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ABSTRACT 
This paper presents an approach to system-level optimization of 
error detection implementation in the context of fault-tolerant real-
time distributed embedded systems used for safety-critical applica-
tions. An application is modeled as a set of processes communicat-
ing by messages. Processes are mapped on computation nodes 
connected to the communication infrastructure. To provide resil-
iency against transient faults, efficient error detection and recovery 
techniques have to be employed. Our main focus in this paper is on 
the efficient implementation of the error detection mechanisms. We 
have developed techniques to optimize the hardware/software 
implementation of error detection, in order to minimize the global 
worst-case schedule length, while meeting the imposed hardware 
cost constraints and tolerating multiple transient faults. We present 
two design optimization algorithms which are able to find feasible 
solutions given a limited amount of resources: the first one assumes 
that, when implemented in hardware, error detection is deployed on 
static reconfigurable FPGAs, while the second one considers partial 
dynamic reconfiguration capabilities of the FPGAs. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; B.8.1 [Performance and Reliabil-
ity]: Reliability, Testing, and Fault-Tolerance; C.4 [Performance 
of Systems]: Fault tolerance. 

General Terms 
Reliability, Design, Performance, Algorithms. 

1. INTRODUCTION 
Safety-critical applications must function correctly even in the 

presence of faults. Such faults might be transient, intermittent or 
permanent. Factors like high complexity, smaller transistor sizes, 
higher operational frequencies and lower voltage levels have con-
tributed to the increase in the rate of transient and intermittent faults 
in modern electronic systems [5]. From the fault tolerance point of 
view, transient and intermittent faults manifest themselves very 
similarly: they have a short duration and then disappear without 
causing permanent damage. Considering this, we will further refer 
to both types as transient faults. Permanent faults are not addressed 
in this paper. 

Error detection is crucial for meeting the required reliability of the 
system. Unfortunately, it is also a major source of time overhead. In 
order to reduce this overhead, one possible approach is to imple-
ment the error detection mechanisms in hardware, which, however, 
increases the overall cost of the system. Because error detection 
incurs high overheads, optimizing it early in the design phase of a 

system can result in a big gain, and often makes the difference 
between a feasible solution and an unfeasible one. 

Previous work mainly focused on optimizing different fault toler-
ance techniques, or integrating fault tolerance concerns into sched-
uling algorithms, while considering error detection as a black box 
[10, 11, 21]. Various techniques for error detection have been pro-
posed, both software and hardware-based [3, 4, 9, 18].  

The main contribution of this paper is an approach to the optimi-
zation of error detection implementation (EDI) in the context of 
fault-tolerant embedded systems. We propose two optimization 
algorithms: one considering that, when implemented in hardware, 
error detection is deployed on static reconfigurable FPGAs and the 
other one assuming 1-dimensional (1D) or 2-dimensional (2D) 
partial dynamic reconfiguration (PDR) capabilities of the FPGAs. 
To our knowledge, this is the first approach considering the optimi-
zation of error detection in a system-level design context. 

2. PRELIMINARIES 
2.1 Error Detection Technique 

In recent years, the concept of application-aware reliability [15] 
has been introduced as an alternative to the traditional one-size-fits-
all approach. Application-aware techniques make use of the knowl-
edge about the application’s characteristics. As a result, customized 
solutions are created, tuned to better suit each application’s needs. 
As shown in [15] and [14] the main idea of this application-aware 
technique is to identify, based on specific metrics [16], critical 
variables in a program. A critical variable is defined as “a program 
variable that exhibits high sensitivity to random data errors in the 
application” [15]. Then the backward program slice for each acyclic 
control path is extracted for the identified critical variables. The 
backward program slice is defined as “the set of all program state-
ments/instructions that can affect the value of the variable at a 
program location” [15]. Next, each slice is aggressively optimized 
at compile time, resulting in a series of checking expressions. These 
will be inserted in the original code, before the use of a critical 
variable. Finally, the original program is instrumented with instruc-
tions to keep track of the control paths followed at runtime and with 
checking instructions that would choose the corresponding checking 
expression, and then compare the results obtained. 

Let us present an illustrative example of how the above error de-
tection technique works. We use a simplified example of an if-then-
else statement in Figure 1 (adapted from [15]). The original pro-
gram code is presented on the left (no shading), the checking code 
added by the technique is presented on the right (light shading) and 
the path tracking instrumentation is shown with dark shading. We 
assume that x was identified as a critical variable and, thus, it needs 
to be checked before its use.  

We can identify two paths in the program slice of x, correspond-
ing to the two branches. The instructions on each path are opti-
mized, resulting in a concise expression that checks the correctness 
of the variable’s value along that path. For the first path, the expres-
sion reduces to x′ = w, while for the second one, the checking ex-
pression reduces to x′ = s - 2t (the values are assigned to the tempo-
rary variable x′). At runtime, when control reaches a point that uses 
variable x, one of the two checking expressions is chosen based on 
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Figure 2. Framework overview 

the value of the path variable (updated via the instrumentation code 
added). Then, the value of x (computed by the original program) is 
compared with the value of x′ (recomputed by the checking expres-
sion). In case of a mismatch, an error flag is raised and a recovery 
action should be taken. 

The above technique has two main sources of performance over-
head: path tracking and variable checking. In the context of transient 
faults, both of them can be implemented either in software, poten-
tially incurring high performance overheads, or in hardware, which 
can lead to costs sometimes exceeding the amount of resources. 

Pattabiraman et al. have proposed a software-only, straightfor-
ward approach, in which both the path tracking and the variable 
checking are implemented in software and executed together with 
the application. In this case, the path tracking alone incurs a time 
overhead of up to 400%, while the overhead due to variable check-
ing is up to 80% [15]. Complete hardware implementations of path 
tracking and expression checking are proposed in [15] and [14]. In 
fact, between the extreme solutions of implementing all error detec-
tion in software, on the one side, and performing it in hardware, on 
the other side, there is a wide range of possible alternatives charac-
terized by the particular implementation decision taken for each 
process in the application. This decision depends on various factors 
such as time criticality, the amount and cost of available hardware 
resources and their nature, such as FPGAs with static or partial 
dynamic reconfiguration. The focus of this paper is on efficiently 
implementing error detection in the context mentioned above.  

