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ABSTRACT

Networks-on-Chip (NoCs) are being increasingly considered
as a central enabling technology to communication-centric
designs as more and more IP blocks are integrated on the
same SoC. Embedded applications, in turn, are becoming
extremely sophisticated, and often require guaranteed levels
of service and performance. The complex and non-uniform
nature of network traffic generated by parallel applications
running on a large number of possibly heterogeneous IPs
makes a strong case for providing Quality of Service (QoS)
support for traffic streams over the NoC infrastructure.

In this paper we consider an integrated hardware/soft-
ware approach for delivering QoS at the application level.
We designed NoC hardware support, low-level middleware
and APIs which enable QoS control at the application level.
Furthermore, we identify a set of programming abstractions
useful to associate the notion of priority to each running
task in the system. An initial implementation of this pro-
gramming model is also presented, which leverages a set of
extensions to a MPSoC-specific OpenMP compiler and run-
time environment.
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1. INTRODUCTION

The ever-increasing complexity of embedded applications
requires SoC designs to deliver very high performance while
fitting tight power constraints. The current trend to achieve
both goals is the Multi-Processor System on-a-chip (MP-
SoC) design paradigm [23]. The capability of integrating
a large number of low-power processing elements within a
single chip is foreseen to be a dominant trend in the future.

As the number of integrated IP blocks increases, tradi-
tional interconnection mediums show their limitations. Sha-
red buses quickly encounter scalability bottlenecks, whereas
the complexity of cross-bars becomes too important for a
high number of cores.

Networks-on-Chip (NoCs) [5, 6, 14] have been proposed
to overcome these limitations and interconnect the many
on-chip IP blocks present in a modern MPSoC design in a
scalable manner. MPSoCs can be either homogeneous or
heterogeneous, featuring a mix of general purpose proces-
sors, memories, DSPs, multimedia accelerators, etc. Espe-
cially in the latter case, fitting power budgets requires care-
ful optimization. The NoC should therefore provide efficient
transport services while not resorting to resource overprovi-
sioning, as is common in large networks.

Hardware-only approaches to the problem are likely to re-
quire significant power and area cost. Moreover, increased
hardware and software design complexity in turn increases
the complexity of on-chip traffic patterns, possibly making
their static characterization impractical or overly conserva-
tive.

In this paper we aim at investigating the effectiveness
of an integrated HW-SW approach to the problem. The
NoC supports QoS provisioning by supporting best-effort,
high-throughput or low latency traffic classes, which can be
controlled by the software stack. Specifically, several levels
of Quality-of-Service (QoS) are exposed at the application
level, thus allowing for different operating regimes as the use
cases alternate at runtime.

Programming models for application development could



be enriched with high-level constructs for QoS management.
Simple annotations in the program may convey information
about the traffic pattern at a given task to an underly-
ing runtime environment, which should exploit programmers
feedback to efficiently take advantage of the available NoC
services. This approach would allow application designers to
carefully allocate communication resources in a prioritized
manner, while requiring minimal area and power cost for the
implementation of QoS-related features in the NoC.

As a concrete embodiment of the described approach, we
present a NoC architecture providing QoS facilities and a
software stack capable of leveraging such hardware provi-
sions. To maximize the applicability of this approach, we
integrate our work within the OpenMP programming model.

OpenMP is a widespread interface to exploit shared mem-
ory programming models. Its API consists of a collection of
compiler directives that allow to easily specify parallel exe-
cution within a sequential program. The standard currently
supports the C, C++ and Fortran languages. Mainly due
to its appealing ease of use, OpenMP boasts a number of
MPSoC-specific implementations [11,25,28,33].

Our work is based on one such implementation [28], on
top of which we integrated our extensions to support QoS-
related features. We choose to adopt a layered approach
that incrementally abstracts away hardware-specific details
of QoS support at the NoC level, and vertically exposes high-
level constructs to the OpenMP runtime environment.

We provide custom directives to associate the notion of
priority to OpenMP constructs. This allows to create a
privileged environment for the execution of annotated tasks,
which are mapped to high-priority threads. Such thread
teams are insensitive to the effects of conflicting transac-
tions from non prioritized threads contending for the same
interconnection and memory resources, as we make it possi-
ble to guarantee that their packets are delivered with higher
priority.

Experimental results on a set of representative OpenMP
kernels show that under different traffic patterns and thread
allocation schemes, the use of prioritized transactions boosts
the overall execution time by up to 66%.

