skip to main content
research-article

Data-driven suggestions for creativity support in 3D modeling

Published:15 December 2010Publication History
Skip Abstract Section

Abstract

We introduce data-driven suggestions for 3D modeling. Data-driven suggestions support open-ended stages in the 3D modeling process, when the appearance of the desired model is ill-defined and the artist can benefit from customized examples that stimulate creativity. Our approach computes and presents components that can be added to the artist's current shape. We describe shape retrieval and shape correspondence techniques that support the generation of data-driven suggestions, and report preliminary experiments with a tool for creative prototyping of 3D models.

References

  1. Aiger, D., Mitra, N. J., and Cohen-Or, D. 2008. 4-points congruent sets for robust pairwise surface registration. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Boden, M. A. 1990. The Creative Mind: Myths and Mechanisms. George Weidenfeld and Nicolson Ltd. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Carbonell, J., and Goldstein, J. 1998. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proc. SIGIR Conference on Research and Development in Information Retrieval, ACM, 335--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Collingwood, R. G. 1938. The Principles of Art. Clarendon Press.Google ScholarGoogle Scholar
  5. Cross, N. 2001. Design cognition: results from protocol and other empirical studies of design activity. In Design Knowing and Learning, C. Eastman, M. McCracken, and M. Newstetter, Eds. Elsevier Science, 79--103.Google ScholarGoogle Scholar
  6. Finke, R. A., Ward, T. B., and Smith, S. M. 1992. Creative Cognition: Theory, Research, and Applications. MIT Press.Google ScholarGoogle Scholar
  7. Flickr, 2010. http://www.flickr.com/.Google ScholarGoogle Scholar
  8. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gal, R., Sorkine, O., Popa, T., Sheffer, A., and Cohen-Or, D. 2007. 3D collage: expressive non-realistic modeling. In Proceedings of 5th International Symposium on Non-Photorealistic Animation and Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Grauman, K., and Darrell, T. 2007. The pyramid match kernel: efficient learning with sets of features. Journal of Machine Learning Research 8, 725--760. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hartmann, B., MacDougall, D., Brandt, J., and Klemmer, S. R. 2010. What would other programmers do? Suggesting solutions to error messages. In Proc. ACM Conference on Human Factors in Computing Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hays, J., and Efros, A. A. 2007. Scene completion using millions of photographs. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Huang, Q.-X., Wicke, M., Adams, B., and Guibas, L. J. 2009. Shape decomposition using modal analysis. Computer Graphics Forum 28, 2, 407--416.Google ScholarGoogle ScholarCross RefCross Ref
  14. Igarashi, T., and Hughes, J. F. 2001. A suggestive interface for 3D drawing. In Proc. ACM Symposium on User Interface Software and Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Indyk, P., and Motwani, R. 1998. Approximate nearest neighbors: towards removing the curse of dimensionality. In Proc. ACM Symposium on Theory of Computing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Johnson, A. E. 1997. Spin-Images: A Representation for 3D Surface Matching. PhD thesis, Carnegie Mellon University.Google ScholarGoogle Scholar
  17. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kraevoy, V., Julius, D., and Sheffer, A. 2007. Model composition from interchangeable components. In Proc. Pacific Graphics, IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kulis, B., and Grauman, K. 2009. Kernelized locality-sensitive hashing for scalable image search. In Proc. International Conference on Computer Vision, IEEE Computer Society.Google ScholarGoogle Scholar
  20. Lalonde, J.-F., Hoiem, D., Efros, A. A., Rother, C., Winn, J., and Criminisi, A. 2007. Photo clip art. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lee, B., Srivastava, S., Kumar, R., Brafman, R., and Klemmer, S. R. 2010. Designing with interactive example galleries. In Proc. ACM Conference on Human Factors in Computing Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lien, J.-M., and Amato, N. M. 2007. Approximate convex decomposition of polyhedra. In Proc. ACM Symposium on Solid and Physical Modeling. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ling, H., and Soatto, S. 2007. Proximity distribution kernels for geometric context in category recognition. In Proc. International Conference on Computer Vision, IEEE Computer Society.Google ScholarGoogle Scholar
  24. Maji, S., Berg, A. C., and Malik, J. 2008. Classification using intersection kernel support vector machines is efficient. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society.Google ScholarGoogle Scholar
  25. Marsh, R. L., Landau, J. D., and Hicks, J. L. 1996. How examples may (and may not) constrain creativity. Memory and Cognition 24, 5, 669--680.Google ScholarGoogle ScholarCross RefCross Ref
  26. Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G. 2009. CommunityCommands: command recommendations for software applications. In Proc. ACM Symposium on User Interface Software and Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nickerson, R. S. 1999. Enhancing creativity. In Handbook of Creativity, R. J. Sternberg, Ed. Cambridge University Press, 392--430.Google ScholarGoogle Scholar
  28. Odone, F., Barla, A., and Verri, A. 2005. Building kernels from binary strings for image matching. IEEE Transactions on Image Processing 14, 2, 169--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2002. Shape distributions. ACM Transactions on Graphics 21, 4, 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ovsjanikov, M., Bronstein, A. M., Bronstein, M. M., and Guibas, L. 2009. ShapeGoogle: a computer vision approach for invariant shape retrieval. In Proc. ICCV Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment.Google ScholarGoogle Scholar
  31. Pauly, M., Mitra, N. J., Giesen, J., Gross, M., and Guibas, L. J. 2005. Example-based 3D scan completion. In Proc. Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3D shapes. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T., and Eisenberg, M. 2005. Design principles for tools to support creative thinking. In NSF Workshop Report on Creativity Support Tools. 25--35.Google ScholarGoogle Scholar
  34. Reuter, M. 2010. Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. International Journal of Computer Vision 89, 2, 287--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. Visual Computer 24, 4, 249--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sharf, A., Blumenkrants, M., Shamir, A., and Cohen-Or, D. 2006. SnapPaste: an interactive technique for easy mesh composition. Visual Computer 22, 9, 835--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shneiderman, B., et al. 2006. Creativity support tools: report from a U.S. National Science Foundation sponsored workshop. International Journal of Human-Computer Interaction 20, 2, 61--77.Google ScholarGoogle ScholarCross RefCross Ref
  38. Shneiderman, B. 2007. Creativity support tools: accelerating discovery and innovation. Communications of the ACM 50, 12, 20--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sternberg, R. J. 1999. Handbook of Creativity. Cambridge University Press.Google ScholarGoogle Scholar
  40. Swain, M. J., and Ballard, D. H. 1991. Color indexing. International Journal of Computer Vision 7, 1, 11--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. In Proc. SIGGRAPH Asia, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Terry, M. A., and Mynatt, E. D. 2002. Side views: persistent, on-demand previews for open-ended tasks. In Proc. ACM Symposium on User Interface Software and Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Terry, M. A., Mynatt, E. D., Nakakoji, K., and Yamamoto, Y. 2004. Variation in element and action: supporting simultaneous development of alternative solutions. In Proc. ACM Conference on Human Factors in Computing Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Treisman, A. M., and Gelade, G. 1980. A feature-integration theory of attention. Cognitive Psychology 12, 97--136.Google ScholarGoogle ScholarCross RefCross Ref
  45. Weisberg, R. W. 2006. Creativity: Understanding Innovation in Problem Solving, Science, Invention, and the Arts. John Wiley & Sons, Inc.Google ScholarGoogle Scholar

Index Terms

  1. Data-driven suggestions for creativity support in 3D modeling

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 29, Issue 6
        December 2010
        480 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1882261
        Issue’s Table of Contents

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 December 2010
        Published in tog Volume 29, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader