugger while executing five 
instructions as shown in the second column of Table 3. We 
assume that all registers are initially invalid (both in the trace 
module and the software debugger). The first instruction is a non 
memory-referencing (MR=N), and thus no data address is traced 
(TDA=N). It loads an immediate constant #0 to register R1. Both 
the trace module and the software debugger set R1 as valid (R1.V) 
and the software debugger sets R1 to zero.  

The second instruction is a load (MR=Y) that reads an operand 
from the memory location at the address DA, DA=(R2+5). The 
register R2 is flagged as invalid and thus the data address needs to 
be traced out (TDA=Y). On the other side, the software debugger 
cannot calculate the data address and it expects it from the trace 
port; upon receiving the data address, DA, it calculates the value 
of register R2, R2=DA-5, and sets its valid bit (R2.V). The 
register R5 is loaded from memory, so its content is not known, 
and its valid bit is flagged as invalid (R5.I).  

The third instruction is a non memory-referencing one that 
calculates R4, R4=R2+R1; the valid bit of register R4 (R4.V) is 
set because both the input operands R2 and R1 are valid. The 
fourth instruction loads the register R8 with an operand from 
memory at the address DA=R2+R1. The trace module does not 
need to trace out the DA, because the software debugger can 
calculate it based on R2 and R1 that are both valid. The register 
R8 is marked as invalid (R8.I). Finally, the last instruction moves 
the content of R7 to R2; the source register is invalid, and the 
register R2 is thus marked as invalid (R2.I). 

3.2 Effects of Addressing Modes on Register 
Validation  
Register validation is architecture dependant. In our analysis we 
use the ARM instruction set architecture (ISA), which supports a 
very rich set of addressing modes. Thus, in this section we 
specifically address the effects of the ARM addressing modes on 
the register validation process.  

Effects of offset type. In general, a data address is calculated using 
a base and an offset. The base corresponds to the value of a 
specified base register. The offset can be an immediate value, the 
value of a specified index register, or the result of an operation 
performed on a specified index register. For example, in the 
instruction {LDR R5, [R2, R4, lsl #2]}, the base 
corresponds to the value of register R2 (R2 is the base register), 

Table 3. Data address trace filtering example. 

  Trace Module  Debug Host 
 Instruction Statu

s 
MR/
TDA 

DA Statu
s 

 Regs. Statu
s 

DA 

1 MOV R1,#0 - N/N - R1.V  R1=0 R1.V - 
2 LDR R5,R2,#

5 
R2.I Y/Y R2+5 R2.V, 

R5.I 
 R2=DA-5 R2.V, 

R5.I 
DA 

3 ADD R4,R2,R
1 

R1.V, 
R2.V 

N/N - R4.V  R4=R1+R
2 

R4.V - 

4 LDR R8,R2,R
1 

R1.V, 
R2.V 

Y/N - R8.I   R8.I R2+R
1 

5 MOV R2,R7 R7.I N/N - R2.I   R2.I - 
 



while the offset corresponds to the value in register R4 that is 
shifted left for two bits (R4 is an offset register). Below we 
discuss the register validation process depending on the type of 
the address offset.  

• In case of an immediate offset (the offset field is specified in 
the instruction itself), the base register is always marked as 
valid, as its value is known since the data address is known. 
For example, the validation process for the instruction 
{LD R2, [R4, #5]}, which loads R2 from the memory 
address DA=R4+5, will mark R4 as valid; the software 
debugger will set its value to {DA-5}. 

• In case of a register offset (the offset field specifies a register 
and an operation on it), the base register can be validated 
only if the offset register is valid. For example, the register 
validation for the instruction {LD R2, [R4, R5]}, which 
loads R2 from the memory address {R4+R5}, will mark R4 
as valid and the software debugger will set its value to 
{DA-R5} only if R5 is valid.  

To validate the offset register, the process is similar, but may 
involve additional steps in case of a calculated offset (the offset is 
the result of an operation on the offset register). For example, if 
the data address is calculated as {DA = R2 + f(R4)}, where R2 
is the base and R4 is the offset register and f is an operation on the 
offset register, the software debugger can calculate R4 only if the 
function f has an inverse function f-1, {R4 = f-1(DA-R2)}.  

For ARM architecture, function f is usually a shift operation on an 
offset register. Shift operations are as follows: shift left, shift 
right, rotate right, no shift, and zero. Some shift operations are not 
invertible. For example, the shift right or left operation can drop 
some bits and the inverse shift operation cannot recreate the 
original register values. The rotate operation uses information 
from the status register, thus validation process must be performed 
on the status register too. Memory referencing instructions in our 
benchmarks do not use the rotate operation, thus we do not 
consider them in the validation process.  

Effects of indexing. The ARM instruction set supports three basic 
indexing modes; Pre-, Post- and Auto-Indexing. Both the data 
address calculation and the register validation depend on the 
indexing type. 

In Pre-Indexing mode the data address is calculated from the base 
register and the result of an operation on an offset register. E.g., 
for instruction {LD R5, [R4, R3]}, which uses Pre-Indexing 
mode, the DA is calculated as {DA = R4 + R3}. Thus, the DA can 
be calculated only if both the base and offset registers are valid. 
After this instruction, the base register R4 is marked as valid if the 
register R3 is valid, and vice versa, the offset register R3 is 
marked valid if the register R4 is valid. 

In Auto-Indexing mode, the data address is also created from the 
base register and the result of an operation on the offset register. 
Upon completion of the instruction, the base register is updated. 
E.g., in instruction {LD R5, [R4, R3, lsl #2]!}, which 
uses Auto-Indexing mode, the data address DA is 
{DA = R4 + (R3<<2)} and R4 takes the value of DA, 
{R4 = DA}. Thus, the DA can be calculated only if both the offset 
and the base registers are valid. The base register is always 
marked as valid after an auto-indexing instruction. 