This paper is organized as follows. Section 2 presents re-
lated work on QoS support management in NoC-based sys-
tems. Section 3 describes the implementation details of QoS
support at the NoC level. Section 4 describes the exposure
of hardware QoS support to the parallel programming model
(i.e. the OpenMP runtime environment). Section 5 shows
an overview of the developed NoC-based platform. Section 6
describes our experimental setup, selected benchmarks and
the results obtained. Section 7 concludes the paper and pro-
vides future work directions.

2. RELATED WORK

In traditional networks [12,17] many techniques can be
applied to provide QoS, but this scenario changes radically
when designing NoC-based MPSoCs due to largely different
objectives (e.g. nanosecond-level latencies), opportunities
(e.g. more control on the software stack) and constraints
(e.g. minimum buffering to minimize area and power costs).
QoS for NoCs is impractically implemented in hardware
only, due to the large and hard-to-determine number of pos-
sible use cases at run-time; a proper mix of hardware facili-
ties and software-controlled management policies is vital to
achieving efficient results. Previous work to provide differ-

ent levels of QoS at the hardware level is presented in [9]
where a complete NoC framework named QNoC is designed
to split the NoC traffic in different QoS classes (i.e. sig-
naling for inter-module control signals, real-time for delay-
constrained bit streams, RD/WR that model short data ac-
cess and block-transfers for handling large data bursts), but
more work would be needed to expose these facilities across
the software stack.

The work presented in [27] tries to combine Best-Effort
(BE) and Guaranteed-Throughput (GT) streams by han-
dling them with a time-slot allocation mechanism in the NoC
switches. A clockless NoC that mixes BE and guaranteed
services (GS) are presented in [8,22]. In addition, in [1,37]
the authors shows to combine GT and BE in a efficient way,
taking into account the required resource reservations for
worst-case scenarios. Finally, a more generic approach fol-
lowing the idea presented in [9] is presented in [19, 31] by
showing a methodology to map multiple use-cases or traffic
patterns onto a NoC architecture, satisfying the constraints
of each use-case.

Very recently, the authors in [10] introduce a method to
manage QoS at the task level on a NoC-based MPSoC, and
in [20, 21] a detailed model on how to enable application-
performance guarantees by applying dataflow graphs, as well
as aelite, a NoC backbone based with composable and pre-
dictable services are presented.

In our work, we face a complete HW-SW co-design com-
plementing previous works [10, 24, 26] designing explicitly
the interface between hardware and software components,
and extending them, in the sense that we are going further
by exposing the QoS support on top of an OpenMP par-
allel programming model, and the runtime library specially
targeted to NoC-based MPSoC platforms.

3. QOS SUPPORT AT NOC LEVEL

The NoC research community is focusing on a variety of
design issues concerning heterogeneous NoC design, such as
those presented in [35] (e.g. channel width, buffer size, ap-
plication or IP mapping, routing algorithms, etc), as well as
the design of Network Interfaces (NIs) for different bus-based
protocols (e.g. AMBA/AXI [2,3], OCP-IP [34]), adding
virtual channels [13,30] to improve the latency, designing
efficient application-specific or custom topologies automati-
cally [32], and bringing these designs towards different VLSI
technologies, such as 65nm [36]. Not a lot of effort has been
spent to study how to support QoS making it available at
runtime across the software stack from application to pack-
ets. Most NoC designs actually offer BE facilities only, and
the communication traffic cannot exploit any guarantees on
delay or throughput.

In this work, we are going to offer runtime QoS on top
of the fixed best-effort (BE) scheduling based on Fized Pri-
orities or Round Robin (RR) arbitration schemes on the
channels in each switch as in xpipes [7,39].

We support soft QoS using differentiated services based on
a priority scheme (to fit multiple use cases) which classifies
several types of traffic according to the constraints imposed
on data delivery. This QoS feature is also known as soft QoS
because still no guarantees are made for individual flows.

To guarantee services in a “hard” way, we also enable the
capability of reserving channels to ensure end-to-end band-
width or latency for certain traffic between specific IP cores
on the NoC-based system. Thus, this work tries to support



NoC services by combining BE and GT, as well as differen-
tiated services, but without impacting a lot on the design of
hardware components (in terms of area and consequently in
power consumption).

Thus, we build NoC switches and network interfaces to
allow the capability of reserving channels or bandwidth for
certain traffic or arbitrating packets with different priorities
set by the application or the programming model.

