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New technologies have made it possible to collect information about social networks as they are
acted and observed in the wild, instead of as they are reported in retrospective surveys. These
technologies offer opportunities to address many new research questions: How can meaningful
information about social interaction be extracted from automatically recorded raw data on human
behavior? What can we learn about social networks from such fine-grained behavioral data? And
how can all of this be done while protecting privacy? With the goal of addressing these questions,
this article presents new methods for inferring colocation and conversation networks from privacy-
sensitive audio. These methods are applied in a study of face-to-face interactions among 24 students
in a graduate school cohort during an academic year. The resulting analysis shows that networks
derived from colocation and conversation inferences are quite different. This distinction can inform
future research in computational social science, especially work that only measures colocation or
employs colocation data as a proxy for conversation networks.
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1. INTRODUCTION

Much social network research has relied on data collected via surveys that ask
subjects to report their social ties (e.g., Goodreau et al. [2009]) or recall their pre-
vious social interactions (e.g., Lazega and van Duijn [1997]). When self-reports
of recalled interactions have been compared to independent observations, how-
ever, the reliability of subjects’ answers has been shockingly poor [Killworth
and Bernard 1976; Bernard and Killworth 1977, 1979; Bernard et al. 1980,
1982]. An early study came to the dire conclusion that “people do not know, with
any accuracy, those with whom they communicate” [Bernard and Killworth
1977]. Later studies found that durable, long-term patterns of communica-
tion are reliably reported, but moment-to-moment social interactions are not
[Freeman et al. 1987]. More troubling for research into network structure, in-
dividuals tend to “fill in” non-existent interactions if they would increase the
transitivity of the network [Freeman 1992]. Faced with these challenges, some
researchers lamented that “unfortunately, most naturally occurring interactive
behavior (the stuff of which networks are built) is neither observable nor con-
veniently recorded in some automated fashion” [Killworth and Bernard 1979].

That statement is no longer true. New technologies have made it possible
to collect information about social behavior as it is enacted, instead of as it is
recalled after-the-fact. Phone calls, text messages, emails, instant messages,
on-line chat sessions, social media posts, and any other kind of electronically
mediated communication can be automatically recorded for large groups of
people, over long periods of time. Portable audio recording devices have grown
in capacity while becoming smaller, cheaper, and more powerful, making it
easier to record face-to-face conversations. In fact, wearable sensors now allow
us to automatically record natural and spontaneous speech for an entire group
of people over a long period of time.

The automated recording of real-world speech is crucial because, despite the
rise in on-line interactions, face-to-face communication is still people’s primary
mode of social interaction [Baym et al. 2004]. Unlike methods previously em-
ployed for speech data derived from laboratory contexts, our proposed method
would capture truly spontaneous speech that arises in situ as people enact their
actual, lived relationships. For that reason, we refer to such data as situated
speech data—data gathered in the wild—to contrast it with other speech data
recorded in constrained or contrived settings.
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Of course, obstacles to gathering situated spontaneous speech still remain,
especially concerns about privacy. To capture truly natural interactions while
providing a full picture of a social network, we must record people as they
freely go about their lives. This requirement gives rise to two problems. First,
uninvolved parties could be recorded without their consent—a scenario that,
if raw audio is involved, is always unethical and often illegal. Second, people
may change their behavior if they know they are being recorded. For both
of those reasons, a level of privacy must be maintained. Ideally, a privacy-
sensitive recording technique will process incoming audio in order to discard
any information deemed too invasive while still preserving data useful for
sociological inquiry.

This dilemma illuminates what is perhaps a fundamental trade-off between
privacy and quality when automatically recording social behavior. Subjects are
unlikely to consent to large-scale, unrestricted recordings of their behavior,
so some sociologically useful information must almost surely be destroyed.
Therefore, set of features that allow us to balance this trade-off between privacy
and quality is needed.

In this article, we present exactly such a set of privacy-sensitive features,
together with a method for using this feature set to find colocation and conver-
sation events in separately recorded streams of audio data. In evaluation using
non-privacy-preserving test data—where access to ground truth is possible—
our method performs better than earlier methods.

We then use our proposed method to derive networks of colocation and face-
to-face conversation among 24 graduate students over the course of an academic
year. Networks created from colocations and conversations appear to be quite
different—a result that can impact and inform future research in computa-
tional social science.

The remainder of this article is divided into two broad sections. Section 2
presents the methods for discovering physically colocated and conversing peo-
ple from privacy-sensitive audio data, then assesses the performance of these
methods. Section 3 covers the Spoken Networks project, a data collection effort
that employed the proposed methods to study a real-world network over an
extended period of time, demonstrating new insights that may be available
through these lenses.

2. PRIVACY-SENSITIVE CONVERSATION MODELING

When collecting situated conversation data it is necessary to protect the privacy
of not just people who willingly consent to wear a recording device, but also
of those who may come within range of the microphones. For this purpose,
destructive processing of the audio should yield a feature set that prevents us
from reconstructing intelligible speech or inferring the identities of anyone not
wearing a device. A further constraint on the feature set is that all features
must be computed in real-time within the limited computational resources of
a wearable device—no raw audio should ever be stored, even temporarily.

At the same time, the features must still contain enough information to
allow conversations to be found and meaningful inferences made about those

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 1, Article 7, Pub. date: January 2011.



7:4 . D. Wyatt et al.

-®

Source Filter Speech
HHHHHHHHHHHH (e e
S0 1000 10 2000 2800 000 S0 oon 70 00 20 G600 S0 1000 1500 2060 2500 8500

conversations. Fortunately, the nonlinguistic aspects of a conversation—who
speaks when and for how long, how loud, and at what pitch—still allow for
many useful analyses. Interruptions and speaking time reveal information
about status and dominance [Hawkins 1991]. Speaking rate reveals informa-
tion about a speaker’s level of mental activity [Hurlburt et al. 2002]. Energy
(loudness) can reveal a person or group’s interest in the conversation [Gatica-
Perez et al. 2005]. Pitch may be used for inferring emotion [Dellaert et al. 1996],
and energy and duration of voiced and unvoiced regions are also informative
emotional features [Schuller et al. 2004].

Here we present a set of privacy-sensitive features that can be extracted
from an audio stream in real-time (Section 2.1), along with methods for using
those features to automatically determine who is in conversation with whom
(Section 2.2) and how people are speaking (Section 2.3).

Fig. 1. Conceptual schematic of the source-filter model.

Related Work. To the best of our knowledge, prior to this research, there
were only two existing methods for finding conversations in separately recorded
streams of audio. The method proposed by Corman and Scott [1994] computes
normalized cross-correlation between raw audio signals and concludes that
two people are in a conversation if their correlation coefficients are above a
threshold estimated from labeled data. Obviously, using raw audio does not
protect privacy, but a privacy-sensitive variant of their method is considered
below. Similarly, the method proposed by Basu [2002] computes the mutual
information between binary signals that represent voiced/unvoiced speech and
places two people in a conversation if their mutual information is above a
pre-specified threshold. Our work extends Basu’s method in three important
ways: (i) to detect multiperson conversations (not just dyadic), (ii) to operate at
a finer time granularity while still producing a “smooth” inference over time,
and (iii) to learn its threshold in an unsupervised manner.

2.1 Privacy-Sensitive Features

Following Basu [2002], our approach to extracting non-linguistic speech infor-
mation builds on methods for detecting voiced human speech. A basic model for
the production of human speech is the standard source-filter model [Quatieri
2001] shown in Figure 1. As its name suggests, the source-filter model posits
two semi-independent components of speech production: (1) a source sound
that is generated by the glottis and passed through (2) the filter, realized by
the vocal tract, that shapes the spectrum of the source.

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 1, Article 7, Pub. date: January 2011.



Inferring Colocation and Conversation Networks from Privacy-Sensitive Audio . 75

The source can be voiced or unvoiced. If it is voiced, the vocal cords are
vibrating at what is called the fundamental frequency, or FO, which constitutes
the pitch at which the person is speaking. A sequence of speech will alternate
rapidly between voiced and unvoiced segments. Prosodic features of speech—
intonation, stress, duration—are described by how the fundamental frequency
and energy (volume) change during speech.

The source sound is shaped into words by changing the shape of the vocal
tract. It is the frequency response of the vocal tract, particularly the resonant
peaks known as formants, that contains information about the phonemes that
are constituent parts of spoken words. Any processing of the audio that removes
information about the formants will ensure that intelligible speech cannot be
synthesized from the signal that remains.

Thus, to find conversations and retain information about how people are
speaking, we save information about the source while discarding (almost) all
information about the filter. We argue below that this preserves sociologically
useful information.

The first step in that process is finding voiced speech. Figure 2(a) shows the
spectrogram for a male voice saying the phrase “University of Washington Spo-
ken Networks.” In a spectrogram, time runs along the x-axis and frequencies
increase along the y-axis; color indicates energy at a given frequency. In this ex-
ample, all of the phonemes are voiced except those for “s,” “t,” “sh,” “p,” and “k.”
The strong harmonics are indicators of voiced speech and we take advantage
of that harmonicity to find segments of voiced speech.

