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ABSTRACT

The Internet topology data collected through traceroute
exploration has been extensively studied in the past. In par-
ticular, a remarkable property of the Internet, the power-law
shape of node degree distribution, drew the attention of the
research community. Several studies have since questioned
this property.

In this paper, based on a large dataset collected using mr-

info, we show that the node degree distribution is strongly
impacted by the presence of layer-2 (L2) networks, such as
switches. L2 devices interconnect a large number of routers,
themselves being also involved in multiple L2 interconnec-
tions. Such a situation induces nodes with very high de-
gree when analyzing the layer-3 (L3) graph with traceroute
probing. Considering the physical design of a network, our
analysis provides a lower bound on the bias generated by
using only an L3 view. We also provide a model that can be
a first step towards L2 aware topology generation.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network
topology

General Terms

Measurement
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1. INTRODUCTION
Several measurement systems aim at eliciting the Internet

topology. Caida’s Archipelago [1] uses 41 monitors trac-
ing towards roughly 8.25 millions destinations. iPlane [2]
constructs an annotated map of the Internet and evalu-
ates end-to-end performances (latency, bandwidth, capacity,
etc). DIMES [3] is publicly released as a daemon running on
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Figure 1: From star to clique: the effect of L2 device
using a logical L3 vision

endhosts that traces a set of targets obtained from a central
server. The recently introduced Scamper is able to conduct
Internet measurement to large numbers of IPv4 and IPv6
addresses, in parallel, to fill a specified packets-per-second
rate [4]. All of these efforts are based on one of the most
common probing tool: traceroute [5].

The collected traceroute data is used for various purposes
[6]. Among others, from a scientific point of view, the results
underlie efforts to model the network [7]. In particular, the
node degree distribution fascinates the research community,
specially since the Faloutsos et al. seminal paper highlighting
the power law shape of this distribution [8].

However, this power law distribution has been extensively
questioned. Lakhina et al. [9] showed that, in simulations
of a network in which the degree distribution does not at
all follow a power law, traceroutes conducted from a small
number of monitors can induce a subgraph in which the
node degree distribution does follow a power law. Clauset
and Moore [10] have since demonstrated analytically that
such a phenomenon is to be expected for the specific case of
the Erdös-Rényi random graphs [11].

Another potential reason influencing the node degree dis-
tribution are layer-2 (L2) clouds (such as Ethernet switches)
and how they are used to interconnect layer-3 (L3) routers.
A simple scenario involving one L2 device is illustrated on
Fig. 1. Fig. 1(a) shows the real topology where four routers
are interconnected through an L2 device. Each router on
Fig. 1(a) has an L2 degree of 1. On the contrary, Fig. 1(b)
provides a view of the same topology as it can be seen
through a traceroute exploration: since the L2 device is not
discovered (even not suggested), the topology appears as a
full mesh and each router has an L3 degree of three. The im-
pact of L2 devices on the node degree distribution has never
been deeply investigated, mainly due to the difficulty of iden-



tifying those systems in a traceroute exploration. However,
Pansiot and Grad [12], Clauset and Moore [10], and Will-
inger et al. [13] as well have already pointed the potential
impact of L2 networks on the degree analysis.

In this paper, we propose several contributions in order to
demonstrate and quantify the impact of L2 devices on node
degree distribution. We base our work on a large dataset
collected using mrinfo [14]. mrinfo is a tool that silently
discovers all multicast enabled links belonging to an IPv4
router. It has been recently used for Internet topology dis-
covery [15, 16]. One of the key advantages of mrinfo is that
it allows one to infer the presence of an L2 network between
routers. We demonstrate that our inference of broadcast L2
networks is coherent in 90% of the cases and seems to re-
veal Ethernet L2 devices such as switches. Considering the
L3 view of the topology provided by our dataset, on aver-
age, 70% of the connections between routers can be classi-
fied as point-to-multipoint connections (i.e., three or more
L3 routers connected through an L2 network). In contrast,
a point-to-point connection refers to a direct link involving
two routers.

Our first contribution is an analysis of the impact of L2 de-
vices on the node degree distribution considering the whole
network graph discovered by our mrinfo campaign. In par-
ticular, we show that the tail of the node degree distribution
is heavier when using an L2 agnostic view than when dis-
tinguishing L2 and L3 layers. Our results also question the
scale free property and the shape of such a distribution con-
sidering the physical topology of the Internet.

Second, we refine our view of the problem by focusing on
several large Tier-1 and Transit autonomous systems (ASes).
Our results show that, although each AS is topologically
engineered in a different way, in all cases, the impact of L2
networks is really significant. We notice a great shift in the
node degree distribution but specific to each AS. We analyze
several key distributions to understand this property in each
AS. Among others, we observe three phenomena:

1. the degree of L2 devices is generally greater than the
one of routers,

2. routers are frequently connected to several L2 devices,

3. large access routers are involved in even more L2 con-
nections.

To highlight the correlation implied by the third point1,
we provide a first analytical model that captures the heavy
tail distribution of the L3 view. We also believe that this
model can be a first step towards L2 aware topology gener-
ation.

Generally speaking, our results indicate that L2 networks
must be carefully taken into account when analyzing physi-
cal topology properties such as path redundancy. The huge
difference between the physical graph of the Internet and its
L3 view can introduce a large bias in a path diversity analy-
sis. Our L2 based topology extraction allows one to analyze
a lower bound on such a bias.

The remainder of this paper is organized as follows: Sec. 2
describes our dataset, the methodology we follow for prepro-
cessing the data, and our L2 inference mechanism; Sec. 3

1There exists a strong correlation between the router point-
to-point degree and the number of its L2 neighbors.
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Figure 2: mrinfo example

provides a global view of the L2 impact on the node de-
gree distribution; Sec. 4 refines this view by focusing on
large Tier-1 and Transit ISPs; Sec. 5 provides a first ana-
lytical model capturing the dependence between L2 and L3
degrees; Sec. 6 positions our work regarding the state of the
art; finally, Sec. 7 concludes this paper by summarizing its
main results.

2. DATASET
In this section, we discuss the dataset used throughout

this paper and how data was collected. We first present
mrinfo (Sec. 2.1), a tool that is able to silently discover all
the multicast interfaces of a router, and how we used it for
gathering topology data. Next, we discuss how our dataset
was preprocessed (Sec. 2.2). Finally, we explain how we can
infer L2 networks from mrinfo data and how confident we
are in our inference technique (Sec. 2.3).

