
Testing Methods

&pert systems ure being developed commercially to solve nontraditional problems
in such areas as auditing, fault diagnosis, and computer configuration.

As expert systems move outji-om research laboratories to commercial production

environments, establishing reliabili~ and robustness have taken on increasing
importance [l, 5, 9, 20, 211. In this article, we would like to o~ess tk comparative

effectiveness of testing methods including blackbox, whit&ox, consistency, and
comj&teness testing methods [9, E-19, 22,231 in detectingfaults.’

e take the approach that a”
expert system life cycle CO”.
sisu of the problem-specifi-
cation phase2 [Z, 3, 5, 12, 131,
solution-specification phase,
high-level design phase, im-
plementation phase, and test-
ing phase. This approach is
consistent with the modern
expert system life cycle as sug-
gested in [9, 211. Ezj% s~slnn
testing (generally known as
verification and validation
[15, 171) establishes a binary
relationship between two by-
products of the softwarede-
velopment process. For this
article, we consider testing as
the comparison between by-
products by each life-cycle
phase and implementation.
We use a technique called
“lifeiycle mutation testing”
(LCMT) for a comparative
evaluation of testing methods
on an expert system.

Table I briefly explains
each of the testing methods

that are considered in this articlr [9, 15-17, 19, 231. Here we comment on
characteristics of faults in each life-cycle phase. We make the following gener-
al observations about the nature of faults:
l Faults not detected in early phases become progressively more expensive
to rectify in later phases.
l A fault-prone region (input region that results in failures) may not be
uniformly distributed across the complete input space.
l Faults in early lifwycle phases may induce a multitude of faults in the
final program.

l Inconsisrenc) or incompleteness in
any phase may result in inconsistent
or missing rules in the final program.

RobIan specification faults. Problem
specification is a description of the
problem being solved. Black-lxx test-
ing methods have been shown to be
effective in identifying faults for pry
grams with large fault-prone regions
[23]. Therefore, random testing
should be effective in detecting prob
lem-specification fault. However, ran-
dom testing is effective when a fault-
prone region is uniformly distributed
across the complete input space as
opposed to a nonuniform distribu-
tion [14] (see Figure I).

Partition-testing methods are effec-
tive when a program has a “onuni-
form fault-prone region. Perfor-
mance of input and output
partition-testing methods depends on
the partition oitia. Partition testing
methods will perform well if the par-
tition criteria used are consistent with

http://crossmark.crossref.org/dialog/?doi=10.1145%2F188280.188373&domain=pdf&date_stamp=1994-11-01

Figure 1. FigWe la, shows part+
tions in a test space with uniform
fault-prone region. and Figure
(b) shows partitions in a nonuni~
form fault-prone region. Each
dot representsafault.

Figwe2. MUtatiOn at VariOuS
stages of expert system develop-
ment

Accept

NB[Ll IT1

CEB[JI [Tl BVEBILI [fl

SRB IT1 [Ll @- CEBIOI

METHOD #l

PrOpO*e
GJ

conthl
a

Accept

r NE[Jl [Tl NELL1 IT1 NELL1 IT1

lB[Tl LLI

SRE Ll ‘I L-l1

L
$--- SRB[-1

Reject
NE[Il ITI

I
WE[LI IT1

Propose
& WE[JI [Tl WELL1 [Tl

Confirm Accept

METHOD #2

CIgw~3. MethodSI and Zforso-
lution Speclflcation of MAPS

and analysis is easicr[l 11.
Given a set of electrical measure-

ment deviations on a bipolar transis-
tor, MAPS diagnoses a physical anomal,
that may have caused deviations. An
input to MAPS consists of deviations in
six electrical parameters, such as base
current (Ib), emitter resistance (SRE),
base resistance (SRB), emitter-base junc-
tion cafmitance (CEB), ha.+collector
cafiacitance (CBC), and punch through
voltage (V,,). The output of MAPS con-
sists of physical anomalies. A physical
anomaly is a combination of changes
in physical parameters, such as
widths of the base (W,), emitter (W,),
collector (W,), and concentrations of
the base (Nb). emitter (N,), and col-
lector (NJ of various layers of the
transistor. Figure 3 describes the so-
lution specification of MAPS in terms
of two methods. Each node in the
method represents an operation on a
hypothesis or on data. The figure also

depicts the way results are proposed,
confirmed, and then accepted. The
solution specification is derived using
protocol analysis of experts [a]. MAI%
has a total of 41 rules and is imple-
mented as a forward-chaining pro-
duction system in common Lisp.

Mutant Types
As a commonly known bug taxonomy
does not exist for expert systems, we
adapted the bug taxonomy for conven-
tional software [4] to construct mum-
tion operators. A mutation operator
is a generalized description of a mu-
tant type. For this study, we con-
structed a total of 90 mutations be-
longing to each of the four classes of
problem specification, solution speci-
fication, design, and implementation
bugs. Table 2 shows different tnuta-
tion types introduced in each life-
cycle phase of the expert system. For
each mutation type we experimented
with 10 different mutations in an
expert system program. Changes
were made in attributes, statements,
and rules in the program.

Missing requirement faults are

quite common in practice. Two muta-
tion operators consisting of missing
input and missing output parameters
were constructed in our case study.
For feature misunderstood type,
mutants were introduced by revers-
ing the direction of deviations of
physical anomalies (e.g., width of
base). For duplicated logic type of
faults, new rules were added such
that there was a direct path from Pro-
pose module to Accept module. For
unachievable path type of faults,
input data at a node were deleted.
Similarly, implementation faults were
introduced by changing the constant
values, typing errors, and exchang-
ing of parameter types in a rule.

EValUatlOn Scheme for Testing
Methods
Testing methods can be classdied as
dynamic testing m&ho& and static testing
methods. Dynamic testing methods
require a test suite (a set of test cases
containing test input and output) that
must be executed. All black-box and
white-box testing methods discussed
in this article (see Table l), except

TWlble1. FraCtiOn Of mUtantS killed by testing methods ln the

software life-cycle phases.

a. Redundancy rule 0 0 0 0 0 0 0 0 0

b. Conllict rule 0 0 0 0 0 0 0 0.5 0

C. Subrummion rule 0.2 0 0 0.2 0 0

b. ~nreferrrd attribotr 1 0.6 / 0.4 I 0.3 I 0.2 I 0.4 / 0.6 I 0.3 I o I 0.1 I

/ o 1 0.4 1 0 j 0 1 o 1 o 1 0.2 1 0.5 / 0.5 1

tatwn phases compared with mmal
phases.

Among the white-box testing
mcthods, dynamic-flow testing was
cffcctive throughout the life-cycle
and identified maximum number of
mutant5 in the design phase. Data-
flow testing killed nwrc rnu~~~fs in all
the mutant types of implementation.
Figure 4 shows that average failure
ratia for dynamic-flow resting was rhe
maxm~um KKISS the life-cycle phases.
Average failure ratios for all other
testing methods wcrc similar. Thus

dyr,arn,c-flu,, ,r~t,r,g \(a\ ,,i<,rr rebut

h shown in ‘Table 3, all consistency
compared with other wing methods.

testing methods pcrfixmed poorl)

compared with other testing mcth-
nds. Kedundant rule tating did na
kill any mutants in any life-cycle
phases. Data-tlow testing found more
failures in implementation phases ii5
compared with other phases. h
Tdblc 3 shows, completeness testing
methods performance was better
than consistency testing methods.
‘Iable 3 shows that missing rule test-

ing performed best in design phases
as compared with other phases. Few
faults were recorded for unrefcr-
cnced attribute testing in implcmcn-
tation. Illegal attributes testing found

rc~orc rnutim~, 11, m,p,c,ncr,rc,riur, d,,d

problem specification campared with
other resting mcthods.

Figure 5 shows percentage of mu-
tants killed by testing methods in
each phase of lift cycle. Kesuto arc
shown by combining the individual
results of mutation rypes in each
phase. Black-box testing and white-

box testing methods performed welt
throughaur the lift cycle compared
with consistency and complctcncsr
testing methods.

Discussion

In this srctwn MC d~ua the pertar-
mance of testing methods with re-
spect to propositions made earlier.
The assumprions that the testing
methods confirmed are the following:

1. Fault5 in initial life-q& phases
resulted in a moltilude of faults in
the final program. This assumption
was confirmed in this case study
(see Figure 6).
2. Faults in problem specification,
solution specification, and design

resulted in missing r&s and unrcf-
crcnced attributes in the linal pro-
gram. ‘This is bccausc mutations in
earlier phasch of life-cycle affected a
large number of rules in final pro-
gram. Whenever rules got deleted ,t
resulted in many unreferenced at-
tributes.

The testing methods Ihat confirmrd
our expecrations are:

1. Black-box testing methods (rant
dam, input-partition, and output-
partition) were cffcctive throughou
the life-cycle phases (see Figure 5).
From Tabtc 2 we see that faults in
problem specification, solution spec-
ification, and design result in a
multitude of faults in the program.
H~~~ever, faults in the irnplemcnta-
tion phase do not induce faults, and
faults are rcstrictcd to a single rule.

Failure ratio for black-box testing
methods were high in problem
specification, solutian specification,
and design compared with implc-
mentation. Thus black-box testing
methods performed well in all
phases except in implementation.
2. Dynamic-flow testing (white-box)
was effective and robust throughout
the life-cycle phases and was mat

II#blea. FailWe ratio Of dynamictesting methods in all the software
fife-cycle phases.

b. lnpur pnrriiion ,,.,a 0.26 0.35 0.2x u% 0.44 ,I.‘?, ,,.I 3 11.4

“.I8 0.25 w!! 0.31 o.‘(o 0.25 0.1X 0.1” 0.12

rlclure4. Averagefailure rated
across the fife-cycle phases

1.00

z
5 0.90

if
F 0.60
u

3
z 0.70

2
s 0.60

5
: 0.50
A%
5 0.40

3
S 0.30
S
3
E 0.20
E

g L? 0.10

0.00

0.7,
r

,-

I-

ss Design lmplementatlon’
Me cycle phase in which fault was introduced

FfO”rmS. Percentage Of mutants
killed by black-box, white-box,
consistency. and completeness
testing methods in lifecycle
phases. (PS: problem Specifica-
tion and SS: Solution speclfica-
tlom

~lpureb. Numberoffaults in the
program due to faults in llfe-
cycle phases

gM&xlated with Testing

Each testing method perfofmed dif-
ferently in identifying faults in vari-
ous expert system life-cycle phases. In
this section we discuss the cost-related
issues with each testing method. Total
cost associated with a testing method
depends on cost of test case genera-
tion, cost of evaluation, and cost of
loss.

Cost of test case generation consists the techniques specified by various or due to lack of oracles [23]. Consis-
of cost associated with generation of testing methods. Generating ex- tency and completeness testing meth-
test inputs and expected outputs. pected outputs is often difftcult be- ods have less cost of generation com-
The test inputs are determined using cause testing criteria can be unclear pared with dynamic testing methods

mblel. Testing methods ordered in increasing order Of COstS from
top to bottom

?‘able6. Testing methods ordered in Increasing order Of Cost Of
missing faults from top to bottom.

mble 1. Testing methods ordered in InCreaSing order Of cost Of 1055
foTdifferentweightsequence.

,PS, ss, Des, Imp) ne*ting method* ordered in incrraring Ll,tll,,,,