Three features that have been shown to be useful for robustly detecting
voiced speech under varying noise conditions are: (i) noninitial maximum auto-
correlation peak, (ii) the total number of autocorrelation peaks, and (iii) relative
spectral entropy [Basu 2002]. To provide an intuition for the first two features,
Figure 2(b) shows the autocorrelogram for the example phrase. As in the spec-
trogram, time runs along the x-axis. The y-axis shows increasing lags at which
the autocorrelation is computed, and colors show the value of the autocorrela-
tion. The voiced segments show fewer, stronger peaks. All three features are
shown in Figure 2(c). During voiced segments, the number of autocorrelation
peaks drops, while the maximum autocorrelation value and relative spectral
entropy rise.

The harmonicity in the spectrogram shows that voiced speech has a low
spectral entropy, compared to non-voiced regions. However, in many environ-
ments there can be noise centered strongly at a specific frequency. Figure 2(a)
shows two possible examples of such noise: a low frequency hum (from 300
to 500 Hz) that may be an air conditioner, and a sharp high frequency noise
(around 6400 Hz) that is probably a computer fan or hard drive. Such narrow
spectrum noise will lower the general environmental spectral entropy. The rel-
ative spectral entropy is the relative entropy (also known as Kullback-Leibler
divergence, see Eq. (2)) between an instantaneous normalized spectrum and
the mean normalized spectrum for a much longer window of time. Relative
spectral entropy captures the quick change in entropy caused by short seg-
ments of voiced speech while smoothing away any environmental reductions in
entropy. Narrow spectrum noise can also create strong autocorrelation peaks.
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(c) Features used for detecting voiced speech. Values are scaled to fit, so y axis labels indicate
minimum and maximum values for each feature.

Fig. 2. Audio of a male voice saying “University of Washington Spoken Networks.”

Fortunately, in settings where conversations can comfortably occur, such noise
is usually low energy (compared to voiced speech) and its autocorrelation can
be disrupted by adding low energy white noise to the signal.

The precise procedure for computing features is as follows: The 15360-Hz
raw audio signal is split into frames of 512 samples (1/30th of a second) with
overlaps of 256 samples (1/60th of a second). Let the vector x denote a single
frame of raw audio data. Each frame has its mean subtracted and is multiplied
with a Hamming window before applying a discrete Fourier transform resulting
in a 256 point spectrum, denoted with the complex vector s. The real-valued
power spectrum v is derived from s so that v; = |s;|%. The energy r = )", v; of
v is computed and saved. To disrupt low-energy, narrow spectrum noise, we
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uniformly whiten the power spectrum with additional energy equal to 1% of
the maximum energy possible per frame. The inverse Fourier transform of the
whitened power spectrum is then taken to find the autocorrelation vector a
[Gray and Davisson 2004] for the frame, where

512

a; = inxiﬂ- (1)
i=0

is the autocorrelation of x at lag j. The number of autocorrelation peaks
(defined as positive regions between zero-crossings in a) is counted and the
value and lag of the highest peak is saved (which naturally excludes the initial
maximum at lag 0). The normalized power spectrum p, with p; = v;/ > [ Vjs
is computed and a running mean p of the normalized spectra for the last 500
frames (~8.33 seconds) is kept. The relative spectral entropy is computed
between the current normalized spectrum and that running mean as

D(p|[p) =) _ pilog(pi/P) @)

Altogether, we save six acoustic features: (i) value and (ii) lag of the non-
initial maximum autocorrelation peak, (iii) the total number of autocorrelation
peaks, (iv) instantaneous and (v) relative spectral entropy, and (vi) energy.

On the specific device we used (described in Section 3.2.1), all computations
are carried out in the frequency domain using fixed point arithmetic. The log-
arithm required to compute entropy is not practical given the device’s limited
processing power. However, the device’s comparatively large amount of RAM
allows us to instead use a look-up table pre-populated with logarithms for all
16 bit values.

The energy is used later to determine who is speaking. The lag of the max-
imum autocorrelation peak is not needed for detecting voiced speech, but it is
useful for determining a speaker’s FO [Rabiner 1977]. The peak will some-
times correspond not to the exact FO but instead to one of its harmonics.
Formants are expressed through the attenuation of many of the harmonics
present while letting only those near the resonant peaks of the vocal tract
pass through. This means that at least one harmonic (often more) will corre-
spond to single formant. To reproduce intelligible speech, information on at
least three formants is required [Donovan 1996]. Since we save at most one
harmonic, and that harmonic is most often F0O, we believe that our features are
privacy-sensitive.

2.2 Extracting Conversation Data

To gather data about face-to-face conversations, we ask multiple people to wear
recording devices each of which saves separate streams of the privacy-sensitive
features described above. We then combine the streams and find conversations
using four steps, each of which is described in a following subsection. First,
we must find voiced speech in each person’s recording (Section 2.2.1). Second,
people must be partitioned into colocated groups where all the members of
a group are considered “together” with each other and not together with any
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person in any other group (Section 2.2.2). Third, we must infer who is speaking
within each colocated group (Section 2.2.4). Finally, once colocated groups and
speakers have been identified, we can conclude that people who are colocated
and speaking are in conversation together and then extract further features
of their conversation (Section 2.3). Figure 3 provides an overview of the entire
process.

Evaluation Data. All of the techniques presented here were evaluated using
a small set of labeled data collected using the same wearable devices as the
large Spoken Networks corpus. To record this smaller dataset, five people wore
devices for just over 50 minutes while moving around a building and entering
and leaving different conversations with one another. The participants were
told where to go and with whom to speak, but were not told what to talk
about. The two primary locations were a quiet meeting room and a loud and
noisy public space (where most of the background noise was other speech), but
conversations also occurred while the participants walked together and rode
elevators between locations. In order to label the data, raw audio was saved for
this small set.

2.2.1 Finding Voiced Speech. Our method relies on first inferring whether
a recorded stream contains voiced speech. We use a hidden Markov model
(HMM) with one time step per 60 Hz frame (16.67 milliseconds) of audio fea-
tures. The HMM’s observation variable is a 3-dimensional vector containing the
three features previously described as useful for voicing detection: the value
of the non-initial autocorrelation peak, the number of autocorrelation peaks,
and the relative spectral entropy. Let x, denote the vector of observations for
person a with x!, being the three observed variables at time ¢. Similarly, let V,
be the vector of hidden states for person a. The HMM defines the probability of
a sequence of voicing states and observations as

T
P(Va, %) = [ [ P(VEIVE ) p(X,IVE), 3)
t=1

for a length T' sequence, where p(v}|v0) = p(v)).
The observation probability is modeled with a full covariance three dimen-
sional Gaussian

1 t -1 t
p(xttllvé — U)We 7 Xg—n )X (X, ILU)’ 4)
and the state transition probabilities are modeled with the usual transition
matrix A with 4;; = p(V! = i|[Vi"1 = j). The means p, covariances X, and
transition matrix A of the voicing HMM are learned from data that does not
contain any speakers in our evaluation data (or in our larger corpus). This
voicing HMM has been shown to be speaker-independent and robust across
environmental conditions [Basu 2003].
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Fig. 4. Inferred voicing posterior (blue line, right y axis) overlayed on examples from Figure 2.

For each recorded stream, we use the forward-backward algorithm [Rabiner
1989] to infer p(V|x,): the posterior probability of voiced speech in each frame,
given the entire recorded stream. Figure 4 shows the spectrogram and auto-
correlogram from Figure 2 with the inferred voicing posterior for the example
recording overlaid.

2.2.2 Finding Colocated People. We treat finding colocated groups within
the multiple streams of data as a clustering problem. Successful colocation de-
tection requires clustering together segments of data from miked individuals
when they are in a conversation. Once the voicing posteriors are computed, the
voicing frames are aggregated into colocation windows of size W = 1200 voicing
frames (20 seconds), with no overlap between windows. To determine whether
two people are colocated, we examine the mutual information between simulta-
neous colocation windows from each of their streams. The mutual information
between persons a and b during colocation window w is

p(Ve =v,Vy =)

NG
p(Vy =v)p(Vy =)

Ve ve)y= > p(Vr=v.Vy=1)log
(v,v)€e{0,1)2

where p(V? = 1) is the probability that any of the 1200 frames from person a is
voiced, and p(VY, V}’)is the joint distribution over the 4 possible combinations of
voiced states for a simultaneous frame for both @ and b. Since the voicing states
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are not directly observed, we estimate these aggregate voicing probabilities as

+W

! 1 /
p(VY =v, V) =) = W;;;(Vlizv)p(%:v) (6)
1 +W
p(Vi =v) = 3 > p(Va=") (7
=t

where 7 is the first time index in window w. That is, we estimate the aggre-
gate voicing distributions using their expected sufficient statistics according to
the posterior distribution p(V!|x,) computed by the voicing HMM. This allows
uncertainty in the voicing inference to carry through to the conversation infer-
ence. The earlier method of Basu [2002] estimated the same probabilities using
the maximum a posteriori (MAP) sufficient statistics (calculated from a Viterbi
decoding of the voicing HMM). We gain slightly in accuracy (Tables III and
IV) by using this “soft” mutual information computed from expected sufficient
statistics instead of a “hard” one computed from a MAP estimate.