2.1 mrinfo

mrinfo messages use the Internet Group Management Pro-
tocol (Igmp [17]). Igmp was initially designed to allow hosts
to report their active multicast groups to a multicast router
on their Lan. Most Igmp messages are sent with a Time-
to-Live of 1. However, the Distance Vector Multicast Rout-
ing Protocol, Dvmrp, has defined two special types of Igmp

messages that can be used to monitor routers [18]. Although
current IPv4 multicast routers do not use Dvmrp anymore,
they still support these special Igmp messages. Upon re-
ception of an Igmp ASK_NEIGHBORS message, an IPv4 mul-
ticast router replies by sending an Igmp NEIGHBORS_REPLY

message that lists all its multicast enabled local interfaces
with some information about their state. Cisco and Juniper
routers also report in the Igmp NEIGHBORS_REPLY message
the version of their operating system. Fig. 2 shows an exam-
ple of the usage of mrinfo to query the router R2, 1.1.0.2
being the responding interface of R2. mrinfo reports that
this router is directly connected to R0 (through interface
1.1.0.1). We can also notice that R2 is connected to routers
R5 and R6 through an L2 network (labeled“switch”in Fig. 2)
because interface 1.1.2.3 appears twice in the mrinfo reply
(see bold text in Fig. 2). Finally, mrinfo reports that inter-
face 1.1.3.1 has no multicast neighbor because the right IP
address is equal to 0.0.0.0 (or is directly connected to a Lan,



as indicated by the “leaf” keyword). All this information is
obtained by sending a single Igmp message. In practice, mr-
info provides information similar to the output of a show

command on the router’s command line interface.
Our approach in probing the network with mrinfo is recur-

sive and we call such a probing scheme mrinfo-rec. Initially,
mrinfo-rec is fed with a single IP address corresponding to
the first router attached to the mrinfo-rec vantage point.
mrinfo-rec probes this router and recursively applies its
probing mechanism on all the collected IP addresses. These
recursive queries stop at unresponsive routers or when all
discovered routers have been queried. The same process is
run every day. It is worth to notice that an address not
replying to an mrinfo probe during a given day will not be
queried the days after except if it appears again in a list of
captured addresses.

To illustrate this behavior, let us apply it on the topology
depicted in Fig. 2. mrinfo-rec receives, as input, an IP ad-
dress belonging to router R0. From R0, mrinfo-rec collects
a set of neighbor IP addresses, i.e., {1.1.1.2, 1.1.0.2}. For
all IP addresses in this set that were not previously probed,
mrinfo-rec sends an Igmp ASK_NEIGHBORS message and, if
the probed router replied, it again runs through the set of
neighbor IP addresses collected.

This recursive probing scheme comes with the strong ad-
vantage of being very easy to setup as it initially requires
only a single IP address as input. However, it has the draw-
back of limiting the mrinfo-rec probing spectrum. If the
address set specified as input for a given day corresponds to
non-responding routers (because, simply, the Isp filters Igmp

messages), mrinfo-rec will not be able to discover any topo-
logical information. To overcome this limitation, the set of
responding router addresses of a given day is given as input
of mrinfo-rec the next day.

2.2 Data Processing
Since May 1st, 2004, we have been collecting topology data

from a host located at the University of Strasbourg, France.
In this paper, we consider the data collected until the end of
December 2008. The entire dataset is publicly available [19]
and has been collected using mrinfo-rec.

During the whole probing period, on average, mrinfo-rec
daily discovered roughly 10,000 different routers while scan-
ning 100,000 interfaces. For the remainder of this paper, we
remove interfaces with non-publicly routable IP addresses or
marked as down or disabled. The addresses that we consider
as non-publicly routable are the special-use IPv4 addresses
described in [20]. Specifically, we eliminate the private IP
address blocks 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16.
We also remove the loopback address block 127.0.0.0/8 and
the 0.0.0.0 address. On average, 25% of the interfaces col-
lected by mrinfo-rec are categorized as non-publicly routable.
We also remove all multicast tunnel interfaces detected with
the keyword “tunnel” in the mrinfo raw output.

From our four year daily dataset, we arbitrarily select,
each month, the largest mrinfo-rec output file, leading thus
to 56 global topologies. Those 56 graphs form the dataset
analyzed in this paper.

In the analysis provided in this paper, the inference of
L2 networks is critical. In our context, by L2 network, we
mean a technology allowing a router to transmit IP packets
to several other IP routers through the same interface, i.e., a
multi-access network. One often distinguishes between Non

Broadcast Multiple Access (Nbma) networks (Atm, Frame
Relay, X25), and broadcast networks such as most Lan net-
works (Ethernet, token ring, Fddi).

These two kinds of networks behave differently as far as
IP multicast is concerned. In particular, when using Pro-
tocol Independent Multicast (Pim) as a routing protocol in
a broadcast network, each router is a Pim neighbor of each
other, and only one of them is elected as the querier [21].
These properties can be easily checked with the mrinfo raw
output (see the symmetry and querier rules in Sec. 2.3). In
Nbma networks, IP packets are usually transmitted via cir-
cuits that behave as a collection of point-to-point or point-
to-multipoint connections (which does not imply the rules
defined in Sec. 2.3). Note that if these circuits locally use
different subinterfaces and IP addresses, they cannot be dis-
covered by mrinfo.

Furthermore, we can also study the specific case of Mpls

networks [22]. Notice first that an Mpls network is not an
actual L2 network since Mpls routers are usually IP routers,
and Mpls signalling (Ldp [23], Rsvp [24], BGP [25]) uses
IP. On the one hand, most techniques to transmit multicast
packets over Mpls (for traffic engineering or multicast L3
Vpn) use some sort of tunnels (Traffic engineering tunnels,
or GRE encapsulation for Pim in L3 Vpn), and since we
discard tunnel interfaces from mrinfo output in our analysis,
such Mpls networks should not introduce artifacts. On the
other hand, in the case of basic MPLS, multicast packets
are not sent through Label Switch Paths (LSP), contrary to
unicast packets. Therefore, although traceroute may infer
a false link between the two endpoints of an LSP, mrinfo will
correctly provide the direct IP neighbor. However, the case
of L2 multicast VPN (Vpls [26, 27]) is different since IP
multicast routers (if any) of each customer site will see each
other through a virtual L2 switch instead of the provider
Mpls network. The mrinfo analysis will correctly discover
this L2 network, but will not detect that it is an L2 Vpn

through the provider network. However this can happen
only in customer ASes and will be seen only if mrinfo queries
are not filtered between the Vpn and Internet which is not
very likely. In the following, we only study the impact of
broadcast L2 networks: in practice, ethernet networks such
as switches.

Among all interfaces discovered in our selected dataset
(i.e., 56 global topologies), more than a million has a fully
qualified domain name that allows us to determine the phys-
ical interface type (i.e., ge0, tunnel0, vlan500, pos0, . . . ,
are typical naming conventions used by network adminis-
trators). About 42% of these names allow us to infer the
interface type. Focusing on multi-access networks, we notice
that about 99% of discovered interfaces seem to be Ether-
net links of various data rates (from 10M to 10G) or Vlan

interfaces (probably on top of Ethernet interfaces too).

2.3 L2 Inference
In Sec. 2.1, we have seen how an L2 network is suggested

from the raw mrinfo output. However, this inference comes
with two limitations. First, we are only able to detect L2
networks involving at least three routers. Second, the in-
ferred presence of an L2 network may hide a “cascade” of L2
networks. However, the nature of the router degree distri-
bution (i.e., the actual number of devices directly connected
to it) is not impacted by those limitations. Only the degree
of L2 networks might suffer from this. In this paper, we



Figure 3: Subnet length distribution for point-to-
point and point-to-multipoint connections

focus on the degree distribution of routers considering the
difference between the L2 and L3 visions.

Here, we verify whether our inference technique is accu-
rate and what kind of technology it seems to reveal. Indeed,
there are several kinds of L2 networks such Atm clouds or
simple Ethernet switches. In our analysis, we particularly
focus on broadcast L2 networks such as Ethernet.

There are several ways to validate our L2 inference tech-
nique. First, one could use small testbeds and access net-
works whose administrators give us the physical map. We
performed such tests in our local AS in Strasbourg and found
that our inference is correct in revealing L2 networks.

Second, the validation can be done “theoretically” based
on three rules:

• symmetry rule. We verify that all the routers attached
to a given potential L2 network have the same view.
For instance, on Fig. 2, we are able to detect that
router R2 is connected to R5 and R6 through an L2
network. When probing R5 and R6 with mrinfo, the
L2 connection to R2 must also be visible in their mr-

info output as well as the connection between them.
Such a symmetry rule suggests the detection of broad-
cast L2 network.

• querier rule. In a normal case, only one router per
L2 network must be tagged as the Igmp “querier” (i.e.,
it won the querier election on the subnet [21]: it has
the greatest IP address on the subnet). In the case
depicted in Fig. 2, as interface 1.1.2.3 is tagged as
“querier”, interfaces 1.1.2.1 of R5 and 1.1.2.2 of R6

should not be tagged as such.

• subnet mask rule. We verify the validity of the min-
imum subnet mask covering all IPs involved in the
L2 network. Fig. 3 provides the cumulative distribu-
tion of the subnet lengths for point-to-point (i.e., a
direct connection involving two routers) and point-to-
multipoint (i.e., three or more L3 routers connected
through an L2 network) connections. We notice that
roughly 90% of the prefix lengths are very long: usu-
ally longer than /24 for point-to-multipoint and us-
ing a /30 or /31 prefix for point-to-point connections.

Figure 4: L2 inference rule verification with a /16
threshold for the subnet mask rule

Fig. 3 shows that more than 99% of the point-to-point
connections (plain line) use a subnet mask longer than
/24 and more than 95% uses a subnet mask longer than
/28. In a few cases the minimal subnet mask may yield
a prefix shorter that /24 or even /16 (less than 5% for
point-to-multipoint connections). This is probably an
anomaly, possibly explained by the use of tunneling or
a Nbma L2 Wan technology (Atm, frame relay, . . . ).
We consider a /16 threshold for the minimal subnet
mask rule applied to an L2 network.

Note that the symmetry and the querier rule need at least
two responding L3 nodes connected to the same L2 network
to be verified. Based on those three rules, we classify an L2
inference in one of three categories:

• coherent. In this case, the three rules are verified and
we are sure that our L2 inference technique is accurate
and suggests a traditional L2 broadcast network. This
is the best case.

• incoherent. In this case, at least one of the three rules
is not verified. This category gathers L2 networks that
we are not able to accurately reveal (such as Nbma L2
Wan technology).

• incomplete. In this case, the L2 component is only seen
by a single L3 device (the symmetry and querier rules
cannot be verified).

Fig. 4 shows how our L2 inference technique verifies the
three prescribed rules over the 56 months. Note that L2 in-
ferred networks falling in the coherent category are typically
“broadcast L2 network” such as Ethernet switches (thanks
to the symmetry and querier rules).

Over the whole period and on average, we have the fol-
lowing results: 90.16% of the L2 inferred nodes are coherent
and suggest broadcast capable L2 networks such as Ethernet
switches. 5.84% of the inferred nodes are incomplete, mean-
ing that only 4% are incoherent. Thus, in the vast majority
of the cases, our L2 inference algorithm seems to be verified
and coherent. In the remainder of our analysis, we ignore
L2 components falling into incoherent or incomplete cate-
gories. Note that those problematic cases are not uniformly



Notation Meaning
S set of L2 nodes
R set of L3 nodes

N = R
S

S
set of nodes (including L2
inferred ones)

succ(a) set of neighbors of node a

deg(a) = |succ(a)| degree of node a in the L2 graph
r(x) number of L3 nodes of degree x

s(x) number of L2 nodes of degree x

t(x) = r(x) + s(x) number of nodes of degree x

p(x)
number of L3 nodes having a
degree of x and at least
one neighbor in S

b(x)
number of L3 nodes having
x neighbors in S

r′(x)
number of routers having a
logical L3 degree of x in the L3
graph

Table 1: Notations

distributed across the domains and time: for example, we
notice that a large proportion of those cases comes from
AS680 and AS5400 and seem to progressively and slightly
disappear. We suppose that those cases correspond to “L2
circuits technologies” such as Atm.

Finally, note that the drop observed on Fig. 4 during the
week 55 is due to a stronger filtering policy applied by the
French National Research Network leading to a strong de-
crease in the amount of routers discovered by mrinfo.

3. HOW L2 NETWORKS IMPACT THE L3

NODE DEGREE DISTRIBUTION
In the remainder of the paper, we focus on the relative

difference between an L3 and an L2 vision of the network.
We do not claim to provide the actual degree distribution:
our goal is rather to emphasize the difference in the apparent
connectivity when adopting a vision of the network at a
given layer.