The error detection technique described above detects any tran-
sient errors that result in corruption of the architectural state (e.g. 
instruction fetch and decode errors, execute and memory unit errors 
and cache/memory/register file errors) provided that they corrupt 
one or more variables in the backward slice of a critical variable. In 
order to achieve maximal error coverage, we assume that some 
complementary, generic error detection techniques are used in 
conjunction with the application-aware one presented above (like a 
watchdog processor and/or error-correcting codes in memory, for 
example). Some hardware redundancy techniques might also be 
used to deal with the remaining, not covered, faults [4]. In this paper 
we concentrate on the optimization of the application-aware error 
detection component. 
2.2 Synthesis of Fault-Tolerant Schedules 

In order to provide resiliency against transient faults one possible 
fault tolerance technique to use is re-execution. In such a context, 
schedule synthesis should account for the possible process re-
executions in case of faults [11].  

The authors of [10] proposed an approach to the generation of 
fault-tolerant schedules such that multiple transient faults are toler-
ated in the context of hard real-time systems. The algorithm takes as 
an input an application modeled as a process graph, the worst-case 
execution time (WCET) of processes, the worst-case transmission 
time (WCTT) of messages, as well as the error detection and recov-

ery overheads for each process, the architecture on which this appli-
cation is mapped and the maximum number of faults that could 
affect the system during one period. As an output it produces sched-
ule tables that capture the alternative execution scenarios corre-
sponding to possible fault occurrences.  

Among all fault scenarios there exists one which corresponds to 
the worst-case in terms of schedule length. In the rest of the paper, 
we are interested in this worst-case schedule length (WCSL), which 
has to satisfy the imposed application deadline.  

In this context, our fault model assumes that a maximum number 
k of transient faults can affect the system during one period. To 
provide resiliency against these faults re-execution is used. Once a 
fault is detected by the error detection technique, the initial state of 
the process is restored and the process is re-executed. 

The above mentioned scheduling technique considers error detec-
tion as a black box. In this paper, we will try to minimize the WCSL 
of the application, by accelerating error detection in reconfigurable 
hardware in an intelligent manner, so that we meet the time and cost 
constraints imposed to our system. 
2.3 Optimization Framework 

In Figure 2 we present an overview of our framework. The initial 
applications, available as C code, are represented as a set of process 
graphs. The code is processed through the error detection instru-
mentation framework [14]. This framework outputs the initial appli-
cation code with the embedded error detectors, as well as the VHDL 
code needed to synthesize error detector modules on FPGA. The 
instrumented code is used to estimate the time overheads and hard-
ware costs implied by different implementations of the error detec-
tion technique. 

This information, together with the system architecture and the 
mapping of processes to computation nodes, is used by the optimi-
zation tool, which tries to find a close to optimal error detection 
implementation. The cost function for optimization is represented 
by the WCSL generated by the fault-tolerant schedule synthesis tool 
[10] (see Section 2.2). Our goal is to minimize the WCSL of the 
application, while also meeting the HW cost constraints. 

3. SYSTEM MODEL 
We consider a set of real-time applications Ai, modeled as acyclic 

directed graphs Gi(Vi, Ei), executed with period Ti. The graphs Gi 
are merged into a single graph G(V, E), having the period T equal 
with the least common multiple of all Ti. This graph corresponds to 
a virtual application A. Each vertex Pj є V represents a process, and 
each edge ejk є E, from Pj to Pk, indicates that the output of Pj is an 
input for Pk. Processes are non-preemptable and all data dependen-
cies have to be satisfied before a process can start executing. We 
consider a global deadline D, representing the time interval during 
which the application A has to finish. 

The application runs on a distributed architecture composed of a 
set of computation nodes, connected to a bus (Figure 3c and e). The 
processes are mapped to these nodes and the mapping is given 
(illustrated with shading in Figure 3a, b and d). The bus is assumed 

if(s==0) 

t=s-u; 
v=w-u; 
x=v-t; 

u=s+t; 
w=2*s-t; 
x=w-u: 

if(path==1) 

x′ = w; x′ = s-2*t;

if(x′==x) 

continue execution 

flag error and 
recover! 

use x; 

then else 
then 

else then 
path=1; path=2; 

Figure 1. Code fragment with detectors 

else 



to be fault-tolerant (i.e. we use a communication protocol such as 
TTP [12]). Each node is composed of a central processing unit, a 
communication controller, a memory subsystem, and also includes a 
reconfigurable device (FPGA). Knowing that SRAM-based FPGAs 
are susceptible to single event upsets [23], we assume that suitable 
mitigation techniques are employed (e.g. [13]) in order to provide 
sufficient reliability of the hardware used for error detection. 

For each process we consider three alternative implementations of 
error detection (EDIs): SW-only, mixed HW/SW and HW-only. For 
the SW-only alternative, the checking code (illustrated with light 
shading in Figure 1) and the path tracking instrumentation (illus-
trated with dark shading in Figure 1) are implemented in software 
and interleaved with the actual code of the application. Since the 
time overhead of path tracking is significant, a natural refinement of 
the technique is to place the path tracking instrumentation in hard-
ware, and, thus, drastically reduce its overhead. This second alterna-
tive represents the mixed HW/SW solution, in which the path track-
ing is moved to hardware and done concurrently with the execution 
of the application, while the checking expressions remain in soft-
ware, interleaved with the initial code. In order to further reduce the 
time overhead, the execution of the checking expressions can also 
be moved to hardware (referred as the HW-only implementation).  

We assume that for each process its worst-case execution time 
(WCETi) [22] is known, for each of the three possible implementa-
tions of error detection (SW-only, mixed HW/SW and HW-only). 
Also, the corresponding HW cost/area (hi) and the reconfiguration 
time (ρi) needed to implement error detection are known.  

For all the messages sent over the bus (between processes mapped 
on different computation nodes), their worst-case transmission time 
(WCTT) is given. Such a transmission is modeled as a communica-
tion process inserted on the edge connecting the sender and the 
receiver process (Figure 3a and b). For processes mapped on the 
same node, the communication time is considered to be part of the 
process’ WCET and is not modeled explicitly. 

