
On the Feasibility of Dynamic Rescheduling on the Intel
Distributed Computing Platform

Zhuoyao Zhang∗ Linh T.X. Phan∗ Godfrey Tanδ

Saumya Jain∗ Harrison Duong∗ Boon Thau Loo∗ Insup Lee∗

∗University of Pennsylvania δIntel Corporation

ABSTRACT
This paper examines the feasibility of dynamic rescheduling tech-
niques for effectively utilizing compute resources within a data cen-
ter. Our work is motivated by practical concerns of Intel Distributed
Computing Platform (IDCP), an Internet-scale data center based
distributed computing platform developed by Intel Corporation for
massively parallel chip simulations within the company. IDCP has
been operational for many years, and currently is deployed live on
tens of thousands of machines that are globally distributed at var-
ious data centers. We perform an analysis of job execution traces
obtained over a one year period collected from tens of thousands
of IDCP machines from 20 different pools. Our analysis shows
that the IDCP currently does not make full use of all the resources.
Specifically, the job completion time can be severely impacted due
to job suspension when high priority jobs preempt low priority jobs.
We then develop dynamic job rescheduling strategies that adap-
tively restart jobs to available resources elsewhere, which better
utilize system resources and improve completion times. Our trace-
driven evaluation results show that dynamic rescheduling enables
IDCP to significantly reduce system waste and completion time of
suspended jobs.

Keywords
Distributed computing, Dynamic rescheduling, Cloud resource man-
agement, Trace-driven analysis

1. INTRODUCTION
We present a trace-driven analysis of Intel Distributed Comput-

ing Platform (IDCP), an Internet-scale computing infrastructure
developed by Intel Corporation for running concurrently tens of
thousands of chip simulations. IDCP has been operational for many
years but has evolved from a pure job execution engine into a dis-
tributed grid computing platform [11] and now a global computing
cloud for Intel. The goal of our analysis is to examine the effective-
ness of IDCP’s scheduling middleware and study the feasibility of
dynamic rescheduling techniques for effectively utilizing compute
resources within the shared platform.

The IDCP platform resembles what is described as a private
cloud [2]. These are internal data centers operated by a business
or an enterprise for internal use. Private clouds like IDCP share
many similar characteristics and challenges with public cloud com-
puting efforts, such as Amazon’s EC2 [1], including deployment at
Internet-scale, supporting a large group of heterogeneous concur-
rent applications, and supporting different quality of service guar-
antees for different classes of users. To put the relevance in con-
text, the IDCP deployment today is estimated to involve hundreds
of machine clusters called pools, distributed globally at dozens of
data centers with varying wide-area network characteristics, uti-
lizing many thousands of heterogeneous multi-core compute ma-

chines. At any moment, there are many thousands of concurrent
jobs with varying priorities and requirements being dispatched by
engineers through Intel, and in aggregate, many millions of jobs
per year.

One important challenge that IDCP faces today is the need to
accommodate jobs with varying priorities and goals while keeping
both the system utilization high and latency low. In today’s Intel
environments, there are high and low priority jobs, with the for-
mer being able to suspend the latter when resources become con-
strained.

Based on our analysis of a year-long trace data, we find that the
IDCP currently does not make full use of all the resources. The
behavior of high priority jobs can significantly impact the comple-
tion time of low priority jobs. Furthermore, we also observe high
job wait time especially in low priority jobs even when the over-
all system utilization (aggregate over many pools) is relatively low.
We study these issues in depth and present preliminary work to im-
prove the average job completion time and throughput of the entire
system.

Specifically, our contributions are as follows:
Trace-driven analysis: We present an analysis of job execution
traces obtained over a year-long period collected from thousands
of machines deployed in 20 IDCP pools from a large site. To our
best knowledge, this is one of the first trace-driven efforts at empir-
ically understanding the performance characteristics of scheduling
policies within a distributed computing platform for use by a global
enterprise. From the traces, we observe in many cases

• Significantly high completion time of jobs during peak times at
certain pools, primarily caused by high priority jobs preempting
low priority jobs, even when the computing resource utilization is
only around 40% on average, and

• High wait time of jobs largely due to ineffective scheduling of
jobs and bursty workload conditions.

Dynamic rescheduling: Given the above observations, we ex-
plore dynamic rescheduling approaches whereby jobs are resched-
uled to available resources elsewhere upon suspension or prolonged
waiting within pool queues. We validate the potential benefits of
the dynamic rescheduling strategies using a trace-driven simulator
developed at Intel. Our results are as follows:

• By rescheduling suspended jobs to other physical pools, we re-
duce the system waste time by more than 33% and the average
completion time over suspended jobs by 50%.

• By rescheduling jobs stalled in waiting queues, we can further de-
crease the average completion time of all jobs, thereby improving
the overall system performance.

1

• We also find that a simple random pool selection when applied
appropriately can perform quite well alluding to the possibilities
of scheduling decisions made by individual jobs rather than the
system as it has been done traditionally.

2. ARCHITECTURE AND MOTIVATION
We provide an architectural overview of IDCP and highlight its

performance insights gathered from traces.

2.1 IDCP Architecture
Figure 1 shows the overall architecture of IDCP, which is de-

signed as a hierarchical system consisting of several physical pools,
each of which consists of hundreds or thousands of multi-core ma-
chines. Intel has many sites of operation across the globe. Each
typical site has many physical pools that are often located in mul-
tiple data centers. To simplify computing operations and make the
geography of physical pools transparent to the users, IDCP deploys
a middleware layer called virtual pool manager at each site. Each
virtual pool manager is configured to connect to one or more phys-
ical pools located at the same site or different sites. A virtual pool
manager accepts job submissions from users at that site, and then
distributes jobs to the connected physical pools according to re-
source availability and IDCP configurations. Thus, IDCP inher-
ently supports remote execution of jobs in a manner that is trans-
parent to the users. In practice, chip simulation jobs are also I/O
intensive, and they require access to a large amount of data. Data
synchronization and large data transfers are typical handled through
out-of-band mechanisms and are out of scope for this paper.