Hence, using the same set of IP addresses, we construct
two graphs, one corresponding to a traceroute like view
and the other to the L2-aware view inferred thanks to mr-

info. Obviously, our analysis is based on a partial view of
the Internet graph. Furthermore, we restrict the two con-
structed topologies to their connected and responding com-
ponents, i.e., we remove all links connected to a router that
does not respond to mrinfo so that we guarantee a set of
active and existing links and routers. We assume that this
partial vision does not impact the relative comparison al-
though it may introduce some non coherent results in an
absolute analysis, e.g., a large proportion of leaf routers. In
practice, these routers might be located at the boundary of
the multicast part of the probed network. Indeed, if their
neighbors not already discovered are not multicast enabled,
mrinfo will only report one active link per multicast border
router: the one allowing mrinfo-rec to reach it.

3.1 Notations
In an L2-aware graph, there are two types of connections:

L3 point-to-point connections that are correctly interpreted
by traceroute, and L2 point-to-multipoint connections that

are seen as a full mesh of point-to-point connections using
traceroute. Our goal is to measure the importance of this
confusion using the node degree distribution as an indicator
to understand the difference between the L3 and L2 graphs.
Note that one may also use other indicators such as the
clustering coefficient, the assortativity, or a path diversity
indicator.

Table 1 provides the basic definitions and notations used
in the remainder of this paper. In our analysis, the notion
of degree is related to the L2 graph. In contrast, we use the
term layer-3 degree to refer to the number of edges discov-
ered by an L3 tool such as traceroute. A node n has a logical
L3 degree of x if and only if

degr(n) + degs(n) = x. (1)

Notations degr(a) and degs(a) respectively refer to the
L3 point-to-point degree of node a, and to the L3 point-to-
multipoint degree of a such that:

degs(a) =
X

∀v∈succ(a) | v∈S

(deg(v) − 1). (2)

Furthermore, we consider the IP multigraph issue: there
might exist several links or IP address pairs connecting the
same two nodes. In our analysis, the degree of a node is the
number of the neighboring IP addresses, e.g., the number of
active and replying IP addresses seen on the right part of
the raw mrinfo output. Typically, an L2 node refers to a
broadcast network such as an Ethernet switch, while an L3
node corresponds to an IP router.

Eqn. 2 is the key point of our analysis: L2 point-to-
multipoint connections between a node a and its neighbors
are seen as a full mesh using an L2 agnostic view, whereas
using mrinfo, we can infer a star centered on L2 nodes in-
stead of cliques.

In order to reveal the underlying L2 topology, when pars-
ing our dataset, we generate an L2 aware graph containing
inferred L2 nodes and links. The set of nodes in this L2
inferred graph is denoted N . Except considering the use of
technologies such as Vlan, we can assume that this vision
describes the L2 topology. Let us assume an L2 network con-
nected to m routers (2m directed links in the L2 graph), then
it induces m× (m− 1) directed links in the L3 graph. With
the use of Vlan, let us now consider k Vlans deployed on a
L2 node connecting m routers (at most 2km directed links in
the L2 graph instead of 2m in the physical topology), then,
in the worst case, it can induce km× (m− 1) directed links
in the L3 graph. Note that we provide a lower bound on the
bias resulting from a L3 graph when considering the physi-
cal topology: 2m < 2km ≤ km × (m − 1), ∀k > 1, m ≥ 3.
Moreover, our analysis is conservative because mrinfo may
underestimate the number of active IP interfaces: the prob-
ing view is restricted to multicast enabled links and mr-

info replies may be fragmented and then only partially in-
terpreted. See the technical report [28] for details.

3.2 Results
In this section, we focus on the node degree distribution

considering two points of view: the logical L3 graph and the
underlying L2 graph. In particular, we would like to know
how L2 devices might impact the degree distribution. The
purpose of our study is to: (1) highlight the huge difference



between graphs describing L2 and L3 connections, and (2)
explain why there exist nodes with very high degree in a L3
graph.

Using our L2 inference technique, we can easily compute
r(x) (i.e., the number of L3 nodes of degree x - see Table 1)
and s(x) (i.e., the number of L2 nodes of degree x - see Ta-
ble 1). In contrast, with an L2 agnostic view such as with
traceroute, the global degree distribution is purely logical:
we can only compute r′(x) (i.e., the number of routers hav-
ing a logical L3 degree of x - see Table 1). Hence, using our
mrinfo dataset, we can easily emphasize the difference be-
tween t(x) (i.e., the sum of r(x) and s(x) - see Table 1) and
r′(x) because we are able to compute all key distributions
defined in Table 1.

Fig. 5 shows the difference between those two distribu-
tions.2 The horizontal axis gives the degree, while the verti-
cal axis shows the proportion distribution. The shaded area
represents the t(x) distribution while the line refers to the
r′(x) distribution. Note that the maximum degree for r′(x)
is 115 but it is too tight (0.01%) to appear on the plot.

The degree distribution is strongly impacted using only
an L3 perspective: the L2 agnostic distribution has a much
more heavy tail than the one considering both L2 and L3
nodes. For example, using the L2 view (t(x)), we observe
that there do not exist routers having a degree greater than
45 whereas the L3 views (r′(x)) suggests routers having de-
gree larger than 100. This means that there are more nodes
having large degree when L2 interconnections are translated
to full mesh connections. Consequently, it also means that
the shape parameter used to model the power law distribu-
tion of the node degree and the degree of connectivity in
general are strongly biased if one wants to consider a physi-
cal view of a given network (which is generally the case when
measuring path diversity characteristics for example).

This result is of the highest interest since many studies
use L3 topologies such as those provided by Rocketfuel [29]
to perform path redundancy analysis and to evaluate the
quality of the re-routing protocol offered by link protection
schemes [30, 31]. However, Rocketfuel topologies do not
model the specific Shared Risk Link Groups (Srlg) [32, 33]
of L2 networks. This leads to nodes with overestimated
degree and thus more path diversity and redundancy than
in the actual underlying graph.

A first attempt to model the high degree shifting of an
L3 view is to consider that a router connected to an L2
network“will increase” its logical L3 degree by the number of
neighbors connected to that L2 network. With a naive model
considering that, in the vast majority of cases, L2 networks
interconnect leaf routers (e.g., routers of degree 1, so that
distributions p(x) and b(x) -see Table 1- are meaningless),
we may obtain:

r
′(x) ≈

8

<

:

r(x) + s(x + 1) × x if x > 1,

r(1) −
X

s∈S

deg(s) otherwise. (3)

However, we can easily notice that this model is not suffi-
cient to explain the heavy tail of the L3 distribution. Indeed,
we can observe that obtaining such an amount of nodes hav-

2For the sake of clarity, we select only one of our 56 global
topologies, the one being the most connected (i.e., with
the maximum number of edges). The general behavior is
roughly identical across our whole set of global topologies.