4. MOTIVATIONAL EXAMPLES 
In Figure 3a we present an application A, modeled as a process 

graph, with four processes: P1 to P4. We have an architecture with 
two computation nodes: N1 and N2, connected by a bus (Figure 3c). 
Processes P1 and P2 are mapped on N1, while P3 and P4 are mapped 
on N2. The WCET of processes for each of the three alternative 
implementations of error detection are listed in Table 1. The WCET 
of the un-instrumented process (WCETU) is also given in Table 1, 
only to emphasize the error detection time overheads, which can be 
calculated, for each of the three alternatives, by subtracting the 
WCET of the un-instrumented process from the WCET of the 
process instrumented with a particular implementation of error 

detection. For example, the error detection overhead incurred by the 
SW-only EDI for process P1 is 240 - 60 = 180 time units. The HW 
costs (hi) and the reconfiguration times (ρi) incurred by each alterna-
tive EDI, for each process, are also presented in Table 1. The 
WCTT of messages is considered to be 20. The recovery overhead 
for all processes (see Section 2.2) is 10. Our application has to 
tolerate a number of k = 1 faults, within its execution period. We 
represent process execution with white boxes, recovery overheads 
with dark shading and FPGA reconfiguration overheads with a 
checkerboard pattern. 

In Figure 4a we present the worst-case execution scenario for the 
SW-only solution. This means that we implement error detection in 
software for all processes and then we generate fault-tolerant sched-
ules as described in Section 2.2. In this case, we obtain a worst-case 
schedule length (WCSL) of 750 time units, corresponding to the 
scenario in which P1 experiences a fault, but we do not use any 
additional hardware. Considering that we have no cost constraint 
(i.e. unlimited reconfigurable hardware), the shortest possible 
WCSL is obtained by using the HW-only solution (Figure 4e): 290 
time units. This means that we use the HW-only implementation of 
error detection for all processes. In this case, the sizes of FPGA1 and 
FPGA2 should be at least 80 and 70 area units, respectively. These 
are the two extreme cases corresponding to the longest WCSL, but 
no additional hardware cost, and to the shortest WCSL, with maxi-
mal hardware cost. In our approach we will try to obtain the mini-
mal WCSL, subject to the available hardware area. 

Considering that we have static reconfigurable FPGAs of size 20 
on each node, we can afford to place only the mixed HW/SW error 
detection module for only one process per node into hardware. The 
question is how should we choose the modules to place on FPGA? 
If we do not consider the characteristics of the application, a naive 
approach would be to place, for each of the two computation nodes, 
the error detection module corresponding to the biggest process on 
FPGA, and thus reduce its total WCET. This case is shown in Fig-
ure 4b: by placing error detection for P1 and P3 into hardware, we 
have reduced the WCET from 240 to 100 for P1 and from 150 to 60 
for P3. Thus, we obtain a WCSL of 510 time units. Nevertheless, in 
node N2 it is actually better to place error detection for process P4 

Figure 3. System model 
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P1 60 240 0 0 100 15 20 80 40 45 

P2 50 140 0 0 80 15 20 60 40 45 

P3 40 150 0 0 60 10 15 50 30 35 

P4 30 100 0 0 60 15 20 40 40 45 

Table 1. WCET and overheads 
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into HW (Figure 4c). Even though this means we only shorten its 
WCET with 40 time units (compared to 90 in the case of P3), we 
finally obtain a shorter WCSL, of only 470 time units. Compared to 
the SW-only solution, we got an improvement of 37%. Because of 
the slack following P3, shortening its WCET does not impact the 
end-to-end delay of our application, and the FPGA can be used 
more efficiently with P4. In general, assigning different error detec-
tion implementations to processes is very much dependent on the 
actual application, and a good strategy should take into account the 
specific characteristics of processes and their interdependencies. 

Let us now assume that the FPGAs of size 20 we use have partial 
dynamic reconfiguration (PDR) capabilities (this means that parts of 
the device may be reconfigured at runtime, while other parts remain 
functional). In Figure 4d we present the shortest WCSL we could 
obtain in this case: 390 time units. We initially place the mixed 
HW/SW EDI for P1 on the FPGA, and then, after P1 finishes execu-
tion, using partial dynamic reconfiguration, we place the mixed 
HW/SW error detection module for P2, reusing the FPGA area. In 
Figure 4c it was impossible to reuse the FPGA area, since we as-
sumed only static reconfiguration. Comparing the shortest WCSL 
from Figure 4d (i.e. 390 time units) with the minimal WCSL we got 
using static FPGAs of the same size (i.e. 470 time units), we can see 
that by exploiting PDR we were able to improve the WCSL even 
further, shortening it with an extra 17%. Remember that we used 
FPGAs with a size of only a quarter of the maximum needed to 
implement the HW-only solution. 

Let us now consider the application from Figure 3d mapped on 
only one computation node (Figure 3e). In Figure 5a we present the 
SW-only solution, with a WCSL of 880 time units. Assuming that 
we have an FPGA of size 50, without PDR capabilities, the shortest 
worst-case schedule we can get is illustrated in Figure 5b (450 time 
units). We manage to obtain this by assigning the mixed HW/SW 
EDI for P1, P2 and P3. Let us now consider an FPGA of only 25 
area units, but having PDR capabilities. In this case (Figure 5c), we 
can initially place the mixed HW/SW implementations for proc-
esses P1 and P3 on the FPGA. Then, as soon as P1 finishes, we can 
reuse the FPGA area corresponding to its detector module and 
reconfigure in advance the mixed HW/SW EDI for P2. This recon-
figuration is done in parallel with the execution of P3, so all the 
reconfiguration overhead can be masked. As a consequence, P2 can 
be scheduled as soon as P3 finishes. Unfortunately, for P4 we cannot 
reconfigure in parallel with P2’s execution, since we only have 10 
area units available. So, we are forced to wait until P2 ends, then 
reconfigure the FPGA with P4’s mixed HW/SW detector module 
and only after that schedule P4. Note that, even if the reconfigura-
tion time for P4 could not be masked, we still prefer this solution 
compared to running the SW-only alternative of P4, because we 
gain 20 time units = WCETSW-only - (ρmixed HW/SW + WCETmixed 

HW/SW). Comparing Figure 5c (WCSL = 430 time units) with Figure 
5b (WCSL = 450 time units), we see that, by exploiting PDR capa-
bilities, we can get even better performance than using static FPGAs 

of double the size. Note that the improvement relative to the SW-
only solution (Figure 5a: WCSL = 880 time units) is 51%. 

5. PROBLEM FORMULATION 
As an input we have an application A modeled as a process graph 

G(V, E) (see Section 3). The WCETs of each alternative error detec-
tion implementation (EDI), for each process, are given by a function 
W : V × H → Z+, where H is the ordered set of available error 
detection implementations (i.e. H = {SW_only, mixed_HW/SW, 
HW_only}). Similarly, the hardware costs implied by each error 
detection implementation, for each process, are given by a function 
C : V × H → Z+×Z+, i.e. we know the size (rows × columns) of the 
rectangle needed on FPGA. Note that function C covers both the 1D 
and 2D reconfiguration scenarios, since for the 1D case the number 
of rows for all detector modules is 1. For each message mij, sent 
from process Pi to process Pj, its worst-case transmission time 
(WCTTij) on the bus is known. 