To disclose the QoS features at higher levels as NoC ser-
vices, and to enable runtime reconfiguration of the NoC
backbone, we tackle a design at NoC level by extending the
basic elements of xpipes NoC library: (i) on the Network
Interfaces (NIs) and (i) within the switches.

3.1 Runtime QoS Support at Network Inter-
face (NI) Level

The aim of designing QoS features in the NIs is to expose
them towards higher levels of abstraction. In NIs, concretely
in the NI initiator, the main target is to identify which type
of QoS is requested by the processor, accelerator, etc, but
also its programmability and reconfiguration at runtime.

In initiator Nls, a set of configuration registers, memory-
mapped in the address space of the system are used to pro-
gram the different levels of priority. These registers can be
programmed to assign different levels of priority on each in-
dividual packet at runtime.

A 4-bit QoS field embedded in the NoC packet (see encod-
ing in Listing 1) lets us design up to 8-level priority schemes
to classify different types of traffic within the system. Thus,
the level 0 has lowest priority, and level 7 is the most pri-
oritized in the NoC architecture. To program a priority
packet two phases must be performed; first, a NI programs
the transaction to the specific configuration register with
the priority level required, and afterwards, one or more real
transactions or packets with the actual data. The actual pri-
ority scheme implementation is done in each switch depend-
ing on the channel request and the priority level embedded
in the packet.

Listing 1: QoS encoding on header packets

// Priority levels

#define ENC.QOS_PACKET.0 4°b0000
#define ENC_QOS_PACKET_1 4’b0001
#define ENC_QOS_PACKET_ 2 4’b0010
#define ENC_QOS_PACKET_3 4’b0011
#define ENC_QOS_PACKET.4 4°b0100
#define ENC_QOS_PACKET.5 4°b0101
#define ENC_QOS_PACKET_6 4’b0110
#define ENC_QOS_PACKET_7 4’b0111
// Open/close circuits

#define ENC_QOS_OPEN_CHANNEL 4’b1000
#define ENC_.QOS_CLOSE CHANNEL 4’b1001

On the other side, to trigger the opening and closing of cir-
cuits in order to block/release channels for a certain period
of time, we choose to inject “fake” transactions in the begin-
ning and in the end, in order to notify the switches. This
mechanism is based on the emulation of a circuit switching
on top of a wormhole packet switching scheme.

The normal behaviour to open/close an exclusive trans-
mission/reception guaranteeing QoS is done in three phases:

1. Open the circuit (unidirectional or bidirectional “fake”
transaction).

2. Perform a normal stream of transactions or packets
over the NoC under GT conditions.

3. Close the circuit (unidirectional or bidirectional “fake”
transaction).

The activation overhead to trigger the QoS is null since
the QoS field is directly embedded in the packet header as
a 4-bit field. The software overhead to program the NI is
based on the memory-mapped store transaction, i.e. few
clock cycles depending on the NoC configuration.

3.2 Handling QoS Traffic at Switch Level

From QoS point of view, the main important module on
the switch is the arbiter/allocator, which can be configured
on a BE basis for fixed-priority or round-robin policies. In
this work, we extend the BE behaviour of the allocator/ar-
biter block, enabling up to 8-level of priority, and guarantee-
ing GT, through the establishment and releasing of exclusive
circuits in case it is necessary. This is enough to deal with
the different use cases present in MPSoC.

In Figure 1 is shown a block diagram of a a general alloca-
tor/arbiter of N ports and M levels of priority. The original
xpipes allocator has been extended with:

e A QoS tag detector logic.

e A flip-flop (i.e. qos_channel) to store whether a GT
connection is established or not.

e An extended arbitration tree to enable multiple levels
of priority.

e A modified grant generator using a priority encoder
based on the selected priority level, or the qos_channel
flip-flop.

In the allocator (see Figure 1), in QoS detector is identified
which QoS is requested for a specific packet or flow. The QoS
field is parsed by selecting the proper range of bits of the first
flit of the request header packet. Aslong as the QoS bits are
related to circuit reservation, and depending on its encoding
(i.e. ENC_QOS_OPEN_CHANNEL or ENC_QOS_CLOSE_CHANNEL), a
set up or tear down of the circuit is done by updating the
value on QoS channel FF (’1 if is established and '0’ if not).
The value of this register is used in the arbitration process to
grant the next packet. Once the circuit is established, all the
other flows will be blocked until the QoS detector identifies
a tear down packet. Once the circuit is released other flows
can progress because the allocator will grant them under BE
basis.
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Figure 1: QoS support on allocator/arbiter



3.3 Hardware Synthesis QoS Results

In this section, we synthesis the components on different
FPGAs devices'. We report and we quantify the overhead
in terms of resource usage, and the degradation of the circuit
performance in terms of f,,4. according to the implemented
QoS features.

