
Testing Methods 

&pert systems ure being developed commercially to solve nontraditional problems 
in such areas as auditing, fault diagnosis, and computer configuration. 

As expert systems move outji-om research laboratories to commercial production 

environments, establishing reliabili~ and robustness have taken on increasing 
importance [l, 5, 9, 20, 211. In this article, we would like to o~ess tk comparative 

effectiveness of testing methods including blackbox, whit&ox, consistency, and 
comj&teness testing methods [9, E-19, 22,231 in detectingfaults.’ 

e take the approach that a” 
expert system life cycle CO”. 
sisu of the problem-specifi- 
cation phase2 [Z, 3, 5, 12, 131, 
solution-specification phase, 
high-level design phase, im- 
plementation phase, and test- 
ing phase. This approach is 
consistent with the modern 
expert system life cycle as sug- 
gested in [9, 211. Ezj% s~slnn 
testing (generally known as 
verification and validation 
[15, 171) establishes a binary 
relationship between two by- 
products of the softwarede- 
velopment process. For this 
article, we consider testing as 
the comparison between by- 
products by each life-cycle 
phase and implementation. 
We use a technique called 
“lifeiycle mutation testing” 
(LCMT) for a comparative 
evaluation of testing methods 
on an expert system. 

Table I briefly explains 
each of the testing methods 

that are considered in this articlr [9, 15-17, 19, 231. Here we comment on 
characteristics of faults in each life-cycle phase. We make the following gener- 
al observations about the nature of faults: 
l Faults not detected in early phases become progressively more expensive 
to rectify in later phases. 
l A fault-prone region (input region that results in failures) may not be 
uniformly distributed across the complete input space. 
l Faults in early lifwycle phases may induce a multitude of faults in the 
final program. 

l Inconsisrenc) or incompleteness in 
any phase may result in inconsistent 
or missing rules in the final program. 

RobIan specification faults. Problem 
specification is a description of the 
problem being solved. Black-lxx test- 
ing methods have been shown to be 
effective in identifying faults for pry 
grams with large fault-prone regions 
[23]. Therefore, random testing 
should be effective in detecting prob 
lem-specification fault. However, ran- 
dom testing is effective when a fault- 
prone region is uniformly distributed 
across the complete input space as 
opposed to a nonuniform distribu- 
tion [14] (see Figure I). 

Partition-testing methods are effec- 
tive when a program has a “onuni- 
form fault-prone region. Perfor- 
mance of input and output 
partition-testing methods depends on 
the partition oitia. Partition testing 
methods will perform well if the par- 
tition criteria used are consistent with 
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Figure 1. FigWe la, shows part+ 
tions in a test space with uniform 
fault-prone region. and Figure 
(b) shows partitions in a nonuni~ 
form fault-prone region. Each 
dot representsafault. 

Figwe2. MUtatiOn at VariOuS 
stages of expert system develop- 
ment 
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CIgw~3. MethodSI and Zforso- 
lution Speclflcation of MAPS 

and analysis is easicr[l 11. 
Given a set of electrical measure- 

ment deviations on a bipolar transis- 
tor, MAPS diagnoses a physical anomal, 
that may have caused deviations. An 
input to MAPS consists of deviations in 
six electrical parameters, such as base 
current (Ib), emitter resistance (SRE), 
base resistance (SRB), emitter-base junc- 
tion cafmitance (CEB), ha.+collector 
cafiacitance (CBC), and punch through 
voltage (V,,). The output of MAPS con- 
sists of physical anomalies. A physical 
anomaly is a combination of changes 
in physical parameters, such as 
widths of the base (W,), emitter (W,), 
collector (W,), and concentrations of 
the base (Nb). emitter (N,), and col- 
lector (NJ of various layers of the 
transistor. Figure 3 describes the so- 
lution specification of MAPS in terms 
of two methods. Each node in the 
method represents an operation on a 
hypothesis or on data. The figure also 

depicts the way results are proposed, 
confirmed, and then accepted. The 
solution specification is derived using 
protocol analysis of experts [a]. MAI% 
has a total of 41 rules and is imple- 
mented as a forward-chaining pro- 
duction system in common Lisp. 

Mutant Types 
As a commonly known bug taxonomy 
does not exist for expert systems, we 
adapted the bug taxonomy for conven- 
tional software [4] to construct mum- 
tion operators. A mutation operator 
is a generalized description of a mu- 
tant type. For this study, we con- 
structed a total of 90 mutations be- 
longing to each of the four classes of 
problem specification, solution speci- 
fication, design, and implementation 
bugs. Table 2 shows different tnuta- 
tion types introduced in each life- 
cycle phase of the expert system. For 
each mutation type we experimented 
with 10 different mutations in an 
expert system program. Changes 
were made in attributes, statements, 
and rules in the program. 

Missing requirement faults are 

quite common in practice. Two muta- 
tion operators consisting of missing 
input and missing output parameters 
were constructed in our case study. 
For feature misunderstood type, 
mutants were introduced by revers- 
ing the direction of deviations of 
physical anomalies (e.g., width of 
base). For duplicated logic type of 
faults, new rules were added such 
that there was a direct path from Pro- 
pose module to Accept module. For 
unachievable path type of faults, 
input data at a node were deleted. 
Similarly, implementation faults were 
introduced by changing the constant 
values, typing errors, and exchang- 
ing of parameter types in a rule. 