The application is implemented on a system consisting of a set of 
computation nodes N connected by a bus B. For each node Nj є N, 
the available hardware area (HWj = Rowsj × Columnsj) which we 
can use to implement the error detection is known. The mapping of 
processes to computation nodes is given by a function M : V → N.  

The parameter k, which denotes the number of transient faults to 
be tolerated during one period of execution, T, is given. k is used for 
the generation of fault-tolerant schedules (see Section 2.2). 

We are interested in finding an error detection implementation 
assignment S : V → H, such that the k transient faults are tolerated 
and the worst-case schedule length (WCSL) is minimal, while the 
hardware cost constraints are met. 

Depending on the nature of the available hardware resources (i.e. 
FPGAs with static reconfiguration or with PDR capabilities), in the 
following we propose two solutions to the above problem. 

6. EDI WITH STATIC CONFIGURATION 
The problem defined in Section 5 is a combined mapping and 

scheduling problem, which is NP-complete [8]. Thus, while for 
small problem sizes, we can solve it by, for example, exhaustive 
search, for bigger problem sizes finding an exact solution is unfea-
sible. Therefore, the solution proposed in this paper is based on a 
Tabu Search heuristic [17]. 

Figure 6 presents the pseudocode for our EDI assignment optimi-
zation algorithm. The input consists of the merged application graph 
G, the architecture N, the mapping M, the WCETs of each process, 
for each EDI, as well as the EDI cost overheads and the number k of 
faults to be tolerated within one system period. The algorithm out-
puts an assignment S of EDIs to processes, so that the WCSL is 
minimized and the HW cost constraints are met. 

The exploration of the solution space starts from a random initial 
solution (line 1). In the following, based on a neighborhood search, 
successive moves are performed with the goal to come as close as 
possible to the solution with the shortest WCSL. The transition from 
one solution to another is the result of the selection (line 5) and 

P1 P1 P2 P4 
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N1 

a) 
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b) 
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P3 

EDI_Optimization(G, N, M, W, C, k) 
1     best_Sol = current_Sol = Random_Initial_Solution(); 
2     best_WCSL = current_WCSL = WCSL(current_Sol); 
3     Tabu = Ø; 
4     while (iteration_count < max_iterations) {   
5           best_Move = Select_Best_Move(current_Sol, current_WCSL); 
6           Tabu = Tabu U {best_Move}; 
7           current_Sol = Apply(best_Move, current_Sol); 
8           current_WCSL = WCSL(current_Sol); Update(best_Sol); 
9           if (no_improvement_count > diversification_count) 
10 Restart_Diversification(); 
11    } 
12    return best_Sol;   
end EDI_Optimization 

Figure 6. EDI optimization algorithm 
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application (line 7) of an appropriate move. At each iteration, in 
order to evaluate our cost function (WCSL), the processes and 
messages are scheduled using the fault-tolerant scheduling tech-
nique (function WCSL in Figure 6) presented in [10] (see Section 
2.2). To assure the proper breadth of the search process, diversifica-
tion is employed (lines 9-10). The whole search process is based on 
a recency memory (Tabu list) and a frequency memory (Wait coun-
ters). We will describe these aspects in the following paragraphs. 
6.1 Moves 

We have considered two types of moves: simple ones and swaps. 
A simple move applied to a process Pi is defined as the transition 
from one error detection implementation to any of the adjacent ones 
from the ordered set H = {SW_only, mixed_HW/SW, HW_only}. Intui-
tively, EDI of a process is moved more into hardware (for example, 
from the SW-only alternative to the mixed HW/SW EDI, or from 
the mixed HW/SW to the HW-only EDI), or more into software (for 
example from the HW-only to the mixed HW/SW EDI, or from the 
mixed HW/SW to the SW-only EDI), but direct transitions between 
SW-only and HW-only EDIs are not allowed. The motivation 
behind restricting transitions only to adjacent EDIs was to limit the 
size of our neighborhood (defined as the set of solutions that can be 
directly reached from the current one, by applying a single move). 
A swap consists of two “opposite” simple moves, concerning two 
processes mapped on the same computation node. The idea is that, 
in order to move the EDI of a process more into hardware, in the 
case we would not have enough resources, it is first needed to move 
the EDI of another process mapped on the same computation node, 
more into software, to make room on the FPGA device. The advan-
tage of performing a swap is that, if possible, we manage to find a 
more efficient use of the currently occupied HW resources. 

In Figure 7 we consider the case of processes P3 and P4 from the 
motivational example 1 (Figure 3a and c), which are mapped on the 
same computation node (N2). The two processes have the HW cost 
– time overhead trade-off points shown in Figure 7 (see also Table 
1). The point on the vertical axis represents the SW-only EDI, the 
middle point represents the mixed HW/SW EDI and the third point 
illustrates the HW-only EDI, for a particular process. At a certain 
step during the design space exploration, P3 and P4 both have mixed 
HW/SW EDI assigned, which implies a total FPGA2 area of 10 + 15 
= 25 units. The worst-case schedule in this case is illustrated in 

Figure 8a (note that also P1 and P2 have their mixed HW/SW EDI 
assigned). Assuming that FPGA2 has a total size of 40 area units, we 
have 15 units free in the above scenario. In order to be able to move 
P4 to the HW-only EDI, we need 25 extra units of area. Since we 
only have 15 units available, the solution is to move P3 to its SW-
only EDI, thus freeing 10 extra area units. After this simple move, 
we can apply the second simple move, occupying the 25 available 
area units, by moving P4 to the HW-only solution. Please note that 
the two simple moves mentioned above are performed in the same 
iteration, thus forming a swap move. The swap in our example had 
a beneficial impact and we reduced the WCSL from 370 to 350 time 
units (Figure 8b), thus getting closer to the minimum. 