Figure 5: L2 (t(x)) vs. L3 (r′(x)) Node Degree Dis-
tribution Comparison

ing such a high degree requires point-to-multipoint connec-
tions through multiple L2 nodes. We will detail this issue
in the next section considering a closer look at each key
distribution (e.g., the L2 nodes degree distribution and the
number of L2 neighbors) and according to the specifics of
several routing domains.

4. DOMAIN SPECIFICITY
In Sec. 3, we have seen that the impact of L2 networks on

the node degree distribution is considerable. This analysis
was done on our entire dataset, without considering the po-
tential particularities of domains. In this section, we refine
our analysis, focusing on several ASes of interest: we want
to know whether there exist some common patterns between
domains.

We first discuss our methodology in extracting and select-
ing particular domains from the raw mrinfo dataset (Sec. 4.1)
and, next, analyze the impact of L2 networks on the node
degree distribution of selected ASes (Sec. 4.2).

4.1 Methodology
From our four year daily dataset, we arbitrarily select,

each month, the largest mrinfo-rec output file, leading thus
to 56 global topologies. For each of these 56 selected mrinfo-

rec files, we extract the topologies of four particular ASes.
This extraction is made possible with our router-to-AS map-
ping algorithm [16]. This algorithm assigns a unique AS
number to each router and identifies AS border routers (AS-
BRs). Our algorithm is based on a set of rules using common
IP address allocation guidelines and probabilistic methods.
To reenforce our mapping, it verifies, at each step, the con-
sistency of the assignment returned by each rule. A subset
of those rules are also used in [34].

Using this router-to-AS mapping, we have extracted a set
of intra-domain topologies that can be classified as follows:
Tier-1 (such as Sprint), Transit (such as IUnet), and Stub
networks (such as Uninett). Those one-per-month topolo-
gies are freely available in various formats.3

Due to space limitations, we only consider four ASes taken
from the set of extracted topologies, two being Tier-1 (AS1239

3See http://inl.info.ucl.ac.be/content/mrinfo.



Level ASN Name |R| |S| α β − L3 β − L2
Global - - 8,670 ±448 1,100 ±63 0.38 ±0.01 0.69 ±0.01 0.34 ±0.01

Tier-1
1239 Sprint 649 ±7 63 ±0 0.58 ±0.01 0.70 ±0.01 0.34 ±0.01

3356 Level-3 254 ±6 123 ±7 0.67 ±0.03 0.87 ±0.01 0.69 ±0.01

Transit
1267 IUnet 517 ±16 225 ±10 0.77 ±0.04 0.85 ±0.03 0.74 ±0.03

3269 Telecom Italia 822 ±28 73 ±2 0.69 ±0.02 0.95 ±0.01 0.67 ±0.01

Table 2: Selected ASes global overview

and AS3356) and two being Transit (AS1267 and AS3269).
We select those ASes because they are the largest topologies
in our dataset. Furthermore, they are very well connected
and seem more impacted by the presence of L2 networks
compared to the global vision provided by the whole dataset
(see Table 2). We performed the same analysis for other do-
mains, results can be found in [28]. Note that we remove
inter-domain links from those topologies reducing so the de-
gree of connectivity of the routers in those ASes.

Table 2 provides an overview of the amount of L3 and L2
nodes in our dataset. Values have been averaged over the
56 considered mrinfo files. The confidence intervals are also
given. In addition, Table 2 provides three ratios: (α) the
proportion of routers connected to at least one L2 node in
the L2 graph, and (β − L3 and β − L2) the proportion of
connections using an L2 node. Note that β − L3 refers to
the quantity of connections using an L2 point-to-multipoint
network in the L3 graph whereas β − L2 refers to the same
quantity in the L2 graph.

For the remainder of the analysis and for the sake of clar-
ity, we select only one probing day per AS according to the
size of the largest connected component inside each AS. [28,
Sec. V] details this process: intuitively, we simply extract
the best topology for each AS.

4.2 Experimental results
First, as shown in Table 2, the proportion of L2 nodes (i.e.,

S
N

) is generally quite significant. On the whole dataset, ap-
proximatively 11.2% of the nodes are inferred as L2 nodes.
It is worth to notice that this proportion is not uniformly
distributed across ASes. For instance, some large ASes,
such as AS1267 or AS3356, verify: |S| ≈ 0.3 × |N |. This
high proportion can obviously lead to an important differ-
ence when considering the connectivity degree in L2 and L3
graphs. However, another aspect impacts this difference: if
the degree of L2 nodes is high, it means that a large num-
ber of routers are involved in L2 connections. For example,
we can notice that, although less than 10% of the nodes in
AS3269 are L2 networks, about 97% of the connections be-
tween routers modeled by a L3 graph actually involve L2
nodes. This phenomenon is due to the fact that L2 nodes
interconnect a large number of routers. It is worth to notice
that the number of logical links is much more important in
the L3 graph than the number of “physical ” links in the L2
one when most of L2 nodes involve more than three routers.

In the fashion of Fig. 5, and for the four considered ASes,
Fig. 6 compares the node degree distribution when L2 nodes
are taken into account (t(x) - see Table 1) and when L2 nodes
are ignored by an L3 only vision (r′(x)).

As mentioned in Sec. 3, we notice a great shift in the dis-
tribution of large degrees. However, we observe that this
difference significantly varies from one AS to another. For

example, Level 3 is much more impacted than Sprint. In
all cases, we can notice that the model given in Eqn. 3 can-
not describe such a degree shifting. For instance, even for
Sprint, the maximum router degree in the topology is 21 (see
Fig. 7(a)). And if we assume that this router is connected
to the largest L2 node of degree 21 (see Fig. 7(b)), we may
obtain a L3 logical degree of 21 + 21− 1 = 41 whereas there
exists a router having 47 neighbors in the L3 topology. Note
that the Sprint topology given in the Rocketfuel dataset [29]
presents approximatively the same degree distribution as the
L3 one (r′(x)) given in Fig. 6(a): there also exists routers
having a degree greater than 40. However, note that it is
likely that this bias is also due to alias resolution limitations.