While there are many methods for computing a similarity between two sig-
nals, mutual information between voicing inferences seems uniquely suited to
finding conversations between people wearing microphones. At the expected
physical distances for a face-to-face conversation, all microphones worn by par-
ticipants in the conversation will pick up the speech of any speaker in the
conversation. It is extremely unlikely that two microphones that are not close
enough to be in a conversation will observe the same speech signal, as we em-
pirically demonstrate in Section 2.2.3. Other metrics (e.g., correlation between
energy, considered below) do not have this property.

The voicing mutual information of Eq. (5) is computed for all windows
and all pairs. The empirical distribution of the logs of the resulting values,
shown for one week in Figure 5, makes the division between colocated and
separated pairs clear. There is a sharp peak of high mutual information values
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Table I. Colocation Inference Compared to True Room-Level Colocation

Accuracy Precision Recall Specificity Partial Precision
Mics Mean SE Mean SE Mean SE Mean SE Mean SE
5 0.980 - 0.809 - 0.864 - 0.987 - 1.000 -
4 0.959 0.002 0.812 0.019 0.833 0.007 0.975 0.002 1.000  0.000
3 0.920 0.005 0.849 0.009 0.804 0.011 0.955 0.003 0.999 0.001
2 0.868 0.021 0.994 0.004 0.770 0.037 0.997 0.002 0.994 0.004

Overall 0.910 0.011 0.896 0.016 0.799 0.016 0.976 0.004 0.997  0.002

When fewer than 5 microphones are included, means and standard errors (SE) are computed across all permu-
tations of the given number of microphones.

corresponding to colocated pairs, and two broader, overlapping peaks of lower
values for separated pairs. That distinctness makes it easy to learn, in a
completely unsupervised manner, different conditional distributions over log
mutual information for colocated and noncolocated pairs. For that, a mixture of
three Gaussians is first fit to all of the observed values (also shown in Figure 5).
The component with the highest mean is taken to be the conditional distribu-
tion of the log mutual information for a colocated pair. A mixture containing
the other two components (with their mixture probabilities renormalized) is
taken to be the conditional distribution for a noncolocated pair.

Since the colocation windows do not overlap, temporal smoothness in the
colocation inference is enforced by using another HMM to infer colocation
for a pair. The hidden state of the colocation HMM is a binary variable
indicating whether the pair is colocated, and its observation variable is
the log of the mutual information between their voicing posteriors. The
observation probabilities are set to be those of the mixtures of Gaussians
and the transition probabilities are fixed so that the expected duration in
either state is one minute. In an earlier technique [Wyatt et al. 2007], we
did not use an HMM for colocation but instead averaged together mutual
information values from neighboring time steps using a normalized triangular
window. One minute was found to be the optimal window length, hence the
expected duration for the HMM. The HMM-based method does not perform
any differently on labeled data than the simple window-smoothed method, but
on the Spoken Networks corpus it produces much more plausible colocation
inferences.

To ultimately partition people into colocated groups, the MAP sequence of
colocation states for each pair is computed using the Viterbi algorithm. The
transitive closure of the separate pairwise inferences is then calculated within
each colocation window to ensure a consistent grouping.

2.2.3 Evaluation. As presented so far, there is not a single, well defined
ground truth for the concept of colocation. Are two people colocated if they are
in the same room? What if the room is a large hall and they are on opposite
sides? The evaluation data includes labels for location at the room level as well
as who is in conversation with whom. Each of those could provide ground truth
for the colocation inference. Table I shows our technique’s performance when
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Table II. Colocation Inference Compared to True Conversation Grouping

Accuracy Precision Recall Specificity Partial Precision
Mics Mean SE Mean SE Mean SE Mean SE Mean SE
5 0.987 - 0.928 - 0.876 - 0.995 - 0.953 -
4 0.977 0.001 0.933 0.003 0.879 0.009 0.991 0.001 0.952  0.003
3 0.960 0.003 0.933 0.005 0.893 0.006 0.980 0.001 0.945 0.006
2 0.943 0.007 0.928 0.022 0.938 0.011 0.947 0.012 0.928 0.022

Overall 0.958 0.004 0.931 0.009 0.907 0.007 0.970 0.006 0.940  0.009

When fewer than five microphones are included, means and standard errors (SE) are computed across all
permutations of the given number of microphones.

compared to “in the same room with” ground truth. Table II shows performance
when compared to “in conversation with” ground truth.

There are five performance metrics presented in the tables, all derived from
counts of true and false positives and negatives. To compute these metrics, we
consider the set of all possible groupings of two or more people for each colo-
cation window. If a grouping occurs in both the labeled data and the inference,
then it is a true positive. If the grouping occurs in the inference but not in
the labeled data, it is a false positive. A true negative is a grouping that is in
neither the labeled data nor the inference and a false negative is a grouping
that is in the labeled data but not in the inference. Additionally, we define the
contained false positives to be the false positives that are nevertheless valid
subgroups of a true grouping—that is, inferred groups that are missing one
or more true group members but contain no erroneous members. The derived
metrics are then defined as

tp +
accuracy = p+'p (8
tp+fp+tn+fn
t
precision = _P (positive predictive value) (9)
tp + fp
t
recall = _® (sensitivity, true positive rate) (10)
tp + fn
o tn "
specificity = —— (1—false positive rate) (11)
fp+tn
t tained f]
partial precision = p + containec Ip (12)
tp+fp

To test the performance of our methods in the presence of unmiked speak-
ers, we selectively removed streams from the dataset and performed inference
using only the remaining streams. Results reported for fewer than five micro-
phones are averaged over all permutations of that number of microphones with
standard errors also reported. For £ < 5 microphones, results are computed for
all (2) combinations of excluded microphones, and the means and standard er-
rors across these “folds” are reported. The overall result at the bottom of each
table is the mean over all folds for all numbers of excluded microphones.
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Table III. Other Colocation Techniques Compared to True Room-Level Colocation

Accuracy Precision Recall Specificity Partial Precision

Method Mean SE Mean SE Mean SE Mean SE Mean SE

HMM
Soft MI 0.910 0.011 0.896 0.016 0.799 0.016 0.976 0.004 0.997 0.002
Hard MI 0.900 0.012 0.893 0.018 0.769 0.018 0.977 0.004 0.999 0.001
Energy 0.944 0.008 0.937 0.010 0.872 0.015 0.981 0.004 0.991 0.002
Threshold
Soft MI 0.909 0.012 0.898 0.015 0.795 0.016 0.977 0.004 0.991 0.003
Hard MI 0.896 0.012 0.888 0.017 0.758 0.017 0.975 0.004 0.993 0.002
Energy 0.940 0.007 0.929 0.010 0.863 0.014 0.978 0.004 0.986 0.003

The conversation comparison is slightly more favorable, suggesting that the
definition of colocation implicit in our voicing-based method is “close enough to
converse.” That is exactly what is needed to automatically collect data about
face-to-face conversations.

There are two instances in the evaluation data when the inferences disagree
with one labeling or the other. First, there is one case where the five people are
in two groups (of three and two people) sitting at adjacent tables in the large
public space. Their room-level location label is the same (the “large public
space”), but the voicing-based colocation inference separates them according to
table and the energy-based colocation puts them together. By contrast, there
is another case where the 5 are again in two groups but at opposite ends of a
conference table in a quiet meeting room. In this case, both the voicing-based
and energy-based colocation inferences place them all in one group—matching
the room-level labeling but not the conversation labeling.

Comparing to Other Methods. The two previous methods for acoustic colo-
cation detection [Corman and Scott 1994; Basu 2002] differ from ours in two
ways: (i) the choice of a similarity metric, and (ii) the method of using that met-
ric to classify pairs as either colocated or separated. Neither previous approach
proposes using any method to temporally smooth the colocation classification
(as the HMM does for our method). Instead, both suggest classifying windows
independently of all others using a threshold learned in a supervised way from
labeled data. Unfortunately, neither proposes a specific learning algorithm or
loss function. As such, it is difficult to make a direct comparison between our
method and the others. We can, however, use their different similarity met-
rics with both the simple threshold learned through our mixture of Gaussians
approach as well as with our HMM.

As mentioned above, Basu’s similarity metric is the “hard” mutual infor-
mation between voicing inferences computed from a MAP inference of voiced
states. Corman and Scott’s [1994] similarity metric is cross-correlation between
raw audio signals. We can approximate that metric in a privacy-sensitive way
by using the energy computed for each frame of features in place of the raw
audio signal.