At NI level, as shown in Figure 2, the average overhead
to include QoS extensions on the AMBA 2.0 AHB NI is
about 10-15% depending on the FPGA device. The main
overhead is due to the necessity to encode the different QoS
levels, and to include the configuration registers, as well as
several changes to the request FSM in order to generate the
“fake” transactions to open/close channels or circuits.

35

30

N
o

% overhead
>

o
L

(4]
L

Virt Virtex4 Stratix|| Str:

B LUTs BFmax

Figure 2: QoS impact on AMBA NIs (LUTS, fmaz)

In terms of faz of Nls, the inclusion of QoS can be con-
sidered negligible. Surprisingly due to synthesis heuristics
in Virtex4d FPGAs, the synthesis gives better fimqe. for the
extended NI with QoS than without, even if a priori, the
QoS NI is a little bit more complex. However, on average
among the tested FPGA devices the circuit performance is
basically unaffected.

In Figure 3 we explore the switch scalability varying the
number of priority levels on each of the different configu-
rations used to build our NoC-based platform presented in
Figure 5. As expected, when 8 priority levels are used, the
area cost increases considerably, roughly doubling the area
of the switch without QoS. Despite this fact, the area re-
sources are moderately impacted when 2 or 4 priority levels
are used with an overhead ranging from ~23-40% in Vir-
tex FPGAs. In Stratix chips the trend is similar, but now
the overhead to include 2 or 4 levels is higher going from
~25-56% for the worst case.

In terms of finex at switch level, as shown in Figure 3,
as expected the circuit frequency drops when more levels of
priority are supported. In fact, for most scenarios of traffic
classes and use cases, in the embedded domain, the require-
ments can be fitted using up to 8 levels of priority. In addi-
tion, even if the overhead to include 2 and 4 priority levels
is not negligible, it can be assumed taking into account the
potential benefits to have runtime QoS on the final system.

!The results have been extracted using Synplify Premier 9.4
to synthesize each component on different FPGAs. VirtexII
(xc2v1000bg575-6) and Virtex4d (xc4vfx140ff1517-11) from
Xilinx, and StratixII (EP2S180F1020C4) and StratixIII
(EP3SE110F1152C2) from Altera.
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Figure 3: QoS impact at switch level (LUTS, fmaz)

4. EXPOSING NOC-LEVEL RUNTIME
QOS FEATURES TO THE SOFTWARE
LAYER

Usually HW-SW network systems are organized in layers
to create different levels of abstraction that hide the com-
plexity of the whole system, and expose the interactions be-
tween components.

Figure 4 shows the layered organization of our NoC-based
MPSoC and the integrated components based on the micro
network stack proposed in literature [15,18,29, 38].

e Application layer: At the topmost level of the soft-
ware stack there is the parallel application, i.e. the
OpenMP program. Parallel execution is supported by
the underlying runtime environment (RTE). QoS fea-
tures are integrated within the RTE, and are imple-
mented as a wrapper around the middleware routines
of the low-level API.

e Transport layer: It is in charge of injecting/receiving
packets using Nls initiator and target over the on-chip
network, respectively.

e Network layer: It is responsible for the transmis-
sion/reception of packets using BE or the QoS features.

—_—
Application —
OpenMP program ||
OpenMP Run-time Application
Environment LH Layer
Middleware API for
QoS support [H
Shared Memory ARM RISC CPU
" Transport
QoS-NI Target QoS-NI Initiator 1l Layer
WY 11
Y
: : = = Network
QoS NoC interconnection Layer

Figure 4: HW-SW layered view of our NoC-based
MPSoC architecture



4.1 Low-level and Middleware QoS Support
APIs

To efficiently exploit QoS features we implemented a set
of low-level APIs, which directly interact with the NIs. The
functions enclosed in the API are extremely lightweight
(only few assembly instructions, executing in few proces-
sor cycles). The four functions of which the low-level QoS
API is made up of are described below.