In Post-Indexing mode, the data address DA is calculated from the 
base register only. The base register is updated with information 
from both the base and the offset registers. E.g., in instruction 
{LD R5, [R4], R3, lsl #2}, which uses Post-Indexing 
mode, the data address DA is {DA = R4 + (R3<<2)} and R4 is 
updated as follows: {R4 = R4 + (R3<<2)}. Thus, the DA can be 
calculated only if the base register is known (R4). The base 
register can be validated only if both the base and offset registers 
are valid. 

The ARM instruction set also includes multiple-load and multiple-
store instructions. These instructions specify a set of general-
purpose registers that are loaded or stored from multiple 
consecutive memory locations defined by the starting address. 
These instructions use the immediate offset addressing mode. 
Once the starting data address is known, the remaining data 
addresses are calculated relative to this address (fixed stride). 
Thus, only the starting address is traced if it cannot be inferred by 
the debugger. 

A fairly sophisticated set of addressing modes in the ARM 
instruction set results in somewhat complex register validation 
logic. However, other architectures may not present such 
challenges. For example, the MIPS instruction set features a fairly 
small set of simple addressing modes (register-displacement) and 
the register validation logic is quite simple.  

3.3 Experimental Evaluation 
The goal of our experimental evaluation is to determine the 
percentage of memory referencing instructions whose data 
addresses can be filtered out using the proposed mechanism. We 
consider both load and store data addresses. We also report the 
average trace port bandwidth requirements when tracing data 
addresses and the total compression ratio.  

Table 4 shows the filtering rates for loads (LD), stores (ST), and 
all memory referencing instructions (Total). The average filtering 
rate for loads4 is 70%, ranging from 28% (for bf_e) to 100% (for 
tiff2bw, tiff2rgba). The filtering rates for store instructions are 
slightly higher. The forth column shows the filtering rates for all 
memory referencing instructions: the average is 74%, ranging 
from as low as 36% (bf_e) to 100% (tiff2bw and tiff2rgba). We 
can expect that these relatively high filtering rates significantly 
reduce trace port bandwidth requirements.  

Table 4, DAF column, shows the trace port bandwidth 
requirements when tracing only non-filtered data addresses for 
each individual benchmark. We consider data addresses for all 
memory referencing instructions (load and stores). The required 
bandwidth depends on both the address filtering rate and the 
frequency of memory-referencing instructions. It ranges from as 
low as 0.05 bits/ins (tiff2bw) to relatively high 6.56 bits/ins (bf_e) 
and it is 2.94 bits/ins on average. Some benchmarks see a small 
gain from the proposed address filtering; for example, bf_e filters 
only 36% of all data addresses and requires 6.56 bits/ins instead of 
10.23 bits/ins with uncompressed tracing. However, for some 
benchmarks (tiff2rgba, tiffbw) the filtering reduces the required 
trace port bandwidth for several orders of magnitude.  

                                                                 
4 We use weighted average where a benchmark weight is directly 

proportional to the number of load instructions in that 
benchmark, relative to the total number of loads in all 
benchmarks. 



We may further reduce the size of the data addresses that need to 
be traced (i.e., non-filtered data addresses). The upper address bits 
of data addresses rarely change, so we can apply a differential 
encoding. The incoming data address is XOR-ed with the previous 
data address and the difference is divided into 8-bit chunks. If the 
upper difference bits are all zeros, we do not trace them and use a 
single-bit header bit to indicate whether an 8-bit address chunk is 
the terminating chunk of an address or not. The column 
(DAFDiff) gives the trace port bandwidth after this simple 
enhancement is applied. It further reduces the required trace port 
bandwidth: the average is reduced from 2.94 to 2.26 bits/ins.  

To stress the effectiveness of the proposed filtering method, we 
give compression ratios for four data address reduction techniques 
(the last four columns of Table 4). We consider our address 
filtering mechanism (DAF and DAFDiff), a Nexus-like 
differential encoding method, and the software utility gzip (with 
-1 switch for fast compression) when compressing a complete 
data address trace. We can see that the proposed filtering method 
outperforms even the software utility gzip for majority of the 
benchmarks: it achieves the average compression ratio of ~5 when 
combined with differential encoding. The gzip achieves 
compression ratio of ~3.5, and the Nexus-like encoding only ~1.6.  

A drawback of the proposed filtering mechanism is that it requires 
a close integration with the processor core to be able to carry out 
register validation in hardware. However, the proposed 
mechanism does not require any additional compression structures 
and its implementation cost is relatively small (logic in RVU). In 
addition, the proposed filtering scheme could be combined with 
other compressor structures, e.g., predictors that recognize regular 
strides [17].  

 

4. CONCLUSIONS 
Modern embedded systems rely on on-chip resources to enable 
and expedite software debugging and testing. Data traces 
collected on the target system are often required during debugging 
for deterministic program replay. However, capturing and tracing 
out full data traces at program speeds require large on-chip trace 
buffers and wide trace ports.  

In this paper we introduce and analyze two filtering techniques 
aimed at reducing load data value traces and data address traces. 
Our cache first-access tracking mechanism significantly reduces 
the size of the load value trace: from 5.3 times for a system with a 
4 KB data cache to 20.6 times for a system with 64 KB data 
cache. Our data address filtering based on a partial program replay 
reduces the size of the data address trace for ~5 times when 
combined with a simple differential encoding.  

These results indicate that trace modules implementing the 
proposed filtering techniques would make possible a continual 
real-time and unobtrusive program tracing. Even better reduction 
ratios are desired and possible when these filtering mechanisms 
are combined with cost-effective hardware trace compressors; 
however, examining these approaches is left to future research.  
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