Table III shows the results for these alternate similarity metrics when com-
pared to “in the same room with” ground truth. The soft MI row in the HMM
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Table IV. Other Colocation Techniques Compared to True Conversation Grouping

Accuracy Precision Recall Specificity ~ Partial Precision

Method Mean SE Mean SE Mean SE Mean SE Mean SE

HMM
Soft MI 0.958 0.004 0.931 0.009 0.907 0.007 0.970 0.006 0.940 0.009
Hard MI 0.953 0.005 0.936 0.007 0.881 0.012 0.975 0.005 0.949 0.008
Energy 0.932 0.008 0.861 0.013 0.877 0.016 0.929 0.019 0.866 0.013
Threshold
Soft MI 0.951 0.004 0.920 0.009 0.890 0.009 0.967 0.006 0.929 0.009
Hard MI 0.943 0.005 0.920 0.008 0.859 0.011 0.969 0.005 0.937 0.008
Energy 0.929 0.008 0.855 0.013 0.870 0.016 0.926 0.019 0.860 0.013

section includes the Overall line from Table I. The other rows report the same
overall evaluations for different similarity metrics and classification methods.
The HMM generally performs slightly better than the simple threshold, and
soft mutual information generally performs slightly better than hard, but nei-
ther of those improvements is significant. More interestingly, the energy cross-
correlation metric generally outperforms both voicing mutual information met-
rics. However, Table IV shows the results when compared to “in conversation
with” ground truth. As before, the soft MI row in the HMM section includes the
Overall line from Table II and the other rows also report overall evaluations.
Our method (the HMM using soft mutual information) outperforms all others,
significantly so for some metrics.

This suggests that voicing mutual information is a better metric for finding
people who are actually in conversation, while energy cross-correlation is
better for finding people who are simply physically colocated. A plausible
explanation for that is that when people are colocated but in separate
conversations, they are not taking turns with one another and will talk at
overlapping times. The lower level voicing inference may only make inferences
about the louder signal—that of the wearer—and thus the two signals will not
be similar. When people are colocated and in conversation, they take turns,
allowing each persons’ speech to be clearly recorded on each microphone and
the voicing inferences to be similar. So the voicing inference may be filtering
out some “noise” that corresponds to speech that is not part of the microphone
wearer’s conversation.

2.2.4 Segmenting Speaker Turns. Once colocated groups have been found,
we want to infer, in each grouping, who was speaking when. This is a task
known as speaker diarization and there are a number of existing methods for
it [Ajmera et al. 2004; Reynolds and Torres-Carrasquillo 2005; Anguera 2006].
However, all of the existing methods use features (primarily mel-frequency
cepstral coefficients) from which the verbal content of the signal can easily be
inferred, violating our privacy requirements. Our method relies on the output
of our voicing classifier combined with the saved energy feature. Like our ap-
proach to colocation detection, our speaker segmentation method begins with
separate inferences for each pair of people that are later combined into a global
inference.
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Pairwise Speaker Segmentation. First, for a given person a, the 60-Hz voic-
ing frames are aggregated into longer speaker frames. We use a speaker frame
size of 0.26 second (16 voicing frames) with an overlap of 0.13 second (8 voicing
frames). The longer speaker frames reduce the sensitivity of the speaker seg-
mentation algorithm to small errors in the voicing inference. The specific frame
size was chosen because the NIST standard for evaluating speaker segmenta-
tion [NIST 2009] allows for 0.25 second of forgiveness around speaker turn
transitions, so we are operating at the maximum conventional granularity.

Two quantities are computed for each speaker frame s for person a: (i) g,
the mean energy of its constituent voicing frames, and (ii) v}, the log of the sum
of the constituent voicing posteriors.

For these speaker frames, we instantiate a new HMM whose hidden state S
has four values:

(1) n:no one is speaking

(2) a: person Ais speaking

(3) b: person Bis speaking

(4) u: someone other than A or Bis speaking.

The observations for this speaker HMM are the log ratios of the speaker
frame energies: r* = logg’ — logg;. The speaker HMM observation probabil-
ities, p(r°|S°), are modeled as a one-dimensional Gaussian distribution. The
mean of the Gaussian for states n and u is set to 0. The mean for states ¢ and
b is learned from 3 minutes of data collected in a location and from a set of
speakers that are different from those in our evaluation data. A single mean g
is estimated for all pairs of speakers, and states a and b have their means set
to g and —g. The variances of the Gaussians for all four states (identical for a
and b) are also estimated from this training data.

Generally, the log ratio r® is greater than zero when S = a is speaking,
less than zero when S = b is speaking, and r* ~ 0 when S = nor S = u.
To disambiguate between states n and u, the probability that any person is
speaking during speaker frame s is computed as p(w®|vS) = (1+e*#%)~! where
kS =Y, v, is the sum of voicing probabilities in speaker frame s for person a.
In other words, p(w®|v$) is computed with a logistic regression. The parameters
a and B of that logistic regression are estimated from the same training data
used to learn the HMM’s observation probabilities.

The speech probability p(w®|v$) is incorporated into the speaker segmenta-
tion HMM as soft, or virtual, evidence [Bilmes 2004]. Virtual evidence intro-
duces a pseudo-observation vector X whose value is always observed to be 1,
that is, Vs X* = 1. The observation probability for that pseudo-observation is
then defined to be

p(X* =18 =a) £ p(w'v) (13)

pX* =18 =b) £ p(w’|v}) (14)
1

Pt =15 =w £ 5(p(w'lvg) + p(w’1v})) (15)

pX$ =18 =n) £ 1 - p(X* =1|S° =n). (16)
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Note that the information about the voicing posterior is not incorporated
through any variable’s value, but instead through the inhomogeneous param-
eterization of p(X*|S*¥), which varies with s.

For each conversation, the transition probabilities are set to intuitive initial
values and refined using expectation-maximization (EM). We tried using the
entire dataset of all conversations to learn the transition probabilities, but that
degraded performance. Learning the observation probabilities, p(r®|S*), using
EM also reduced overall accuracy. This suggests that speaker transitions vary
for different pairs of people in different conversations, and that energy ratios
are difficult to separate in an unsupervised manner. Once the EM procedure
converges, we infer the posterior distribution for each speaker frame using the
forward-backward algorithm.

Combining Pairwise Segmentations. Once posterior distributions over
speaker states have been inferred for all pairs, those posteriors are combined
into a single, global distribution for the entire group of colocated people. This
is done by expanding each pairwise distribution into a larger distribution that
has more than four states. Specifically, the expanded distribution has one state
for each speaker who has been grouped together with the pair in the colocation
step; one state for no speaker; and one state for any unmiked speakers. If there
are m speakers in a conversation the probability that was assigned to state u
(for a given pair a and b) is divided evenly among the remaining m— 2 speakers’
states and the unmiked speaker state. The probabilities for the other states, a,
b, and n, remain unchanged.

The expanded distributions from each pair are then combined to form the
global distribution. We evaluated two simple methods of combining distribu-
tions: summing p(S* = y) = %Za.b Pap(S® = y) and multiplying p(S° = y) =
% [o.p Pab(S® = ¥), where p.(S® = y) is the posterior probability computed by
pair (a, b) and Z is a re-normalizing term. The summing approach achieved
better empirical results so we used it to construct the final global distribution.

From this global speaker distribution, it is then easy to construct a MAP
speaker segmentation vector § with s; = argmax, p(S* = y). Note that for a con-
versation with m participants the values of 8§ will range from 1 to m + 2, where
the two “extra” values denote silence (no one speaking) and some unmiked other
speaking.

2.2.5 Evaluation. To evaluate speaker segmentation, for each speaker
frame we choose the most likely state from the combined speaker distribu-
tions and compare it to the ground truth in our evaluation dataset. We per-
form this evaluation on two versions of our evaluation data: a raw version
and a smoothed version. The raw evaluation considers all frames in the data.
The smoothed evaluation, in accordance with the NIST standard [NIST 2009],
merges any pause shorter than 0.3 s in a single speaker’s turn and ignores
0.25 s of data around a change in speaker.

Since the segmentation problem has more than two states, simple metrics
(like (8) to (11)) do not readily apply. However, a full confusion matrix for each
conversation is also uninformative since it is not very interesting to see how
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Table V. Raw Speaker Pseudo-Confusion Matrix

Inferred Class

None Miked, Correct Miked, Incorrect Un-miked Other
Mean SE Mean SE Mean SE Mean SE
" None 0.067 0.003 - - 0.072 0.003 0.017  0.002
§ % Miked Speaker 0.013 0.001 0.569 0.017 0.011 0.001 0.028 0.002
&= O Un-miked Other 0.018 0.002 - - 0.091 0.007 0.115 0.011
Table VI. Raw Speaker Segmentation Performance
Accuracy Precision Recall
Mics Mean SE Mean SE Mean SE
5 0.817 - 0.825 - 0.967 -
4 0.781 0.006 0.788 0.006 0.961 0.003
3 0.750 0.010 0.756 0.010 0.956 0.004
2 0.730 0.015 0.736 0.016 0.955 0.007
Overall 0.751 0.008 0.757 0.009 0.957 0.003

often a specific person a is confused with any other specific person. We can
examine pseudo-confusion matrices that show three ground truth states: no
one, miked speaker, unmiked other; and four meaningfully collapsed inferred
states: no one, the correct miked speaker, an incorrect miked speaker, and an
unmiked other.

From these pseudo-confusion matrices, we compute three summary evalua-
tion metrics:

(1) Accuracy. The fraction of frames in which the inferred state matches the
ground truth state.

(2) Precision. The fraction of inferred-spoken frames for which the correct
speaker is inferred.

(3) Recall. The fraction of truly-spoken frames for which the correct speaker is
inferred.

Table V shows the pseudo-confusion matrix for the raw evaluation, and
Table VI shows the corresponding summary metrics. Overall, the results are
promising. The correct state is inferred most of the time. Importantly, miked
speakers are rarely confused with one another. The most common mistake
is when an unmiked other is incorrectly inferred to be one of the miked
participants.

Table VII shows the pseudo-confusion matrix for the smoothed evaluation,
with the corresponding summary metrics in Table VIII. Both accuracy and
precision improve significantly when the ambiguous boundaries at the starts
and ends of speaker turns are excluded. The confusion between unmiked others
and miked speakers has also been reduced.
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Table VII. Smoothed Speaker Pseudo-Confusion Matrix

Inferred Class

None Miked, Correct Miked, Incorrect Un-miked Other
Mean SE Mean SE Mean SE Mean SE
- None 0.047 0.003 - - 0.051 0.003 0.011  0.002
§ L@ Miked Speaker 0.006 0.001 0.645 0.020 0.007 0.001 0.018 0.002
&= O Un-miked Other 0.013 0.002 - - 0.088 0.008 0.114 0.013
Table VIII. Smoothed Speaker Segmentation Performance
Accuracy Precision Recall
Mics Mean SE Mean SE Mean SE
5 0.876 - 0.883 - 0.983 -
4 0.838 0.006 0.846 0.005 0.978 0.003
3 0.806 0.012 0.813 0.012 0.973 0.003
2 0.782 0.017 0.789 0.017 0.972 0.006
Overall 0.806 0.009 0.813 0.010 0.974 0.003

2.3 Conversation Data

The steps described so far provide ways of determining who is physically colo-
cated with whom and who is speaking when, but they do not provide a method
for determining who is in conversation with whom. Such a method is difficult
to define because the ground truth for the relation “in a conversation with” is
more ambiguous than physical location or speaking state.

For example, imagine two officemates @ and & who work mostly in silence
for two hours while occasionally talking. a makes a comment, b responds, and
a short exchange ensues before they fall back into silence. When does the
conversation start and when does it end? If @ makes a comment later but b
does not explicitly respond, is that a conversation? If a third person c enters
the room and speaks to b but only a responds, who is in conversation with
whom?

To define conversations for our subsequent analyses we make the following
three assumptions: (i) to converse, two people must be colocated according to
the voicing-based method (“close enough to converse”); (ii) all people considered
to be in a conversation together must speak at least once; and (iii) “enough”
intervening silence ends a person’s participation in a conversation.

Making those assumptions concrete, we say that a person is active during a
20 second colocation frame if he speaks for at least half a second during that
frame. We also say that he is active for 20 seconds before the first frame in which
he first speaks (to account for people beginning to join an ongoing conversation)
and that he is active for 40 seconds after the last frame in which he speaks (an
ad hoc threshold for “enough silence”). If two people are colocated in “acoustic
proximity” and active, then they are considered to be in conversation with each
other.
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Note that this is a pairwise relation. a and b can be in conversation for a long
period of time if they continue speaking, but ¢ may only occasionally be put into
a conversation with them if she speaks infrequently. This may seem to exclude
more silent people, but the short threshold required to be active should capture
even the slightest back channel communication required for a conversation
to proceed smoothly. Additionally, the previous enforcing of transitivity for
the colocation relation will ensure that the conversation relation is properly
transitive.

Evaluation. These heuristics happen to match our evaluation data per-
fectly. Consequently the accuracy of the conversation detection step depends
on how well the colocation detection works. If conversing individuals are de-
tected as being colocated then all of the true conversations are accurately clas-
sified. Thus, an evaluation comparing the resulting inferred conversations to
the “in conversation with” ground truth label yields exactly the same results as
comparing our voicing-based colocation inference to the “in conversation with”
ground truth. The table of those results is identical to Table II, and thus we
omit it for space. We plan to test the generalizability of these heuristics on
future datasets.

3. THE SPOKEN NETWORKS CORPUS

Using the conversation detection methods from the previous section, we col-
lected a corpus of real-world face-to-face conversations among 24 research sub-
jects over an extended period of time. This section first contrasts our effort with
earlier data collection projects (Section 3.1), it then explains the procedure used
to gather the data (Section 3.2), provides summary statistics about the data
(Section 3.3), and shows novel measures of social behavior that can be easily
extracted form the data (Section 3.4).

3.1 Related Work

Our project integrates two distinct streams of research. First, it collects situ-
ated speech data for an entire subject population, building on earlier efforts
in both spontaneous speech data collection and real-world social interaction
measurement. Second, it monitors these interactions over an entire academic
year, building on previous work in collecting temporal social network data.

Spontaneous Speech Data. Existing efforts at collecting real-world speech
data have considered settings—meetings, phone conversations, interviews
[Ang 2002; McCowan et al. 2003; Dielmann and Renals 2004; NIST 2009;
Stupakov et al. 2009; Lian and Hsu 2009]—where the content of the speech
is unpredictable, but the decision to have a conversation is made in advance.
In these scenarios the dialogue is spontaneous, but the existence of the con-
versation is not. As such, the datasets do not capture information about their
subjects’ social networks.

Beyond that, most of the existing research on speech and emotion has either
used acted speech data [Douglas-Cowie et al. 2003]—which is known to poorly
reflect natural emotion [Batliner et al. 2000]—or small datasets limited to a
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handful of observations of each subject, which cannot be used to compare one
person’s speech across different situations or over time (e.g., Greasley et al.
[1995], Douglas-Cowie et al. [2000], and Ang [2002]). Most are also recorded
in relatively unnatural settings (television shows, interviews) that are not rep-
resentative of ordinary human communication. We have found only one other
attempt at collecting similar data in settings as natural and spontaneous as
ours [Campbell 2002], but it only recorded single participants in isolation (i.e.,
only one side of a conversation).

Social Behavior and Temporal Network Data. Several studies have used
cell phone call data to measure real-world social interactions. For example,
Onnela et al. [2007] construct an undirected network of reciprocated cell phone
calls with ties weighted according to time spent in conversation. Another tem-
poral study comes from Kossinets and Watts [2006], who analyze email sent
between all students, faculty, and staff at a university over one academic year.

Of course, new data collection methods are not limited to only virtual com-
munication. Borovoy [2002] developed a wearable badge capable of detecting
physically proximate people. The badge used infrared sensors and thus could
only detect people facing each other with a clear line of sight, but has been used
to analyze face-to-face encounters. For example, Ingram and Morris [2007] use
such infrared badges to study patterns of interaction among executive MBA stu-
dents at a mixer party. Similarly, Connolly et al. [2008] use data collected from
motion sensors [Wren et al. 2007] to infer social events like walking together,
attending the same meeting, or coincidentally meeting in a break room. Eagle
and Pentland [2006] present a system for inferring physical proximity from the
short-range Bluetooth radios in cell phones, and for inferring coarse absolute
location using cell tower IDs. Using this system they collected interaction data
for graduate students from two different departments at one university.

The most relevant and groundbreaking real-world social behavior data
collection (and the immediate ancestor of this work) has used the sociometer: a
wearable platform combining infrared, motion, and—most importantly—audio
sensors [Choudhury and Pentland 2003]. Choudhury [2004] recruited 23
members of the MIT Media Lab—including graduate students, faculty and
staff—to wear the sociometer for two weeks. She was able to automatically
extract conversations from the data with accuracies ranging from 64% to 88%.
(That study saved raw audio, so the conversation detection could be compared
to labeled data.)

Methods employing audio data have many advantages. Audio-based infer-
ence methods are not restricted to line of sight like infrared or motion sensors
and will not infer colocation through walls like Bluetooth. This approach aims
to capture actual interactions, not just physical proximity. And it also allows
for a much finer-grained observation of the behavior during an interaction, not
just the fact of whether or not an interaction occurred.