Listing 2: Low-level API QoS support

// Set up an end—to—end circuit

// unidirectional or full duplex (i.e.

int ni_open_channel(uint32_t address,
bool full_duplex);

write or R/W)

// Tear down a circuit

// unidirectional or full duplex (i.e.

int ni_close_channel (uint32_t address,
bool full_duplex);

write or R/W)

// Write a priority packet to a specific address
int ni_send_priority_packet (uint32_t address,

int data, int level);
// Receive a priority packet from a specific address
int ni_recv_priority_packet (uint32_t address,

int level);

In order to expose to the programming model layer func-
tions that closely resemble the OpenMP semantics, we pro-
vide three additional functions to set/release priority be-
tween two end-points, and two more to enable GT data
streams. These functions are described below.

Listing 3: Middleware API QoS support

// Set high—priority in all W/R packets between an
// arbitrary CPU and a Shared Memory on the system
void setPriority (int PROC.ID, int MEMID, int level);

// Reset priorities in all W/R packets between an
// arbitrary CPU and a Shared Memory on the system
void resetPriority (int PROC.ID, int MEMID);

// Reset all priorities W/R packet on system
void resetPriorities (void);

// Functions to send/receive stream of data with QoS

int sendStreamQoS (byte xbuffer, int length,
int MEM.D);
int recvStreamQoS(byte xbuffer, int length,

int MEM.ID);

4.2 Exposing QoS-related Features to the
Programming Model

OpenMP is a widely adopted shared memory program-
ming API. It allows to incrementally specify parallelism in
sequential C (or C++, or Fortran) code through the inser-
tion of compiler directives. Due to the ease of building par-
allel programs with OpenMP, several implementations for
MPSoCs [11,25,28] have been proposed.

There are a number of ways in which priorities can be ex-
ploited in parallel regions and sections within the OpenMP
programming framework.

In this work, we choose to extend the OpenMP API with
custom directives to trigger prioritized execution for a par-
ticular thread (or group of threads). This option is useful to
give the knowledgeable programmer the possibility of spec-
ifying appropriate prioritization patterns at different pro-
gram points. This can be done by providing a custom pri-

oritized clause, to be coupled with OpenMP constructs to
outline parallelism.

#pragma omp parallel num_threads(4) prioritized

// Parallel region
}

All threads belonging to an annotated parallel team will
be treated by the RTE as high-priority entities. The com-
piler inserts calls to the runtime library within the outlined
parallel code, which is executed by every prioritized thread.

// Code ezecuted by prioritized threads
{
// Call RTE to determine priority
int PROC.ID = get_proc_num ();
int MEM.ID = // Determine target memory ID
int level = get_pri_level (PROC.ID, MEM.ID);

settings

// Invoke QoS API to set desired priority
setPriority (PROC.ID, MEMID, level);

level

// PARALLEL REGION

// Invoke QoS API to reset priority level
resetPriority (PROC.ID, MEMID);

}

Since the RTE dispatches threads to available cores, and
it can be aware of the architectural topology?, it will
automatically set prioritized communication at the NoC
level to deliver QoS. There are currently two main means
to determine the ID of the memory being targeted by
transactions issued within prioritized threads.

Method 1: the programmer to specify a target bank,
annotating it in the prioritized -clause. This task
is not as onerous as it may appear, since data allo-
cation can be controlled with the distributed directive.

// Specify that array A must be allocated
// on memory with ID 2

int A[100];

#pragma omp distributed (A, 2)

The programmer then knows exactly on which memory a
given data item resides, and can annotate the information
on the prioritized clause to set privileged transactions
towards that memory. However, this solution requires
deeper programmer involvement, and may compromise the
ease of programming to some degree.

Method 2: we adopt an alternative approach of deter-
mining which target memory is referenced within priori-
tized threads. Application profiling allows to inspect each
thread’s data access pattern, at any point in time, and guar-
antees that highest possible priority is precisely established
for each parallel region.

Once a processor/memory pair responsible for transac-
tion action has been identified the RTE is invoked to deter-
mine a suitable priority level for corresponding transactions.
2

i.e. the physical position of the core in the NoC, and how
it is interconnected with memory devices.




Within the get_pri_level function each prioritized thread
annotates in a specific data structure in the RTE the ID of
its hosting processor and the ID of the memory containing
the targeted data. Maximum priority level is assigned to
each channel in case no conflicting transactions take place
(i.e. each thread accesses a different memory). In case the
target memory is shared between two or more threads dif-
ferent priority levels are assigned depending on the physical
path that each thread has to traverse, and taking into ac-
count the effect of the routing algorithm on the network.