The bias resulting from an L2 agnostic view obviously
depends on the s(x) distribution, but also on the way L2
and L3 nodes are interconnected. Indeed, we can notice
that the ratio S

N
is not the only factor explaining this bias.

Fig. 6 shows completely different t(x) and r′(x) distributions
even for topologies with less than 10% of L2 nodes, such as
Sprint and Telecom Italia.

In practice, two other distributions could emphasize the
influence of L2 nodes: p(x) (i.e., the number of L3 nodes
n having a degree of x | degs(n) > 0 - see Table 1), and
b(x) (i.e., number of L3 nodes having x L2 neighbors - see
Table 1). Fig. 7(a), Fig. 7(b), Fig. 7(c), and Fig. 7(d) illus-
trate some key patterns useful to understand the difference
between t(x) and r′(x).

First of all, we can notice among our set of selected ASes il-
lustrated on Fig. 7 that network administrators do not seem
to use a common engineering way to construct and deploy
their topology. It highly depends on economic and techno-
logical factors not captured by classical models. Compared
to the global analysis depicted in Fig. 5, we can highlight the
difficulty of providing a model capturing the particularities
of each domain.

Second, focusing on common properties, we can observe
that r and p are slightly different distributions: keeping in
mind that most routers counted in the r distribution also
fall in p, we can emphasize the fact that peak values in r be-
come still more important in p such that routers connected
to L2 networks may strongly influence those peaks values.
For example, in AS1239, it means that globally 40% of its
routers have a degree of 1 while focusing on routers con-
nected to L2 nodes, this proportion grows to almost 70%.
In practice, on AS1239, we can conclude that the majority
of the routers connected to L2 nodes are leaf nodes. How-
ever, this observation is highly topology dependent. The
only common characteristic is the increase of the same peak
values for each AS. Those results explain why the difference
between the t and r′ distributions shown in Fig. 6 is so high
for most representative degree values.

Fig. 7(b) and Fig. 7(d) plot the degree distribution of L2



(a) AS 1239: Sprint (b) AS 1267: IUnet (c) AS 3269: Telecom Italia (d) AS 3356: Level-3

Figure 6: L2 (t(x)) vs. L3 (r′(x)) Degree distribution comparison for our set of selected ASes

(a) L3 node degree distribution (b) L2 node degree distribution (c) Routers having L2 neighbors (d) Number of L2 neighbors

Figure 7: Key distributions for our selected ASes

nodes, s(x), and the distribution of the number of L2 neigh-
bors of routers, b(x). First, we can notice on Fig. 7(d) that
the power law modeling the L2 node degree distribution is
again highly dependent on the topology and not equivalent
to the one modeling r(x) for each given topology. The max-
imum degree of s(x) plays a critical role in the absolute dif-
ference between t(x) and r′(x) but Fig. 7(c) highlights the
higher importance of b(x). First, we can see on Fig. 7(d)
that most routers are connected to L2 nodes. Only 10% for
AS3356 and 40% for AS1239 of routers are only connected
through point-to-point links. Moreover, we observe that, for
topologies such as AS1267 and AS3269, most routers are not
connected to a single L2 node but to several ones: two for
AS3269 and six for AS3356. Generally speaking, the num-
ber of L2 neighbors is an important factor explaining the
heavy tail distribution of r′(x). In practice, it means that
a significant subset of the routers are connected to several
high degree L2 nodes. Surprisingly, this experimental anal-
ysis shows that, for topologies such as AS3356 and AS3269,
more than half of the routers are connected to more than
two L2 nodes. We also notice that there exists routers con-
nected to more than 20 L2 nodes in AS1267: in that case,
it probably means that those routers are involved in Vlans
crossing one or several switches.

Fig. 8 illustrates two practical cases leading to a large
difference between r′(x) and t(x) distributions. Those sce-
narios are common in our dataset and may explain why the
impact of L2 networks is so significant:

(a) Man access routers are generally connected to multiple
metropolitan locations to distribute the access. The

Internet

(a) access

Internet

(b) redundancy

Figure 8: Examples of L2 configuration

use of L2 networks is very common in order to facilitate
and reduce the cost of small deployments.

(b) The use of redundant access connections for load bal-
ancing purposes can increase of this effect.

On Fig. 8(a), the Internet access router has a logical L3
degree of nine while it has actually only three physical links.
On Fig. 8(b), the two access routers are logically connected
to each other router in order to ensure load balancing and
resiliency. Note that a further analysis is necessary to un-
derstand the difference in terms of L2 usage between core
and access part of a network. Indeed, the pure backbone
part is probably differently impacted than the border of a
network. To mitigate this effect, we need to characterize the
core and access parts in order to divide networks in multiple
areas. The use of traceroute probes may help us to perform



such a mapping. However, this is a huge challenge that is
outside the scope of this paper.

5. WHY SUCH A GREAT SHIFT IN THE

NODE DEGREE DISTRIBUTION?
The goal of this section is to model the relationships be-

tween the key L2 and L3 distributions explaining such an
heavy tail distribution when considering a L3 view. We fo-
cus on the correlation between L2 and L3 devices that gen-
erates routers having a very high degree. In Sec. 4.2, we
have seen that the degree distribution of L2 nodes (s(x))
and the distribution of the number of L2 neighbors (b(x))
are the first impacting factors.

5.1 L2 and L3 Correlations
In order to provide an accurate model, correlations be-

tween keys distributions should be considered. For routers
involved in L2 interconnections, we denote p their maximum
degree and b their maximum number of L2 neighbors. Us-
ing r(x), p(x) and normalizing b(x) and s(x)6, we are able
to propose a probabilistic model. For that purpose, we also
need to quantify the nature of the dependence between the
p(x), b(x) and s(x) distributions.

Fig. 9 shows the normalized p(x) × b(x) dependence dis-
tribution (in practice, we have also plotted the distribution
of routers which are not connected to L2 nodes). It allows
us to understand the relationship between the p(x) and b(x)
distributions. Obviously, b(x) depends on p(x) because a
router cannot have more L2 neighbors than its total degree,
as indicated by empty portions in upper triangles of Fig. 9.
We further notice that large degree routers generally have a
great number of their neighborhood being L2 nodes.

We thus observe a strong correlation between those two
distributions meaning that b(x) is not uniformly distributed
among routers and their degree: a router having a large
number of neighbors has a higher likelihood to be connected
to a large number of L2 nodes. This correlation seems quite
linear on most of the ASes that we analyzed.