An important feature of Tabu Search is its capability to escape 
from local minima by allowing the selection of non-improving 
moves. After selecting such a move, it is important to avoid the 
cycling caused by selection of the reverse (improving) move leading 
back to the local optimum. This is solved by the use of tabus. 
Whenever we perform a simple move we declare tabu the move that 
would reverse its effect, i.e. assigning Pi its previous EDI (line 6 in 
Figure 6). The move is forbidden for a number of iterations equal to 
its tabu tenure (determined empirically). When performing a swap 
move, we declare tabu each of its constituent simple moves (and 
record them individually in the Tabu list). 
6.2 Neighborhood Restriction 

In theory, the best move is selected (line 5 in Figure 6) by consid-
ering all possible moves (simple or swap) and evaluating the cost 
function for each one. This, however, is inefficient from the compu-
tational point of view. Therefore, in each iteration, the selection of 
the best move is done by exploring only a subset of the possible 
moves, namely the ones affecting the processes on the critical path 
(CP) of the worst-case schedule for the current solution.  

In Figure 9 we consider the application from Figure 3b mapped 
on the architecture in Figure 3c, with static FPGAs of size 20. We 
show how we move from the SW-only solution (Figure 9a: WCSL 
= 750) to the solution in Figure 9c (WCSL = 510), passing through 
two iterations. At each iteration, only the processes on the CP (illus-
trated with dotted rectangles) are considered for new EDI assign-
ment. From (a) to (b), the best possible choice is to move P1 to its 
mixed HW/SW EDI. As a result, the CP changes (see Figure 9b) 
and, thus, in the next iteration P3 will also be considered (while P1 is 
now excluded). The best choice is to move P3 to its mixed HW/SW 
EDI. The result is shown in Figure 9c (WCSL = 510). 
6.3 Move Selection 

Figure 10 presents our approach to selecting the best move in 
each iteration (line 5 in Figure 6). As explained earlier, we first 
determine the set of processes on the critical path (CP) of the cur-
rent solution (line 1). Next, based on this set, we proceed and search 
for the best move in a hierarchical manner (in order to reduce the 

WCETU indicates the WCET of the un-instrumented process. The 
WCET of P3, e.g. for the SW-only EDI, will be 40 + 110 = 150. 
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number of evaluations of the cost function, done in each iteration). 
We first explore the simple moves into HW (line 2). If at least one 
such move exists and it is not tabu, then we select the move that 
generates the best improvement and we stop further exploring the 
rest of candidate moves (lines 3-4). Otherwise, we try to improve 
the current WCSL by searching for the best swap move (line 6). If 
we get closer to a minimum (line 9), we accept the move (line 10). 
Otherwise, we diversify the search. 
6.4 Diversification 

In order to assure the proper breadth of the search process, we 
decided to employ a continuous diversification strategy (lines 12-13 
in Figure 10), complemented by a restart diversification strategy 
(lines 9-10 in Figure 6). The continuous diversification is based on 
an intermediate-term frequency memory (the Wait memory), in 
which we record how many iterations a process has waited so far, 
since the last time it has been involved in a move. Every time we 
reach a solution better than all the previous ones, encountered so far, 
we reset the Wait counters.  

Whenever we need to escape local minimum points, the Wait 
memory is used to selectively filter candidate moves (and generate 
the set WCP - line 12 in Figure 10). So, if the waiting counter of a 
process is greater than a threshold (waiting_count), we consider that 
the process has waited a long time and should be selected for diver-
sification (it is included in WCP). Our neighborhood exploration 
continues by selecting the non-improving move (simple or swap) 
that leads to the solution with the lowest cost, giving priority to 
diversifying moves (line 13 in Figure 10). 

We complemented our continuous diversification strategy with a 
restart diversification. Whenever we do not get any improvement of 
the best known solution for more than a certain number, diversifica-
tion_count, of iterations, we restart the search process (lines 9-10 in 
Figure 6). The search is restarted from a state corresponding to an 
EDI assignment to processes that has not been visited, or has been 
visited rarely, during the previous searches. 

The search process is stopped after a specified maximum number 
of iterations (line 4 in Figure 6). This value (max_iterations), as 
well as the counters used for diversification purposes (wait-
ing_count and diversification_count), were determined empirically 
for each application size. 

7. OPTIMIZING EDI WITH PDR FPGAS  
Latest generations of commercially available FPGA families pro-

vide support for partial dynamic reconfiguration (PDR) [24]. This 
means that parts of the device may be reconfigured at runtime, 
while other parts remain functional1. In the last years, a large 
amount of research has been carried out with regard to PDR and 
more details on this subject can be found in, e.g., [6, 19, 20]. 

PDR enables the possibility of reusing FPGA area that is no long-
er needed (corresponding to the error detector modules of processes 
that finished executing). Also, it is possible to overlap process 
execution with reconfiguration of other error detector modules, in 
order to mask the reconfiguration time overhead, and thus reduce 
the latency of the application. Under the PDR assumptions, our 
problem formulation (Section 5) becomes more complex. Besides 
generating the EDI assignment to processes (S : V → H) we also 
need to generate a placement and a schedule for EDI reconfigura-
tion on FPGA. Formally, this means that, for all processes that have 
                                                                 
1 As opposed to PDR, for simple dynamic reconfiguration the 

entire configuration memory has to be configured at a time, and 
no FPGA computation can proceed in parallel with this process 
(i.e. reconfiguration overhead cannot be masked). Our algorithm 
can also be used for such type of FPGAs, since they are a subset 
of the ones supporting PDR. 

error detection implemented in HW (either mixed HW/SW or HW-
only), we have to find the function R : {p є V | S(p) ≠ SW_only} → 
Z+, which specifies the reconfiguration start time for the EDI mod-
ule of each process, and the placement function P : {p є V | S(p) ≠ 
SW_only} → Z+×Z+, which specifies the position of the upper left 
corner of each EDI module on the FPGA. 

We model our FPGA supporting PDR, as a rectangular matrix of 
configurable logic blocks (CLBs). Each EDI to be scheduled in this 
architecture occupies a contiguous rectangular area of this matrix. 
The model allows choosing a 2D or a 1D placement and reconfigu-
ration scenario. A 1D reconfiguration constraint implies that we can 
only reconfigure whole columns of CLBs. The 2D scenario allows 
modules of any rectangular shape and size. 

As stated above, the execution of an EDI can proceed in parallel 
with the reconfiguration of another EDI, but only one reconfigura-
tion may be done at a certain time. However, it is not always possi-
ble to completely hide the reconfiguration overhead; in such a case, 
process execution is scheduled as soon as the reconfiguration of its 
EDI ends. We have illustrated this in Figure 5c. As we can see, for 
P2 it was possible to mask the entire reconfiguration overhead by 
overlapping it with P3’s execution. Due to the limited resources, this 
was not possible in the case of P4. As a consequence, P4 had to wait 
for the reconfiguration of its EDI module to finish. 