OpenMP also allows to model task parallelism with the
sections directive, which we also enhance with prioritized
execution-related features. In the example below we trigger
parallel execution of tasks task_A, task_B and task_C. Let
us suppose that task_B requires more bandwidth to satisfy
certain constraints (e.g. soft deadlines). We can grant high-
priority transactions with the custom prioritized clause as
shown below.

#pragma omp parallel sections

{

#pragma omp section
task_A ();

#pragma omp section prioritized
task_-B ();

#pragma omp section channel (MEM3)
task_C ();

If a task has hard constraints and requires an exclusive
communication channel towards a given memory or 1/O de-
vice, we allow the programmer to set such a communication
link through the use of the custom channel (mem_id) clause
as shown above for task_C. The channel (MEM_ID) clause es-
tablishes an exclusive communication channel between the
processor hosting the annotated task and the memory de-
vice MEM_ID, indicated by its ID in the system. As explained
previously for the prioritized clause, in general, a pro-
grammer willing to use the channel clause should know the
ID of the target memory. However, if no such information is
available at the application level, we can use a mix of com-
piler analysis and profiling information to determine which
memory is accessed within the annotated task. Thus, the
programmer does not need to know the physical address
and the memory map of the system.

S. OVERVIEW OF NOC-BASED MPSOC
ARCHITECTURE

Our architecture, shown in Figure 5, is a 4x4 2D Quasi-
Mesh NoC-based MPSoC platform. The NoC is based on
the xpipes library [7,39].

The system is representative of a real embedded handset
mobile template. It includes 8 ARM processors which are
in charge of executing audio and video encoding/decoding,
transmitting and receiving data from the base band, etc.
OpenMP program execution also takes place therein, as well
as dynamic or static set-up or tear-down of the NoC QoS
features. One processor executes the role of a master, and
the rest of the cores in the cluster is configured as “slaves”.
The system includes eight banks of shared memory, as well
as several typical I/O devices.

ﬁ
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Figure 5: 4x4 2D Mesh NoC-based MPSoC platform

The memory subsystem leverages private and shared seg-
ments, and is organized as a two-level hierarchy. Each PE
has on-tile L1 memory, which features separate instruction
and data caches, and is logically associated to a private L2
memory bank, where by default program code and data pri-
vate to the core are allocated. Private L2 memory is only
cacheable by local L1 cache. Each PE is also logically asso-
ciated to a shared L2 memory bank. All shared 1.2 memory
modules are mapped in the address space of the processors,
globally visible within a single shared memory space.

Processors can directly communicate through the L2
shared memory, which features both cacheable and non-
cacheable banks. Data allocated in the cacheable bank can
be cached by every processor, therefore multiple copies of
the same shared memory location may exist simultaneously
in the L1 caches. This requires a cache coherence proto-
col to be implemented. OpenMP specifies a relaxed consis-
tency memory model, which requires that a coherent view
of shared data is enforced only at specific synchronization
points. Cache coherence is thus enforced through software
flush instructions in our runtime library.

6. EXPERIMENTAL RESULTS

In this section we describe the experimental setup that we
considered to implement and evaluate the proposed frame-
work (see Figure 5 and execute real application and bench-
marks on it. All HW and SW components have been inte-
grated in a NoC-based platform on MPARM, a full-featured
SystemC full system simulator [4].

Furthermore, we integrate the support for QoS (i.e. the
middleware API) at the programming model level in a
MPSoC-specific implementation of the OpenMP compiler
and runtime library [28] based on the GCC 4.3 toolchain.

To test the effectiveness of the approach we employ a set of
variants of the Loop with dependencies benchmark from the
OmpSCR (OpenMP Source Code Repository [16]) suite. In
this program a number of parallelization schemes are con-
sidered to resolve loop carried dependencies. Due to the
alternation of communication- and computation-intensive
loops, as well as the possibility of finely tuning the work-
load through several parameters, this benchmark provides



several interesting case studies, representative of real ap-
plication patterns. Typically, OpenMP programs achieve
balanced parallel execution time between worker threads by
allocating similar amounts of work to each of them. The
most common example in this sense is loop parallelization
with static scheduling, where the iteration space is evenly
divided among threads. Communication is also evenly dis-
tributed: threads reference distinct equally-sized subsets of
a shared data structure (e.g. an array).