EValUatlOn Scheme for Testing 
Methods 
Testing methods can be classdied as 
dynamic testing m&ho& and static testing 
methods. Dynamic testing methods 
require a test suite (a set of test cases 
containing test input and output) that 
must be executed. All black-box and 
white-box testing methods discussed 
in this article (see Table l), except 





TWlble1. FraCtiOn Of mUtantS killed by testing methods ln the 

software life-cycle phases. 

a. Redundancy rule 0 0 0 0 0 0 0 0 0 

b. Conllict rule 0 0 0 0 0 0 0 0.5 0 

C. Subrummion rule 0.2 0 0 0.2 0 0 

b. ~nreferrrd attribotr 1 0.6 / 0.4 I 0.3 I 0.2 I 0.4 / 0.6 I 0.3 I o I 0.1 I 

/ o 1 0.4 1 0 j 0 1 o 1 o 1 0.2 1 0.5 / 0.5 1 

tatwn phases compared with mmal 
phases. 

Among the white-box testing 
mcthods, dynamic-flow testing was 
cffcctive throughout the life-cycle 
and identified maximum number of 
mutant5 in the design phase. Data- 
flow testing killed nwrc rnu~~~fs in all 
the mutant types of implementation. 
Figure 4 shows that average failure 
ratia for dynamic-flow resting was rhe 
maxm~um KKISS the life-cycle phases. 
Average failure ratios for all other 
testing methods wcrc similar. Thus 

dyr,arn,c-flu,, ,r~t,r,g \(a\ ,,i<,rr rebut 

h shown in ‘Table 3, all consistency 
compared with other wing methods. 

testing methods pcrfixmed poorl) 

compared with other testing mcth- 
nds. Kedundant rule tating did na 
kill any mutants in any life-cycle 
phases. Data-tlow testing found more 
failures in implementation phases ii5 
compared with other phases. h 
Tdblc 3 shows, completeness testing 
methods performance was better 
than consistency testing methods. 
‘Iable 3 shows that missing rule test- 

ing performed best in design phases 
as compared with other phases. Few 
faults were recorded for unrefcr- 
cnced attribute testing in implcmcn- 
tation. Illegal attributes testing found 

rc~orc rnutim~, 11, m,p,c,ncr,rc,riur, d,,d 

problem specification campared with 
other resting mcthods. 

Figure 5 shows percentage of mu- 
tants killed by testing methods in 
each phase of lift cycle. Kesuto arc 
shown by combining the individual 
results of mutation rypes in each 
phase. Black-box testing and white- 

box testing methods performed welt 
throughaur the lift cycle compared 
with consistency and complctcncsr 
testing methods. 

Discussion 

In this srctwn MC d~ua the pertar- 
mance of testing methods with re- 
spect to propositions made earlier. 
The assumprions that the testing 
methods confirmed are the following: 

1. Fault5 in initial life-q& phases 
resulted in a moltilude of faults in 
the final program. This assumption 
was confirmed in this case study 
(see Figure 6). 
2. Faults in problem specification, 
solution specification, and design 

resulted in missing r&s and unrcf- 
crcnced attributes in the linal pro- 
gram. ‘This is bccausc mutations in 
earlier phasch of life-cycle affected a 
large number of rules in final pro- 
gram. Whenever rules got deleted ,t 
resulted in many unreferenced at- 
tributes. 

The testing methods Ihat confirmrd 
our expecrations are: 

1. Black-box testing methods (rant 
dam, input-partition, and output- 
partition) were cffcctive throughou 
the life-cycle phases (see Figure 5). 
From Tabtc 2 we see that faults in 
problem specification, solution spec- 
ification, and design result in a 
multitude of faults in the program. 
H~~~ever, faults in the irnplemcnta- 
tion phase do not induce faults, and 
faults are rcstrictcd to a single rule. 

Failure ratio for black-box testing 
methods were high in problem 
specification, solutian specification, 
and design compared with implc- 
mentation. Thus black-box testing 
methods performed well in all 
phases except in implementation. 
2. Dynamic-flow testing (white-box) 
was effective and robust throughout 
the life-cycle phases and was mat 



II#blea. FailWe ratio Of dynamictesting methods in all the software 
fife-cycle phases. 

b. lnpur pnrriiion ,,.,a 0.26 0.35 0.2x u% 0.44 ,I.‘?, ,,.I 3 11.4 

“.I8 0.25 w!! 0.31 o.‘(o 0.25 0.1X 0.1” 0.12 

rlclure4. Averagefailure rated 
across the fife-cycle phases 
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FfO”rmS. Percentage Of mutants 
killed by black-box, white-box, 
consistency. and completeness 
testing methods in lifecycle 
phases. (PS: problem Specifica- 
tion and SS: Solution speclfica- 
tlom 

~lpureb. Numberoffaults in the 
program due to faults in llfe- 
cycle phases 

gM&xlated with Testing 

Each testing method perfofmed dif- 
ferently in identifying faults in vari- 
ous expert system life-cycle phases. In 
this section we discuss the cost-related 
issues with each testing method. Total 
cost associated with a testing method 
depends on cost of test case genera- 
tion, cost of evaluation, and cost of 
loss. 

Cost of test case generation consists the techniques specified by various or due to lack of oracles [23]. Consis- 
of cost associated with generation of testing methods. Generating ex- tency and completeness testing meth- 
test inputs and expected outputs. pected outputs is often difftcult be- ods have less cost of generation com- 
The test inputs are determined using cause testing criteria can be unclear pared with dynamic testing methods 



mblel. Testing methods ordered in increasing order Of COstS from 
top to bottom 

?‘able6. Testing methods ordered in Increasing order Of Cost Of 
missing faults from top to bottom. 



mble 1. Testing methods ordered in InCreaSing order Of cost Of 1055 
foTdifferentweightsequence. 

,PS, ss, Des, Imp) ne*ting method* ordered in incrraring Ll,tll,,,, 