In our approach, we do simultaneous scheduling of processes on 
the processor and placement of the corresponding EDIs on the 
FPGA: once a process is selected for scheduling from the list of 
ready processes, its EDI is placed onto the FPGA, as soon as 
enough space is available for it. In this way, all the generated sched-
ules are correct by construction, and we cannot end up with an 
unfeasible schedule (that would violate placement constraints). 

In order to be able to take into account the issues presented above, 
we extended the fault-tolerant schedule synthesis tool described in 
[10] (that we used in Section 6). This scheduler is based on a list 
scheduling approach that uses a modified partial critical path (PCP) 
priority function [7] to decide the order of process execution. How-
ever, this priority function does not capture the particular issues 
related to PDR mentioned above. So, in order to adapt the scheduler 
according to our needs, we changed the priority function with an-
other one, similar to that proposed by Banerjee et al. in [2]. Key 
parameters of this function are EST (earliest execution start time of 
a process), WCET of a process, EDI area, and the partial critical 
path length. The PCP captures the particular characteristics of the 
application (like the process interdependencies), the WCET and 
EDI area characterize each error detection implementation of each 
process, while the EST captures physical issues related to placement 
and reconfiguration of EDI modules on the FPGA. Thus, the prior-
ity function for our scheduler can be described as: 

f(EST, WCET, area, PCP) = x×EST + y×WCET + z×area + w×PCP 

Select_Best_Move(current_Sol, current_WCSL) 
1     CP = Select_CP_Processes(current_Sol); 
2     trial_Move = Try_Simple_Moves_into_HW(CP); 
3     if (trial_Move exists) 
4          return trial_Move; 
5     else { 
6          trial_Move = Try_Swap_Moves(CP); 
7          trial_Sol = Apply(trial_Move, current_Sol); 
8          trial_WCSL = WCSL(trial_Sol);    
9          if (trial_WCSL < current_WCSL) 
10 return trial_Move; 
11        else { 
12     WCP = {p є CP | Wait(p) > waiting_count }; 
13     trial_Move = Diversifying_Non-improving_Moves(WCP); 
14 return trial_Move; 
15        } 
16    } 
end Select_Best_Move 

Figure 10. Hierarchical neighborhood exploration 
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 P1 P2 P3 P4 P5 P6 
WCETi 70 40 30 100 40 50 

PCPi 170 160 120 100 90 50 
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When computing the EST, we find the earliest time slot when a 
process can be scheduled, subject to the various constraints. We first 
search for the earliest time instant when a feasible EDI placement 
on FPGA is available. In order to decide the position of an EDI on 
the FPGA we use the first-fit policy (i.e. we search for the first 
empty area big enough to accommodate the EDI module). If the 
reconfiguration controller is available at this time, then the recon-
figuration of the EDI can start immediately. Otherwise, it has to 
wait until the reconfiguration controller becomes free. Once the 
reconfiguration component (corresponding to the EDI of a process) 
is scheduled, we check to see if the execution of the process could 
be scheduled immediately after that, subject to dependency con-
straints. 

Figure 11 illustrates some of the above issues. Let us consider the 
application from Figure 11a, having to tolerate a number of k = 1 
faults, mapped on an architecture with two computation nodes (see 
Figure 3c), with FPGA1 = FPGA2 = 25 area units. We assume that 
at a certain step during the optimization, each process has a particu-
lar EDI assigned. The WCET of processes, as well as the EDI area 
(hi) and reconfiguration overheads (ρi) corresponding to this current 
EDI are presented in Table 2. WCTT of all messages and the recov-
ery overheads for processes are 10. 

Figure 11b shows the corresponding schedule obtained by using 
only the partial critical path (PCPi - listed in Table 2) for priority 
assignment, and ignoring the physical issues related to FPGA 
placement and reconfiguration of EDIs. In this case WCSL = 525. 

Let us now assume that the set of weights (x, y, z, w) take values 
(0.5, -0.5, 0, 1), which implies the following priority function: f = 
0.5×EST - 0.5×WCET + PCP. This means that we give higher priority 
to processes that have a big PCP and EST value (since they have 
positive weights), while the WCET should be small. The result is 

that P2 is scheduled before P1, which in turn makes it possible for 
P3-P5-P6 to run earlier, thus reducing the WCSL (which is equal to 
475 in Figure 11c). 

Although from (b) to (c) we reduced the WCSL from 525 to 475, 
it is possible to choose an even better set of weights, adapted to the 
characteristics of the application. It is preferable to give higher 
priority to processes with a big PCP value, but a small WCET and 
EDI area, and that can start earlier (smaller EST). By setting (x, y, z, 
w) to (-0.5, -0.5, -1, 1) we manage to obtain the schedule illustrated 
in Figure 11d, with WCSL = 360. In this case, P5 is scheduled 
before P4 and this has two advantages: one is that now P6 can run 
earlier, in parallel with P4, and the second one is that P3 and P5 can 
fit together on the FPGA from the beginning, and thus the runtime 
reconfiguration for the EDI of P5 is eliminated. As can be seen from 
the above example, it is important to take into account the issues 
related to the FPGA by choosing proper weights for the scheduler.  

The weights x, y, z and w are dynamically tuned for each particu-
lar application, during our optimization. We kept the same Tabu 
Search core as the one used for the static reconfiguration approach 
(see Section 6), with two modifications: (1) we use the modified list 
scheduler described above, as a cost function in our optimization 
loop, instead of the scheduler used before (line 8 in Figure 6 and 
line 8 in Figure 10); (2) we added a new type of possible moves: 
those that concern the weights x, y, z and w used in the priority 
function of the scheduler. We extended our search as follows: in 
each iteration, before exploring different EDI assignments to proc-
esses, we explore different values for the weights. We consider that 
each of them can take a value between -1 and 1, with a step of 0.25. 
So, at each iteration, we explore if modifying these weights would 
result in a better priority function, and consequently in a smaller 
WCSL. If this is not possible, we search for a better EDI assign-
ment, exactly as we did before (Figure 10). Thus, the priority func-
tion of the list scheduler is tuned for each particular application. 

8. EXPERIMENTAL RESULTS 
We first performed experiments on synthetic examples. We gen-

erated process graphs with 20, 40, 60, 80, 100 and 120 processes 
each, mapped on architectures consisting of 3, 4, 5, 6, 7 and 8 nodes 
respectively. We generated 15 graphs for each application size, out 
of which 8 have a random structure and 7 have a tree-like structure. 
Worst-case execution times for processes were assigned randomly 
within the 10 to 250 time units range. All messages were assumed 
to have equal worst-case transmission time. We have considered 
that our system has to tolerate a number of k = 2 faults2. The results 
are presented below. 