From the architecture-agnostic application (or compiler)
point of view, this is all that can be done to achieve work-
load balancing. Unfortunately, when mapping the appli-
cation onto the hardware resources, many issues arise that
can break balancing. High contention for the memory de-
vice where shared data is allocated may cause one (or more)
thread(s) to be delayed in accessing its dataset. Due to the
OpenMP semantics, where a barrier is implied at the end of
each parallel region, this delay leads to overall program ex-
ecution lengthening. Our aim is to explore the effectiveness
of prioritize packets in solving this issue.

To model the described problem we allocate four of the
eight available ARM processors to the OpenMP program,
whereas the remaining four processors host independent
threads that generate interfering traffic. We consider three
cases:

e All OpenMP threads within a communication-
intensive loop are delayed in accessing shared data on
a unique memory device.

e All OpenMP threads within a computation-intensive
loop are delayed in accessing shared data on a unique
memory device.

e Every OpenMP thread accesses a separate memory de-
vice: a single thread is delayed.

The effect of our custom language features for guaranteeing
services on critical tasks is also studied. We describe each
experiment in detail in the following sections.

6.1 Communication Dominated Loop

One of the techniques considered in our benchmark for
loop parallelization in presence of dependencies is that of
replicating the target array prior to overwriting its locations
with newly-computed data. The copy operation is fully par-
allel, with threads simply reading and writing to memory.
In this experiment OpenMP threads are hosted on proces-
sors with even IDs (i.e. ARM_0, ARM_2, ARM_4, ARM_6).
We allocate the target program arrays on a single memory
device, namely SM 7. The odd processors (i.e. ARM_I,
ARM_3, ARM 5, ARM_7) execute application code gener-
ating interfering traffic with the OpenMP team.

Figure 6 reports the normalized execution time for this
experiment with and without prioritization. When no pri-
oritization is enabled, it is possible to notice that OpenMP
threads experience very unbalanced execution, due to the
effect of memory device contention. Adding priorities to
each thread at runtime allows to achieve perfect workload
balancing.

Program execution — whose performance degradation was
originally dictated by the huge delay on ARM_0 — is sped up
by 40.31%. It is possible to notice a kind of “system-level”
effect of priorities. The time saved on even processors is
re-distributed across odd processors.

Application Traffic,

OpenMP team

Normalized execution time

ARM_0 ARM_2 ARM_4 ARM_6 ARM_1 ARM_3 ARM_5 ARM_7

@ No priorities B Priorities

Figure 6: Effect of prioritized transactions on an
OpenMP program unbalanced by memory con-
tention (communication dominated loop)

6.2 Computation Dominated Loop

Once a copy of the original array content is stored in a
replica, the second loop of the benchmark computes the new
array element values by applying a computation-intensive
kernel. The results for this experiment are reported in Fig-
ure 7. Here the setup is largely similar to that described
in the previous section. For this reason the behaviour of
this loop closely resembles that of the previous one. Unsur-
prisingly, due to the reduced computation to communication
ratio, here the effect of the high priority transactions is less
pronounced. Nonetheless, a speedup of 32.83% is achieved
on loop execution.

Application Traffic

OpenMP team)

Normalized execution time
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B No priorities B Priorities

Figure 7: Effect of priority transactions on an
OpenMP program unbalanced by memory con-
tention (computation dominated loop)

6.3 Single Thread Interference

As a final experiment, we want to explore the role of pri-
orities in a situation in which every OpenMP thread is ac-
cessing a separate shared memory device (thus no contention
generates from the program itself). However, a single thread
is delayed in communicating with a memory by concurrent
operations performed by other devices in the system (e.g. an
accelerator, DMA performing transfers). We model this sit-
uation in the following way. We map the OpenMP threads
onto ARM_0 - ARM_3. Each of them executes the whole
loop with dependencies benchmark, but we use a custom
feature of our compiler that allows us to partition shared



arrays in as many tiles as cores, and place the individual
tiles onto nearby memories [28]. Thus ARM_0 only accesses
data on SM 0, ARM_1 one only accesses data on SM 1, etc.

On the other hand, all of the other application traffic
threads and other elements on the NoC-based SoC, such
as DMAs, are generating transactions to SM 3, namely
the memory accessed by OpenMP thread on ARM_3. Fig-
ure 8 shows that this placement seriously degrades the per-
formance of the OpenMP program, since thread three on
ARM._3 is delayed by the other applications on the platform
which are also issuing transactions on SM 3.

Even in this case it is possible to see that priorities com-
pletely solve the issue. Figure 8 shows that the prioritized
OpenMP program achieves balanced execution, distribut-
ing its original delay over non-prioritized threads. In that
case, the overall OpenMP program execution time achieves
a 66,04% speedup.