We do not find any other linear dependency between other
relationships: Figs. 10 and 11 do not suggest any kind of
obvious dependence in relationships7. However, we cannot
argue that there does not exist any kind of non linear depen-
dence. Figs. 10 and 11 may also help to understand some
specific behaviors seen in Fig. 6. Indeed, one can argue that
s(x) may be the main factor explaining the shift in the de-
gree distribution. Potentially, if there exist some particular
relations between p(x) and s(x), it may explain several shift-
ing details in the degree distribution. For example, looking
at the peak value at x = 14 in Fig. 6(b), we can explain
this phenomenon with Fig. 11(b): we observe that a great

5Here, we also provide the degree distribution for routers
which are not connected to L2 networks, i.e, r(x) in general.
6Note that for s(x), it implies to take into account the
fact that large degree L2 nodes impact a greater number
of routers than L2 nodes with small degree. For b(x), we
decide to model the dependence between this distribution
and the one of p(x).
7For these two figures we list the degree of L2 networks con-
nected to routers and then analyze the potential dependence.
Note that those distributions have been normalized accord-
ing to the proportion of routers having a given x-axis value.
Furthermore, one may also analyze the three dimensional
relationship between p, s, and b distributions.

number of routers having a degree of 1 (p(1) values) are con-
nected to L2 nodes of degree 15 resulting in a large value of
routers having a logical L3 degree of 15 − 1 = 14. However,
this kind of behavior is highly topology dependent and do
not seem to follow any particular rule. Taking this kind of
exceptions into account leads to lose the model generality.
Here, we propose a high level model trying to capture global
properties.

In this section, we investigate whether the p(x) × b(x)
dependence seems sufficient to explain the large tail of the
L2-agnostic degree distribution. To study this question, we
decide to only model the linear correlation between p(x) and
b(x).

5.2 Model
In this section, we only model the relationship between

the number of L2 neighbors and the total number of neigh-
bors of a router. Our goal is to highlight the fact that this
relationship conditions the L2-agnostic degree distribution.
Our model works as follows: considering a router having i

neighbors with j being L2 ones (j ≤ i), its L3 logical degree
may become x = i − j + η where η denotes the sum of the
degrees (minus one) of its L2 neighbors. Because we do not
model any relationship between s and the other distribu-
tions, we consider that the degree of its L2 neighbors only
depends on s(x). Generalizing this idea, the set of routers
having an L3 logical degree of x is composed by all routers
having a lower degree that may reach this degree thanks to
their L2 neighbors. Our model is probabilistic in the sense
that we consider the probability that a router having a de-
gree of i connected to a set of j L2 nodes will increase its L3
logical degree by a certain amount, x− i, to appear directly
connected to x neighbors.

In the following, the notation bp(i, j) refers to the proba-
bility to have a router having a degree of i and j L2 neigh-
bors (0 < j ≤ i). In other words, bp(i, j) corresponds to
the probability distribution function given in Fig. 9 with-
out considering cases where j = 0. Hence, our probabilistic
model verifies:

r
′(x) ≈



r(x) + χ(x) − p(x) if x > 1
r(x) − p(x) otherwise.

(4)

with χ(x) referring to the probability that L3 nodes with
a lower degree than x reach a degree of x because of their
connections to L2 nodes, such that:

χ(x) =

min(x−1,p)
X

i=1

2

4p(i) ×

min(i,b)
X

j=1

bp(i, j) × c
i
j(x)

3

5 (5)

where ci
j(x) denotes the sum of all possible product com-

binations between a set of j elements {s(a1), . . . , s(ak), . . . ,
s(aj)}, with 2 < ak ≤ x− i−j +3 ∀k ∈ [1, j], and such that:

j
X

k=1

ak = x − i + 2j

= ω. (6)

We denote δ the set containing ak’s j-tuple, δ = [3, x− i−
j + 3]j . Thus, it comes:



(a) AS 1239: Sprint (b) AS 1267: IUnet (c) AS 3269: Telecom Italia (d) AS 3356: Level-3

Figure 9: Dependence between p (degree of routers having L2 neighbors5) and b (number of L2 neighbors)
distributions

(a) AS 1239: Sprint (b) AS 1267: IUnet (c) AS 3269: Telecom Italia (d) AS 3356: Level-3

Figure 10: Dependence between b (number of L2 neighbors) and s (degree of L2 nodes) distributions

(a) AS 1239: Sprint (b) AS 1267: IUnet (c) AS 3269: Telecom Italia (d) AS 3356: Level-3

Figure 11: Dependence between p (degree of routers having L2 neighbors) and s (degree of L2 nodes)
distributions

c
i
j(x) =

X

∀j-tuple{a1,...,aj}∈δ |

j
X

k=1

ak = ω

j
Y

k=1

s(ak) (7)

Note that in practice we do not have to explore all possible
combinations in the space δ to perform the computation of
ci

j(x). Indeed, we do not care about the degree apparition

order because ci
j(x) is a sum of products, so the j terms are

permutable in each sub-product. Let us denote ∆ the set

of j-tuple {a1, . . . , aj} ∈ δ verifying Eqn. 6. In practice, we
then just need to compute:

c
i
j(x) =

X

∀{a1,...,al,...,aj}∈∆
such that al≤al+1∀0<l≤j

j
Y

k=1

s(ak) ×
k!

w
Y

z=1

σz!

(8)

where σz,1≤σz≤j , denotes the number of occurrence of

each integer in the set ∆ such that
w

X

z=1

σz = j. Thus, us-

ing this computation optimization, it is possible to compute
ci

j(x) in a reasonable time, on the order of a few minutes



(a) AS 1239: Sprint (b) AS 1267: IUnet (c) AS 3269: Telecom Italia (d) AS 3356: Level-3

Figure 12: Degree distribution for real data and generated by our model using an L3 view (r′(x))

even for (i, j) ≈ (40, 20) such as with AS1267. Results are
given in Fig. 12: the lines labeled “r′(x)−model” correspond
to the application of our model on our set of four ASes while
the lines labeled “r′(x)−data” result from the experimental
analysis. Depending on the AS, our model is more or less
accurate to simulate the L3 view: it performs very well on
Sprint but it is less accurate on Level-3. Indeed, the prob-
abilistic nature of our model cannot capture sparse discrete
values at the tail of the degree distribution. This values
may be explained with some specific behavior of the p × s

dependence. However, in all cases, our model captures the
significant probability to generate a great shift in the node
degree distribution. Considering a high level view of service
providers networks using power laws shape to model their
properties, we argue that our model is sufficient to provide
a first step in the L2 aware topology generation. We claim
that a probabilistic generation model taking into account
parameters such that the similarity between r and p, the
fact that s has a different shape than r and the linear corre-
lation between p and b is able to provide the first step of the
generation of L2 aware graphs. The second step consists in
analyzing the connectivity nature of relationships between
nodes: does it often exist a similar pattern (e.g., the de-
gree) or some sort of correlation between directly connected
nodes? This question implies the study of other graph prop-
erties such as the clustering coefficient in L2 aware networks.