In order to generate time and hardware cost overheads for each 
EDI, we proceeded as follows: we generated one class of experi-
ments (testcase1), based on the estimation of overheads done by 
Pattabiraman et al. in [15] and by Lyle et al in [14]. We also gener-
ated a second class of experiments (testcase2), for which we as-
sumed slower hardware (in other words, in order to get the same 
time overheads as in testcase1, we need to use more hardware). In 
Figure 12 we show the ranges used for randomly generating the 
overheads. The point corresponding to 100% HW cost overhead 
represents the maximum HW area that the EDI for this process 
might occupy if mapped to FPGA. We assumed that this value is 
proportional to the process size. 

Figure 12a depicts the ranges for testcase1: for the SW-only EDI, 
we considered a time overhead as big as 300% and as low as 80%, 
related to the worst-case execution time of the corresponding proc-
ess; obviously, the HW cost overhead in this case is 0. For the 
                                                                 
2 We also conducted experiments with k є [3, 8] and we concluded 

that the impact of different k is not significant for the quality of 
results produced by our heuristic. 
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mixed HW/SW implementation, the time overhead range is between 
30% and 70%, and the HW cost overhead range is between 5% and 
15%. Finally, the HW-only implementation would incur a time 
overhead between 5% and 25% and a HW cost overhead between 
50% and 100%. Figure 12b depicts the ranges for testcase2: the 
time overhead ranges are the same, but we pushed the HW cost 
ranges more to the right. Also note that for testcase2, the centers of 
gravity of the considered areas are more uniformly distributed. The 
execution time overheads and the HW cost overheads for the proc-
esses in our synthetic examples are distributed uniformly in the 
intervals depicted in Figure 12a (testcase1) and Figure 12b (test-
case2). 

We also varied the size of every FPGA available for placement of 
error detection. We proceeded as follows: we sum up all the HW 
cost overheads corresponding to the HW-only implementation, for 
all processes of a certain application: 
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Then we generated problem instances by considering the size of 
each FPGA corresponding to different fractions of MAX_HW: 5%, 
10%, 15%, 20%, 25%, 30%, 35%, 40%, 60%, 80%, 90% and 
100%, distributed evenly among computation nodes. The 100% is 
an extreme case, and represents the situation in which we have 
available all the HW that we need, so the optimization problem 
actually disappears. Figure 13 shows the resulting space of experi-
ments. A total of 2×6×15×12 = 2160 different settings were used for 
experimental evaluation. 
8.1 Static Reconfiguration Approach 

As a first step we considered for all our generated process graphs 
the SW-only EDI. The worst-case schedule length for this case, 
WCSLbaseline, was used as a baseline. For the same process graphs, 
we then considered the various HW fractions assigned and for each 
case we calculated the worst-case schedule length, WCSLstatic, after 
applying our heuristic. The performance improvement (PI) obtained 
for each individual case is: 
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In order to evaluate the proposed heuristic we first were interested 
to compare our results with the theoretical optimum. We imple-
mented a Branch and Bound (BB) based search and calculated the 
performance improvement similar to that above, but using the 

theoretical optimum worst-case schedule length, WCSLopt, instead 
of WCSLstatic. Of course, it was possible to obtain the optimal solu-
tion only for the application size of 20 and examples with up to 40% 
HW fraction. 

Figure 14 shows the average improvement over all test cases for 
our heuristic and for the optimal solution. Considering all the cases, 
the differences between our heuristic and the optimum were up to 
1% for testcase1, and up to 2.5% for testcase2, which shows the 
effectiveness of our approach. 

Next, we were interested to evaluate the impact of the HW frac-
tion assigned to each FPGA, on the WCSL improvement. Figure 15 
shows the average improvement we obtained when running our 
heuristic. It can be seen that we shortened the WCSL with up to 
64% (compared to the baseline – SW-only solution). As expected, 
assigning more HW to FPGAs increases the improvement. We can 
also observe that this happens up to a saturation point: beyond that 
point, assigning more HW area does not help. The reason is that, at 
the saturation point, all processes having an impact on the schedule 
length already have their best EDI assigned, while moving the EDI 
for other processes into HW does not impact the WCSL. 

We would also like to point out that, with only 15% HW fraction, 
we can reduce the WCSL by more than half (i.e. get an improve-
ment >50%), for testcase1. For testcase2, in order to reduce the 
WCSL by half, we need ~40% HW fraction. This difference is due 
to the assumptions we made when generating testcase2 examples 
(see Figure 12), namely that the hardware is slower and, thus, we 
need more HW in order to get the same performance as for test-
case1. As we can see from Figure 15, this difference also influences 
the saturation point for testcase2 (~90% HW fraction, compared to 
~60% for testcase1).  
8.2 PDR Approach 

In order to evaluate the efficiency of implementing error detection 
on FPGAs with partial dynamic reconfiguration we kept the same 
experimental setup as for the static case (Figure 13).  

Figure 12. Ranges for random generation of EDI overheads
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For these experiments we considered the worst-case schedule 
length, WCSLstatic, obtained considering static reconfiguration, as a 
baseline. The performance improvement obtained with PDR over 
the static reconfiguration approach is: 
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In Figure 16 we show the average performance improvement for 
the PDR approach over the static. By employing PDR of the FPGA, 
execution of some processes was parallelized with the reconfigura-
tion of the error detectors for others (masking reconfiguration over-
heads). Reusing FPGA area also enabled placing of EDIs more into 
HW and, consequently, we were able to shorten the schedule length 
with up to 36% (with a HW fraction of only 5%) for testcase1 and 
with up to 34% (with a HW fraction of 25%) for testcase2. 