3.2 Data Collection Method

The data collection effort presented in this work descends from the original
sociometer study, but differs in the research context and design. The dataset is
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also richer compared to the original sociometer work as a result of the improved
conversation and colocation detection techniques that we have developed.

In this study, we recruited new students as they entered a graduate program
at a large research university. We collected data on two student cohorts in the
period 2004-2007 and analyze one of these cohorts here, including 24 of the
27 students who enrolled in the department in that year. This research site
allows us to study the initial formation of a network among a group of peers as
well as the dynamics of this network over the academic year. This design builds
on Choudhury’s [2004] study, which included professors as well as students of
varying seniorities, began measuring their interactions after they were already
acquainted, and monitored them for only two weeks.

Our subjects recorded data by wearing a personal digital assistant (PDA)
with an attached sensing device (described in more detail below). Subjects
recorded data during whatever period they considered their “working hours.”
They recorded daily for one work week (five days) each month over the nine-
month course of an academic year. The first week had only three working days
and the last only four, for a total of 42 collection days. Aside from the days
and hours, no other restrictions were placed on data collection. The subjects
recorded data everywhere they went, indoors and outdoors: class, lunch, study
groups, meetings, spontaneous social gatherings, etc.

Data was saved to a 2-GB Secure Digital (SD) flash memory card on the
PDA. Subjects were asked to upload their collected data at the end of each
collection day, but because their memory cards could hold an entire week of
data most waited until the end of the week. The subjects were paid for each
day of data that they submitted. They were also allowed to use the PDA during
noncollection weeks and were given the PDA at the end of the study.

Research subjects completed questionnaires before beginning the school
year, at the end of each data collection week, and following the end of the
school year. These surveys used conventional retrospective questions to mea-
sure subjects’ substantive relations with one another (e.g., collaborations on
homework or research, social visits outside of school), their research interests,
and other basic information (e.g., race, gender, age, languages spoken).

3.2.1 Hardware and Software for Data Collection. All conversation data
discussed here was collected using the same platform: an HP iPAQ hx4700
PDA with an attached multi-sensor board (MSB, Figure 6) containing eight
different sensors.

The PDA was carried in a small over-the-shoulder bag and the MSB was
connected to the PDA via a USB cable that ran discreetly down the bag’s strap
(Figures 7(a) and 7(b)). The MSB was clipped to the strap, like a lapel mi-
crophone. Recording could be started and stopped with the press of a single
hardware button on the side of the PDA and the screen indicated whether
the device was recording, how much data had been recorded, how much bat-
tery power remained, and an estimate of recording time left with the available
battery power (Figure 7(c)). The PDA has an Intel XScale PXA270 624-MHz
processor, with no floating-point unit, and 64 MB of RAM. As mentioned above,
all data was saved to an SD card, with files rotated every half hour. The file
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(a) Front: MSB is on right (b) Back: PDA is in bag. (c¢) PDA and data collection
shoulder program.

Fig. 7. The data collection kit worn by each subject.

rotation was implemented to prevent any accidental corruption from spoil-
ing an entire data collection session, but in practice corrupted files were very
rare.

The most important sensor for conversation detection is clearly the micro-
phone. The MSB’s microphone is an inexpensive electret condenser microphone
that records 16-bit audio at a rate of 15,360 Hz. Though not addressed in this
paper, the MSB also contains seven other sensors that sample at varying rates:
triaxial accelerometer (550 Hz), visible light (5650 Hz), digital compass (30 Hz),
temperature and barometric pressure (15 Hz), infrared light (5 Hz), and hu-
midity (2 Hz). These sensors can be used to infer the wearer’s physical activity
(e.g., walking, sitting, standing, etc.) and whether she is indoors or outdoors
[Lester et al. 2005]. In addition to the data gathered via the MSB, the PDA
records (at 0.5 Hz) the MAC addresses and signal strengths of the 32 strongest
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visible WiFi access points. We had hoped that the WiFi data could be used
to determine the wearer’s absolute physical location [Ferris et al. 2006], but
repeated attempts to infer locations from the recorded data were unsuccessful.
Unlike audio, the raw data from the additional sensors and the WiFi readings
are saved in their entirety with no initial feature processing. We also intended
to collect GPS data using a separate unit which communicated to the PDA
via bluetooth but the subjects often forgot to recharge the separate unit. In
addition, most of the data was collected indoors so the GPS data did not add
enough information to justify the additional bluetooth communication cost.

For the 24 subject population, raw audio was not saved—even temporarily—
on the device. The privacy-sensitive features described in Section 2.1 were
computed in real-time on the PDA and only those features were saved. For the
five subject group that generated the evaluation data described in Section 2.2,
raw audio was saved in addition to the privacy-sensitive features. That group
contains no subjects from the larger study population and all members of the
evaluation group consented to have raw audio recorded during their 50 minutes
of observed interactions.

3.2.2 Problems Encountered. We encountered four significant technical
problems during data collection. First, batteries died faster than anticipated.
We discovered that the PDA’s operating system was attempting to connect to
known WiFi networks in weak signal conditions that we had not previously
tested. We alleviated this problem by reconfiguring the OS to never attempt to
connect to any network while the data collection application was running. Sec-
ond, although subjects found it easy to recharge their PDAs at the end of each
day, they would often forget to charge them between collection weeks. Because
all of the PDA’s software and settings are stored in volatile RAM and are com-
pletely lost if the battery fully discharges, this led to many Monday mornings
of lost recording time while PDAs were reconfigured. Third, the PDASs’ clocks
are shockingly unreliable. We found them to drift up to 5 minutes between
collection weeks, requiring resynchronization with a time server. The fourth
significant problem was that the cable connecting the MSB to the PDA’s USB
card was not durable enough. Over time, the PDA would intermittently lose its
connection to the MSB, requiring replacement of the cable.

Each of these problems ultimately arose from our stretching the iPAQ PDA
well beyond its intended use. It was meant to be turned on only sporadically
for short tasks, not to run continuously as its user goes about her day. The PDA
was also intended to be attached to a computer regularly, providing it with the
opportunity to charge its battery and synchronize its clock. While these PDAs
were handy portable platforms for short data collection efforts, they were not
suited to long term collection efforts such as ours. Fortunately for subsequent
efforts, newer platforms—particularly smart phones—are much better suited
to running long-lived, independent data collection tasks.

3.3 Collected Data

Our subjects gathered a total of 4,401.51 hours of data, an average of
183.40 hours per subject. The amount of data collected for each participant
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Fig. 8. Average hours recorded per day for each subject in each week. Black lines are data points:
the average for one person for that week. Blue “beans” are kernel density estimates. Green lines
are medians and red lines are means.

varied greatly, from a maximum of 321.53 hours to a minimum of 88.41 hours.
Each subject recorded 4.27 hours per study day on average, with a minimum
of zero and a maximum of 10.71 hours recorded in a single day.

Figure 8 shows beanplots [Kampstra 2008] of the average number of hours
collected per day for each collection week. (Beanplots are an alternative to
box plots that allow for comparison across weeks while also showing more
information about the specific distribution of data within each week.) The
first three weeks (i.e., representing the first three months of the academic
year) show an increase in the amount of data collected as the subjects ini-
tially learned how to use the devices and we resolved battery and software
problems as previously described. Recording hours diminished slightly in the
later weeks, also due partly to technical problems with the cables and perhaps
because the participants became fatigued or the study became less novel to
them.

Since colocated people and their conversations can only be found when par-
ticipants are simultaneously recording, the number of overlapping recordings
is more important than the raw amount of data collected. Figure 9 shows
histograms of the number of people simultaneously recording any 20 second
window in the data (a window is only in the data if at least one person recorded
it). While there is no moment when all subjects are recording (the maximum
number of simultaneous recordings is 21), there is enough overlap in the data
for it to contain many interactions among our subjects. The average number of
simultaneous recordings per window is 8.10 for the entire corpus, and 88.53%
of all recorded windows are covered by at least two recordings. Simultane-
ous recording time varies across pairs from a minimum of 16.13 hours to a
maximum of 215.18 hours.

3.4 Basic Behavioral Inferences

Data processing follows the three steps described in Section 2: colocation
detection, speaker segmentation, and conversation extraction. Recall from
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Fig. 9. Number of people simultaneously recording each 20 second window with at least one
person recording. Stacked blue boxes are histograms with one bin for each possible number of
simultaneous recordings. The width of the box reflects the number of windows simultaneously
recorded by the corresponding number of subjects. Green lines are medians and red lines are
means.

Section 2.2.2 that colocation inference based on energy is more accurate when
compared to ground truth for physical location, but colocation inference based
on voicing mutual information is more accurate compared to ground truth for
conversations. Since each method presents distinct strengths for sociological
analysis, both were used to create separate colocation inferences for each week.
The heuristics in Section 2.3 are used to group subjects into actual, interacting
conversations, and pairs are only considered for conversation grouping if they
are first determined to be colocated using the voicing-based method.