OpenMP team
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B No priorities B Priorities

Figure 8: Effect of priorities on an OpenMP pro-
gram unbalanced by a delayed thread

6.4 Guaranteeing Services to Critical Tasks

In this section, we experiment with a completely differ-
ent approach of leveraging the custom channel clause to
allocate/de-allocate channels to tasks with critical require-
ments. We consider a situation in which each processor in
the system is busy executing a different task, one of which
has real-time constraints (e.g. video encoding/decoding).
To model this system behavior we start from the OpenMP
program shown below.

Thus, we define three scenarios according to the proposed
code without guarantees:

1. No guarantees for any task.

2. Task0 is annotated with a channel(videol) clause,
thus achieving guaranteed services.

3. Task7 is annotated with a channel(videol) clause,
thus achieving guaranteed services.

On each scenario Tasks 1-6 execute generic workloads,
with the sole purpose of generating interfering traffic with
critical transactions issued by tasks 0 and 7.

In Figure 9, it is easy to notice that ARM_0 without BW
guarantees is not extremely delayed when accessing video 1
since it is only one-hop distant. However, the service is not
guaranteed because of the routing or the fixed priorities of
the NoC backbone. Thus, we try to guarantee the service
on ARM_0 by opening a channel.
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on ARM_0 OBW on ARM 7]

Figure 9: Effect of communication channels on
critically-constrained tasks

Thus, as shown in the code below, we guarantee the ser-
vices in the critical Task0 (i.e. video encoding) simply by
inserting the channel(videol) clause in the Task0 section.
The consequence is that the runtime environment automat-
ically will embed calls to open/close GT channels using the
QoS middleware functions presented in Section 4 in order to
ensure bandwidth and latency bounds.

#pragma omp parallel sections
{
#pragma omp section
task0; //(video encoding)
#pragma omp section
taskl;
#pragma omp section
task2;
#pragma omp section
task3;
#pragma omp section
task4;
#pragma omp section
task5;
#pragma omp section
task6;
#pragma omp section
task7; //(video decoding)

#pragma omp parallel sections
{
#pragma omp section channel(videol)
task0; //(video encoding)
#pragma omp section
taskl;
#pragma omp section
task2;
#pragma omp section
task3;
#pragma omp section
task4;
#pragma omp section
taskb;
#pragma omp section
task6 ;
#pragma omp section
task7; //(video decoding)




As shown in Figure 9, the performance is improved by
16.13% with respect to the previous scenario with no guaran-
tees, where other tasks were generating interfering transac-
tions. This experiment shows that we can ensure bandwidth
or latency requirements avoiding any other interference from
the rest of the system.

Finally, let us focus on the decoding task assigned to
ARM_7. It is clear by looking at the results for the initial
scenario without no guarantees that the Task7 could not
meet its deadlines, thus potentially leading to some frame-
dropping. Thus, as before, we establish a channel from
ARM_7 to video 1 by annotating the corresponding sec-
tion directive with our channel(videol) clause. The re-
sults are shown in Figure 9 (see BW guaranteed on ARM_7
columns). It is possible to observe that ARM_7 has now
latency bounds, and achieves a speedup of 61.98% with re-
spect to the traffic with no gurantees.

After the completion of an annotated critical task on the
sections, its established channel is torn down, and the non-
prioritized and non-guaranteed communication is restored
in the NoC.

7. CONCLUSION AND FUTURE WORK

In this paper we presented an integrated HW-SW ap-
proach for QoS support in NoC-based MPSoCs. More specif-
ically, we employ a layered design to expose the hardware
QoS features of our NoC architecture to the runtime envi-
ronment of an enhanced OpenMP programming framework.
This allows to build an infrastructure to assign varying levels
of priority and guaranteeing services by means of allocation
channels issued by OpenMP tasks.

By tightly-coupling HW with a streamlined SW imple-
mentation of the QoS-support API we obtained encouraging
results on the effectiveness of the approach. Experiments on
a set of OpenMP kernels, representative of patterns found
in typical embedded applications, show that under different
traffic patterns and thread allocation schemes the use of pri-
oritized transactions boosts the overall execution time by up
to 66%.

Future work will focus on further extending the OpenMP
support to QoS-related features. Dynamic priority adjust-
ments entail negligible overhead even at the single read-
/write level. Therefore the design overhead vs. performance
gain of very fine grain QoS tuning is open for future study.
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