5.3 Summary
Using the model given in Eqn. 4, we implicitly assume the

independence between s(x) and the two other distributions:
p(x) and b(x). However, as shown in Fig. 12, our model
captures the heavy tailed distribution r′(x) on each AS. Al-
though it does not integrate all stochastic details (Fig. 10
and 11 may help to solve peak values at the tail or differ-
ences at the head), it captures the significant probability
to generate nodes with high degree. This result emphasizes
the importance of the correlation between L2 and L3 degree
properties and tends to show that the main critical relation-
ship between key distributions is the one linking p(x) and
b(x).

Thus, the answer to the question “Why such a great shift
in the node degree distribution?” is: “Because a large propor-
tion of the links of large degree routers are usually connected
to L2 nodes”. In practice, on Fig. 9(a), we can interpret
this answer like this: the largest router seen in Sprint has 21
neighbors with two being L2 networks. Then, considering

the L3 view, this router may reach, in theory (i.e., following
the general idea of Eqn. 4), a degree of 21−2+2×(21−1) =
59 (21 also being the maximum degree of L2 nodes). This
phenomenon is exacerbated for topologies such as Level-3
(AS3356) because most large degree routers have many L2
neighbors (≥ 6). Note that, in the worst theoretical case, we
might observe routers having a L3 logical degree of roughly
100 in this L3 topology.

Although there does not exist a common model describing
all topologies, we have shown that the heavy tail of the node
degree distribution using a pure L3 view is due to multiple
factors (in particular s(x) and b(x) distributions), and the
correlation between p(x) and b(x) helps to understand the
shift in the degree distribution generated by an L3 view.

In order to generate L2-aware topologies, it is necessary
to carefully consider several distributions, e.g., r(x), p(x),
s(x), b(x), and their relationships to produce realistic mod-
els. Our model is a first basis for L2-aware graphs gener-
ation. According to the set of keys distributions and their
similarities, it may allow for generating L2 topologies focus-
ing on particular relationships between p(x), b(x), and s(x)
distributions. The next step being to model other proper-
ties, such as the assortativity, in order to capture the con-
nectivity nature between nodes.

Finally, using L3 traces such as those obtained by trace-
route campaigns and minimal L2 information, one may an-
alytically refine our model to produce L2 aware topologies
verifying several L2-L3 connectivity constraints. For exam-
ple, it is possible to simplify the model and so reduce the
number of distributions taken into account by considering
some relationships between key them (e.g, the one between
r(x) and p(x)) and modeling them with specific power laws.

6. RELATED WORK
Modeling Internet topology has been a large subject of

research since Faloutsos et al. seminal paper [8] in which
they discuss the existence of power law relationships between
several properties of the Internet graph.

If this work has been extended by others [35, 36, 37, 38,
39], it has also been strongly questioned. In particular,
Lakhina et al. [9] show that if a graph has a node degree
distribution that is very different from a power law, sam-
pling from a small set of vantage points will yield a picture
of a graph with a node degree distribution that follows a
power law. One of the reasons evoked by Lakhina et al. is
that the sampled graph has fewer edges than the genuine



graph. Clauset and Moore [10] explain analytically this bias.
They demonstrate that, for sparse random graphs of large
average degree, the apparent degree distribution displays a
power law.

These biases have been further studied by Petermann and
De Los Rios [40], and Dall’Asta et al. [41]. Guillaume and
Latapy [42] have extended these studies to include the trade-
off between the number of monitors and the number of des-
tinations.

Li et al. have shown that the node degree distribution is
not sufficient to describe network topology [43, 44]. They
point out that there exist many different graphs having the
same distribution of node degree. Some of them might be
considered opposites from the point of view of network engi-
neering. Instead, Li et al. propose models that incorporate
technological constraints on router and link bandwidth and
connectivity, together with abstract models of user demand
and network performance.

Prior to our study, Pansiot and Grad already mentioned
the influence of L2 networks on node degree as seen by trace-
route [12]. Further, Clauset and Moore proposed another
explanation for the emergence of power law degree distribu-
tions: the complex interaction of routers with the link-level
topology (identical to our “L2 networks”). However, on the
contrary to our work, they do not quantify the influence of
L2 clouds. They further do not provide any model. Will-
inger et al. [13] also mention opaque L2 clouds as a source of
potential bias when using traceroute based probing. In this
paper, we go further by quantifying, on a large dataset, the
impact of broadcast L2 networks, making them less opaque.

7. CONCLUSION
In this paper, we analyzed how layer-2 (L2) networks im-

pact the node degree distribution resulting from a pure layer-
3 (L3) vision (such as with data collected by traceroute).
Our analysis is based on a large dataset collected using mr-

info, a tool that silently discovers all multicast enabled IPv4
interfaces of a given router and that allows one to infer L2
networks interconnecting routers.

Our analysis showed that the power law shape usually
describing the node degree distribution of IP networks is
strongly impacted when considering the presence of L2 de-
vices. In particular, the tail of the degree distribution is
much less heavy when L2 networks are taken into account.
Our results show that, unfortunately, there does not exist
obvious common patterns between domains. However, for
the ISP topologies studied in this paper, L2 networks play an
important role in the network connectivity: it is very likely
that large degree routers are connected to multiple L2 nodes
having themselves a large degree. Considering the physical
topology, this implies that the actual degree of connectivity
(e.g., the number of redundant physical paths) is generally
lower than the one discovered by a pure L3 campaign using
traceroute.

In addition, we proposed a first probabilistic model cap-
turing the interaction between L2 and L3 topological prop-
erties. Among others, we highlighted that the degree of L2
networks is generally higher than the degree of L3 nodes and
large degree routers are involved in many L2 connections.

In a near future, we plan to investigate the impact of L2
devices in IP networks according to their access and core
backbone parts. More generally, our dataset also questions
the power law nature of the node degree distribution. Using

another probing methodology than traceroute, we might ob-
serve that the scale free property of the Internet may result
from artifacts of a traceroute campaign.
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