3.4.1 Inspecting Daily Patterns. The times of day that recording devices
are active provides information about our subjects’ daily schedules. Figure 10
shows the number of subjects recording over the course of each day during
week 4. Most subjects begin recording between 9 am and 11 am and gradually
stop between 5 pm and 7 pm. The long slopes at both ends of the day show that
students keep different hours but most are present and recording during the
middle of the day.

There is a noticeable increase in the number of subjects who begin recording
shortly before 10:30 am on Tuesday and Thursday. During this academic term,
most subjects attended a class that met from 10:30 am to 12:00 pm on these
days, so many students arrived at school and began recording before that class.

The colocation inferences in Figure 11 show the class much more clearly.
Figure 11 shows the inferences for colocation using both energy and voicing
mutual information, as well as the conversation grouping. At each point in time,
the number of pairs inferred to be together or in conversation is normalized by
the number of pairs simultaneously recording at that moment. Thus, each line
is interpretable as the proportion of currently recording pairs grouped together
according to each method. Because of that, when few people are recording (see
Figure 10) even a small group of interacting subjects will appear as a larger
proportion in the plot. This is most apparent at the end of the day.
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Fig. 10. Number of people simultaneously recording over the course of each day during week 4.

During class on Tuesday and Thursday morning, the two colocation methods
largely agree with one another since the quiet of the class and the common
signal of the instructor’s voice will match in both energy and voicing inference.
There are also classes on Monday and Wednesday from 12:00 pm to 1:30 pm,
and on Thursday from 3:00 pm to 4:30 pm. All of these classes appear similarly
in the colocation and conversation inferences.

There is a department-wide social gathering on Friday afternoon. The
energy-based colocation puts many pairs together, but the voicing-based colo-
cation does not. This corroborates the earlier observation that during periods
where the background noise represents other conversations, the voicing colo-
cation groups people into smaller (conversation-sized) groups while the energy
colocation groups them by broader physical location. This informs our inter-
pretation of the two colocation measures.

3.5 Basic Network Analyses

Constructing networks from survey data is usually simple: they are often just
the union of self-reported ties for each actor in the network. Deriving networks
from social behavior data is not so straightforward. Many short interaction
records need to somehow be aggregated into a single network. This process
of aggregation generally involves two steps: (i) aggregating observations
across time into temporal windows—periods during which all observations
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Fig. 11. Proportion of recording pairs that are physically colocated in accordance with energy
correlation, voicing mutual information, and in conversation.

are assumed to correspond to a single, static network, and (ii) deriving some
measure of an edge from the raw interaction data within a window.

Aggregation across time is often necessary because short, nearly instanta-
neous observations rarely contain enough network structure to be interesting.
For example, in the Spoken Networks data it is theoretically possible to
observe interaction at a granularity of 20 seconds, but it is unlikely such
small snapshots would contain more than a handful of ties and the structures
observed at any point in time would be ephemeral. By contrast, windows that
are too long risk “blurring together” separate stages of the network’s evolution,
obscuring changes in the network over time and producing structures that
do not correspond to any observed network. A balance between the two—one
that offers a meaningful view of robust structural patterns while also allowing
analysis of how those patterns change over time—must be found.
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Each pair may be connected by a number of interaction events within a time
window. If simple networks are desired, some method is needed for deriving
a single value for each edge from this rich information. Since most network
analysis techniques have been developed for binary networks, many studies of
social behavior data have resorted to defining simple thresholds that distin-
guish binary ties from non-ties (e.g., Kossinets and Watts [2006], Palla et al.
[2006], and Leskovec et al. [2008]). An alternative is to use weighted edges, but
this requires using less conventional network analysis methodology.

For the simple analyses presented in this section, we define our temporal
window size to be one work week. We aggregate data to the entire study-week
because we are not interested here in the variation of interaction patterns from
day to day (e.g., induced by class schedules, as suggested by Figure 11) and we
are interested in changes in these robust interaction patterns over the course of
the year. Note that one week is the longest window of contiguous observation,
because we sample only one week per study month.

For each week, we construct two networks: the colocation network and the
conversation network. In the colocation network edges between pairs indi-
cate time spent in the same physical location (using the energy-correlation
colocation detection, not the voicing-based method). Similarly, in the conver-
sation network edges reflect time spent in conversation. Instead of selecting
an arbitrary threshold, we consider weighted networks. However, since we
can only observe an interaction between two people if both are simultane-
ously recording, we normalize the observed interaction times by the amount
of data available. Specifically, let ofj be the amount of overlapping time in i’s
and j’s recordings during week ¢. Let I/; be the time the pair is inferred to
be physically colocated, and cfj the time they are inferred to be in conversa-
tion. We define two networks: (i) the colocation network L! where Lf-j = lfj /ofj:
the proportion of observed time that i and j spend colocated; and (i1) the con-
versation network C’ with C!; = c!;/o!;, the proportion of observed time that
i and j spend in conversation. Defining edge weights to be proportions has
the added benefit of ensuring that they are between zero and one. Many
metrics developed for binary networks can then be applied without much
modification, since a binary network is a special case of such a normalized
weighted network where all ties (and non-ties) take on only the most extreme
values.

Figure 12 shows the conversation networks constructed for each week.
Obviously, a visual comparison of the networks provides limited insight.
The rest of this section considers four simple network properties that can
be more easily compared: network density, degree distributions, two mea-
sures of transitivity, and path lengths. We examine both how these properties
change over time, and how they contrast between colocation and conversation
networks.

3.5.1 Density. The density of a network is its mean edge value:
1
dY)= Y'Y 1n
(3) 47
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Fig. 12. Conversation networks for each week. Edge shades correspond to proportion of time spent
in conversation.

For weighted networks, this has all the ambiguities inherent in summarizing
a dataset with its mean. For example, a weighted network with a few very
strong edges may have the same density as one with many weak edges, despite
the fact that they are very different networks from other perspectives. Density
shows how much interaction exists in the network, but it does not reflect how
that interaction is distributed. It is more illuminating, then, to consider the
full distribution of edge values together with its mean.

Figure 13 shows those distributions as beanplots for the conversation and
colocation networks across all weeks. The red line on each bean is the value
of (17) for the week. Since most edges have very small values, it is helpful to
show them on a logarithmic scale in order to see all of the variation in the
data. Of course, zero values cannot be shown on a log scale. Figure 13 thus
shows a separate box or bin whose width corresponds to the number of zero-
valued edges in the network. The blue beans are kernel-smoothed densities
for the log transformed data. Thus, the width of the bean at some point y on
the y axis corresponds to p(};; = y|)i; > 0). The width of the box corresponds

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 1, Article 7, Pub. date: January 2011.



Inferring Colocation and Conversation Networks from Privacy-Sensitive Audio . 7:31

Conversation Edge Values

1.0 - .
Kernel Smoothed Density — Median
— Dyad — Mean R
c I A i - E I
2 H H - | | I : |
g ot
2 i H : : = g
0 H [ H E - z 3 =
g : ! : : :
S — z i : d g s :
H H H = H g |
£ H = £ : 5 |
o L H . = = H —2
£ ool B . H H i =
= i = - :
© | g ; :
c ] 1 - H H =
2 i H = i - H
8 0.001| i : - :
o | : — :
o H i H J | g =
0 S E— n n n n n n
1 2 3 4 5 6 7 8 9
Week
(a) Conversation networks
o Colocation Edge Values
3 : e A =|=
[o]
g o -—f A ] i :
© —F -5 - 2 :
O J : -
o e e - - - =
E = 2 7 T
[= E : - | .
o H o = = d i 1
0.01 i Y : z
S i ] : T
fol} H i
2 — Median H i H H
— Mean : i : .
0.001} | — Dyad v : z g
Kernel Smoothed Densities ¥ -
O n L L L n n n
1 2 3 4 6 7 8 9

5
Week
(b) Colocation networks

Fig. 13. Edge value distributions. The data has been split into zero and non-zero valued edges.
The width of the blue box at the bottom corresponds to the number of zero-valued edges for that
week. The blue beans are kernel smoothed densities of log-transformed non-zero edge values. The
width of the zero boxes and the beans can be compared: a wide zero box shows that there are many
zero-valued edges and results in a thinner bean for the non-zero edges.

to p();; = 0). The width of a box and that of the corresponding bean can be
compared: a wide box means there are many zero valued edges, and the bean
will be thinner. Note that the means and medians are computed from all values,
both zero and non-zero.

This distinction is necessary for the log scale display, but it also corresponds
to a very natural intuition about weighted networks. There is a difference of
kind, one beyond the simple difference in value, between zero valued edges
and non-zero edges. Adding a new edge, even one with a minuscule value,
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can have drastic effects on the path lengths, reachability, and connectivity of
the network. The box/bean split in Figure 13 can quickly provide a picture of
the ratio of zero-valued edges to non-zero-valued edges. The median lines also
provide information about the ratio: for weeks 1 and 8 the median proportion
of time spent in conversation is zero and thus more than half of all pairs are
not connected by an edge in the conversation network.