One interesting aspect related to testcase1 is that, after the peak of 
improvement gain, the improvement drops with increasing HW 
fraction, then it slightly increases and finally drops again (for large 
amounts of HW the improvement gain is zero, which means that 
using PDR produces the same WCSL as the static reconfiguration 
approach). The explanation resides in the ranges we have chosen for 
EDI overheads in testcase1 (see Figure 12a). The initial peak of 
improvement gain is the result of the fact that the PDR algorithm is 
able to move more EDIs to the mixed HW/SW implementation. 
Then, assigning more HW does not help proportionally much, since 
the heuristic is not yet able to move EDIs even more into HW, to 
their HW-only implementation. This is due to the large gap between 
the mixed HW/SW and HW-only EDIs generated for testcase1. So, 
actually, we cannot take full advantage of the partial dynamic re-
configuration capabilities, since some EDIs (HW-only implementa-
tion) might have their size even bigger than the entire size of the 
FPGA. Further, as we assign more HW area, the FPGA is able to 
accommodate the HW-only implementation of error detectors, so 
another increase in improvement happens. Finally, for big FPGA 
sizes, employing PDR does not make a difference anymore, since 
we have enough space from the beginning, so the static strategy can 
readily place all the needed EDIs. 

With regard to testcase2, changing the ranges of EDI overheads, 
as compared to testcase1, impacts the results of the heuristic. The 
trend observed for testcase1 is not visible anymore, since now, the 
transition from SW-only, to mixed HW/SW and then to HW-only 
implementation of error detectors is smoother and more uniform 
(see Figure 12b). In other words, the gap (concerning HW cost) 
between mixed HW/SW and HW-only implementation is smaller in 
testcase2. As expected, the maximum improvement (34%) in this 
second case corresponds to a HW fraction of ~25% (compared with 
5% for testcase1). 

Figure 17 presents the execution times of our optimization heuris-
tics for different application sizes. All experiments were run on a 
PC with CPU frequency 2.83 GHz, 8 GB of RAM, and running 
Windows Vista. The values correspond to the setting with 40% HW 
fraction, which is usually the case producing the longest execution 
times. For settings with tight cost constraints (i.e. small HW frac-
tion) the algorithm does not have many alternative solutions to 
choose from, so a result is reached faster (e.g, for a 5% HW fraction 
and 80 processes application size, the execution time is roughly 
28% shorter for testcase1 static, and 80% shorter for testcase2 static, 
while for testcase1 PDR is 18% shorter, and for testcase2 PDR is 
67% shorter than the corresponding values in Figure 17). For set-
tings with big HW fractions, the algorithms converge to good solu-
tions relatively fast, since there is more freedom to place EDIs on 
FPGA. For example, for a 90% HW fraction and 60 processes 
application size, for both approaches, the execution times were 
around 19% shorter for testcase1 and for testcase2 around 25% 
shorter than the corresponding values in Figure 17. Another aspect 
worth mentioning is that the PDR approach takes considerably more 
time, because in this case we also have to adjust the weights for the 
scheduler (see Section 7). 
8.3 The Adaptive Cruise Controller 

We also tested our approach on a real-life example, an adaptive 
cruise controller (ACC), similar to the one described in [1]. The 
process graph is composed of 13 processes, depicted in Figure 18. 
The adaptive cruise controller helps the driver keep a desired speed 
and a safe distance to the preceding vehicle. It also has the possibil-
ity of autonomous changes of the maximum speed depending on the 
speed-limit regulations and helps the driver with the braking proce-
dure in extreme situations. The functionality of the adaptive cruise 
controller is as follows: based on the driver specification and on the 
speed-limit regulations, the SpeedLimit process computes the actual 
speed limit allowed in a certain situation. The Object Recognition 
process calculates the relative speed to the vehicle in front. This 
component is also used to trigger ModeSwitch in case there is a 
need to use the brake assist functionality. ModeSwitch is used to 
trigger the execution of the ACC or of the BrakeAssist component. 
The ACC assembly (P9 and P10) controls the throttle lever, while the 
BrakeAssist process is used to slam the brakes if there is an obstacle 
in front of the vehicle that might cause a collision. 
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Figure 16. Improvement - PDR over static approach 
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Figure 18. Adaptive cruise controller 
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We instrumented every process of this application with error de-
tectors, according to the technique described in Section 2.1. The 
execution times were derived considering an ARM processor with 
an operational frequency of 40 MHz. The path trackers and check-
ing modules where synthesized on XC5VLX50 Virtex-5 device, 
using the Xilinx ISE WebPack. The reconfiguration times where 
computed considering a 60 MHz configuration clock frequency and 
the ICAP 32-bit width configuration interface. In order to reduce the 
reconfiguration granularity we used a methodology similar to the 
one presented in [20]. The execution times, as well as the hardware 
overheads obtained are given in Table 3. 

We mapped this application on an architecture with two computa-
tion nodes. Considering a number of k = 2 faults, the results ob-
tained are presented in Figure 19. As we can see, using the static 
reconfiguration approach, we can get up to 47% reduction in sched-
ule length (over the SW-only implementation), while assuming 
PDR for FPGAs we manage to get an extra 9% reduction (on top of 
the static reconfiguration approach). 

9. CONCLUSIONS 
In this paper we have presented an approach to optimization of 

error detection implementation in the context of fault-tolerant real-
time embedded systems. We proposed heuristic approaches for 
solving the problem, and ran extensive experiments to prove the 
effectiveness of our algorithms. 

We have revealed a big potential for performance improvement 
through optimization of error detection implementation. We ob-
tained significant reductions of worst-case schedule length with 

relatively small HW resources available. Assuming that the FPGAs 
support partial dynamic reconfiguration, the experimental results 
show an important reduction in worst-case schedule length, com-
pared to the static reconfiguration approach. 
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Error Detection 
SW-only Mixed HW/SW HW-only  

Task WCET 
(μs) 

WCET  
(μs) 

area 
(slices) 

rec. time 
(μs) 

WCET 
(μs) 

area 
(slices) 

rec. time 
(μs) 

P1 8.12 6.02 2 1.23 4.9 15 9.23 
P2 8.12 6.02 2 1.23 4.9 15 9.23 
P3 8.12 6.02 2 1.23 4.9 15 9.23 
P4 8.17 6.07 2 1.23 4.95 15 9.23 
P5 7.32 5.4 2 1.23 4.27 13 8 
P6 8.37 6.27 2 1.23 4.92 13 8 
P7 10.35 7.87 2 1.23 6.75 42 25.83 
P8 12.17 9.6 3 1.85 8.45 15 9.23 
P9 46.22 33.7 11 6.77 27.25 43 26.45 
P10 20.3 14.45 4 2.46 11.57 28 17.22 
P11 37.27 29.47 7 4.31 21.7 52 31.99 
P12 8.12 6.02 2 1.23 4.9 15 9.23 
P13 8.12 6.02 2 1.23 4.9 15 9.23 

Table 3. Time and area overheads 

Figure 19. ACC example results 
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