When comparing across weeks, the conversation edge values in Figure 13(a)
show very different distributions. The early weeks seem almost bimodal, while
the later weeks have elongated densities with gradual, almost linear decreases.
Since the plot is on a log scale, this linearity corresponds to a roughly expo-
nential decrease in probability for higher valued edges, a fact also reflected in
the distance between the means and medians. There are certainly differences
between weeks, but no pattern is immediately obvious.

A more useful comparison is that between the conversation and coloca-
tion networks. Figure 13(b) shows the same edge value distributions as in
Figure 13(a), only derived from the colocation networks. The differences be-
tween the networks are discussed further in Section 3.5.5.

3.5.2 Degree. The degree of a node is the sum of the values of the edges
incident to it: d;(Y) = ) ;Y;;. Different people may have different levels of
interaction, and patterns in those differences can be seen in the network’s
degree distribution.

Figure 14 shows beanplots of the degrees of each person for the conversation
and colocation networks over all weeks. As with the edge value distributions,
the values for the colocation degrees are much higher than those for conversa-
tion degrees and the two kinds networks seem to be very different with regard
to degree. This difference is also discussed below in Section 3.5.5.

3.5.3 Transitivity. An important property of social networks is their ten-
dency to be transitive: people who are tied to one another tend to both have ties
to the same people. More colloquially, people who share a mutual friend tend to
be friends. Transitivity expresses itself through a greater number of triangles
in the network, and thus metrics for quantifying transitivity are usually based
on counts of triangles. In this section, we will consider two such metrics: the
clustering coefficient and the global triangle count.

The clustering coefficient for a person is defined as the fraction of pairs to
whom she is tied who also have ties to each other [Watts and Strogatz 1998].
Equivalently, it is the number of triangles that involve her divided by the total
number of triangles that could involve her given her observed set of ties. Since
the metric relies on the discrete existence or nonexistence of ties, it does not
generalize to weighted networks as easily as density and degree do. There are,
however, several proposed variants of the clustering coefficient that can be used
with weighted networks. The one we use is the weighted clustering coefficient
defined by Saramaéki et al. [2007]:

1 PN
CY) = —— Vi YirY )3 18
(Y) M%_D%} i YiY jr) (18)
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(b) Colocation networks.

Fig. 14. Degree distributions.

Y is a weighted adjacency matrix and Y = Y/ max(Y) is the normalized adja-
cency matrix where the maximum edge value is one. The weighted clustering
coefficient defines the “intensity” of a triangle to be the geometric mean of the
edges involved and thus is equivalent to the traditional clustering coefficient
if edges take only zero or one values. &, = ) ; 11y, o1 is the “structural” degree
of person 7, and thus (18) captures the amount of triangle intensity that exists,
divided by the total possible intensity (e.g., if i belonged to a clique where all
edges have value one).
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Another more global measure of transitivity is the simple count of all trian-
gles in the network [Davis 1970; Holland and Leinhardt 1975]. As with the clus-
tering coefficient, the triangle count does not generalize as easily to weighted
networks as degree and density, but, following Saramaéki et al. [2007], we can
define a weighted triangle value as

Tijr = (Y3 Y Y )3 (19)

As with (18), this value is equivalent to the ordinary triangle indicator if Y
contains only binary values. As with edge values, looking at the distribution of
the weighted triangle values will provide more information about transitivity
in the network than the mean (or sum) alone would.

Figure 15 shows beanplots of the weighted clustering coefficients, and
Figure 16 shows beanplots of the log scaled weighted triangle values. In
Figure 16, the ratio of zero to non-zero values is shown as it was in Figure 13.

For both metrics, there are extreme differences between the conversation
and colocation networks. The clustering coefficient values are much higher
in the colocation networks. The median triangle count for the conversation
networks is always zero: of (Z;] ) potential triangles, the majority do not exist.
For the colocation networks, the median is never zero. These differences for
the clustering coefficients and triangle counts may reflect the greater density
for the colocation networks, so it is also important to note the changes over
time for the colocation networks are different from those in the conversation
networks.

3.5.4 Path Lengths. A final property of the networks to consider is the
distribution of path lengths. To compute path lengths, we define the length of
edge (i, j) to be 1 —Y;; if Y;; > 0. In other words, the more time a pair spends
interacting, the shorter the edge is. (If Y;; = 0, then there is no edge between i
and j and the length is undefined). The shortest path is found for all pairs and
the distribution of path lengths are shown in Figure 17.

The conversation path lengths display a pronounced bimodality that corre-
sponds to how many edges are involved in the path: values around 1 involve a
single edge, values around 2 involve two edges, etc. This is unsurprising given
the fact that most conversation edge values are small, as seen in Figure 13(a),
and thus most edge lengths are approximately one. The maximum point at
each time step is the diameter of the network. We can see that paths are gen-
erally short, usually involving at most one intermediary. Indeed, in all but the
first week, a majority of the shortest paths involve only a single edge. This is
unsurprising given the strong connectivity of the network seen in Figure 12.

Paths in the colocation networks are also short, but much more so than
paths in the conversation networks. The shorter paths partly reflect the greater
density of colocation networks, but again we see further qualitative differences
between the two networks: The clustering of lengths around one does not reflect
the same semi-discrete path lengths as in the conversation networks. There is
much more variation in edge values in the colocation network (Figure 13(b)) so
paths that traverse two edges can be as short as those that traverse only one,
even as most paths are short.
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Fig. 15. Weighted clustering coefficient distributions.

3.5.5 Discussion. All of the metrics above reveal that the colocation and
conversation networks are very different. The colocation networks are denser,
and show correspondingly higher transitivity and shorter path lengths. Those
differences may be largely due to the simple phenomenon of shared classes.
When many subjects attend the same class they are all colocated for a long
period of time. This provides the opportunity for a single interaction event—
the shared class—to create a large clique with heavily weighted edges in the
network. Such large, strong cliques will naturally increase their members’
degrees and clustering coefficients as well as the weighted triangle count of the
entire network. Indeed, those three metrics are much higher for the colocation
networks than the conversation networks.
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Fig. 16. Weighted triangle value distributions.

Additionally, since all members of the cohort have offices in the same build-
ing, they have many opportunities to be physically proximate. That is reflected
in the very different distributions of edge values for the conversation and colo-
cation networks. The conversation networks have far more zero-valued edges,
and lower non-zero values. The colocation networks have comparatively few
zero-valued edges, suggesting that almost any subject is physically near most
other subjects at least briefly during the week. Of course, subjects that share
a class will have decidedly non-brief periods of time spent colocated. That dif-
ference may explain the bimodal colocation degree distributions of weeks 4
through 7 (Figure 13(b)), where there seems to be a distinction between pairs
who spend much time together and pairs that only come together in passing.
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Conversation Path Lengths
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Fig. 17. Path length distributions.

When examining the changes in degree distributions as time progresses, the
conversation distributions seem to become more stable, while the colocation
distributions continue changing. That is perhaps because some durable social
network begins to form. The influence of that durable network on time spent
in conversation may gradually become greater than the influence of external
factors, such as time spent together in class. Time in class would certainly
have a larger effect on the colocation distribution. The simple summary statis-
tics presented here are not capable of distinguishing the relative importance
of different factors on the network’s evolution, but this remains a promising
direction for future work within this research program.
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Whether the colocation networks or the conversation networks are to be
preferred also depends on the substantive research question considered. For
example, colocation networks may be more relevant for the spread of the flu,
while conversation networks are obviously more relevant for the spread of
information through face-to-face speech.

Regardless of which is more important, the measures above reveal that the
two networks are very different for this population, and that distinction that
should inform future studies of real-world social networks, especially those that
use colocation as a proxy for social interaction.

4. CONCLUSION

In this article, we have outlined a set of privacy-sensitive features that can
be computed from incoming audio data in real-time. We have shown how to
use those features to determine who was physically colocated with whom, both
at the granularity of a room in a building and at the more elastic “acoustic
proximity” needed to have a face-to-face conversation. We have used the pri-
vacy sensitive features to infer who was speaking when, and combined those
inferences with colocation inference to determine who was in conversation with
whom. This conversation detection can handle conversations with any number
of participants, extending beyond previous methods that were limited to dyadic
conversations only. We also demonstrated the performance of these methods
using labeled conversation recordings in a variety of contexts.

We recounted an extensive project that collected privacy-sensitive situated
speech data from a subject population of 24 graduate students, and applied
our colocation and conversation detection methods to extract records of face-
to-face conversations within the study cohort during the academic year. We
constructed weighted networks of social behavior and examined basic descrip-
tive statistics in order to compare social networks defined by colocation events
to networks defined by conversation events. We found colocation and conversa-
tion networks to be quite different, providing new insight into earlier studies
that had access to only colocation data, or that interpreted colocation records
as an approximation of interpersonal interaction.
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