Jobs submitted to the virtual pool manager are immediately
queued, and will be sent to a physical pool. The default scheduling
follows a round-robin fashion. Once the job arrives at a physical
pool, the physical pool manager dispatches the job to a particu-
lar machine based on the job requirements (e.g., OS and memory),
the resource availability and the priority of the job. Specifically,
the physical pool manager maintains a list of available resources.
When a new job is assigned to the physical pool, the pool manager
searches its list to find the first eligible machine (i.e., which sat-
isfies the job requirements) that is available and schedules the job
there. If all eligible machines are currently not available, two dif-
ferent approaches will be taken according to the job’s priority: (a)
if there is a job currently running on an eligible machine that has
lower priority than the new job, this currently running job will be
suspended by the new job; b) otherwise, the new job will be queued
and waiting for resources to become available in the physical pool.
On the other hand, if none of the machines in the list is eligible, the
physical pool manager will return the new job to the virtual pool
manager, who will then try to schedule the job to the next physical
pool.

2.2 Priority-based Preemption
There are two kinds of priorities in today’s Intel environment, i.e.

high priority and low priority. Although in general, users clearly
would like to have their jobs completed as soon as possible, engi-
neering and business groups within Intel take business constraints
into account in making decisions on which jobs are classified as
high priority. In addition, the priority mechanism is also used to
distinguish between jobs that are highly sensitive to turn-around
time (and thus high priority) vs. jobs that are less sensitive to la-
tency.

In IDCP, priority-based job preemption is enforced at the host
level of each physical pool. When a high priority job is sched-
uled by the virtual pool manager for execution in one of the phys-
ical pools, if none of the eligible machines in that physical pool is
available right then, the physical pool manager will try to find a low
priority job running on one of those machines. Once found, the low

priority job will be suspended to allow the new job (with high pri-
ority) to execute. Such a priority-based job preemption is necessary
for the IDCP environment due to the business need to periodically
run a large amount of jobs in a relatively short time. When a pool
is highly utilized, low priority jobs may get suspended more than
once.

To illustrate the impact of high priority jobs on low priority ones,
Figure 2 shows the CDF of suspension time for suspended jobs (in
minutes) collected from a large site with 20 physical pools, for a
time period of 500,000 minutes (roughly a year) of IDCP traces.
We note that 20% of all jobs are suspended for more than 1100
minutes (18 hours), and the median suspension time is 437 minutes
(7.3 hours), the average suspension time is 905 minutes (15 hour).
In addition, we observe a long-tailed distribution of jobs that re-
quire more than 100k minutes to complete.

The impact in some cases goes beyond the high completion times
experienced by suspended jobs and can impact the engineering pro-
ductivity. For example, some classes of chip simulation work has
logical notions of tasks, each of which represents a set of jobs com-
pleting a specific function. Typically, 100% or a high percentage
of jobs associated with a particular task needs to complete before
the task result (combined from the results of those jobs) can be
useful. Often when one or more of those low priority jobs can not
complete in a timely fashion, engineers lose productivity and/or
system resources are wasted since the same task execution needs to
be manually repeated at a different time.

2.3 Motivation for Rescheduling
Figure 4 shows the IDCP utilization (black dotted line) as a per-

centage of the total number of available cores, and the number of
suspended jobs (blue solid line). The data are gathered over a pe-
riod of a whole year of IDCP traces. We sampled the number
of suspended jobs in the system and the system utilization every
minute and aggregated them to get an average number based on a
100 minutes interval.

We make the following observations. First, the overall system
utilization averages around 40%, and is typically in the range of
20%-60%. However, during the same period, high priority jobs can
preempt low priority jobs, leading to a large number of suspended
jobs and hence a poor utilization of resources. Second, high priority
jobs tend to be bursty in nature, as demonstrate in the trace, where
we observe that job suspension can spike suddenly due to the arrival
of a large number of high priority jobs and last from several hours
to a week.

Third, we observe that suspension may arise in cases even when
the system is not overloaded (at 40-60% utilization). The typical
reason is that latency sensitive jobs with high priority are usually
configured to only run in specific sets of physical pools so that de-
sired results can be achieved. During periods where there are bursts
of high priority jobs being dispatched, those pools are quickly over-
whelmed and lots of low priority jobs are suspended. However,
during the same time period, other pools may be barely utilized.

The above observations lead to our approach of dynamic reschedul-
ing of suspended jobs at different pools which may have more avail-
ability of resources required by the suspended jobs. Similarly, we
can also apply rescheduling techniques on jobs that have been wait-
ing in queue for a long time possibly due to a poor scheduling de-
cision. By rescheduling jobs that are stalled at a particular pool
to an alternate pool, we can make better utilization of the overall
resources so as to improve the efficiency of the system.

One potential shortcoming of our rescheduling-based approach
for suspended jobs is the likelihood of wasted work due to the
rescheduling of a suspended job in a different pool. One valid ques-
tion to ask is why migration (e.g., as used in Condor [4]) or VM
migration approaches (e.g., as used in VMWare [8]) are not used
by IDCP. We think that the VM migration approach works best for

2

Figure 1: IDCP Architectural Overview.

10 100 1000 10000 100000 1000000
0

10

20

30

40

50

60

70

80

90

100

Suspension Time

C
D

F

Figure 2: CDF of job suspension time.

0

10

20

30

40

50

60

70

80

90

100

NoRes ResSusUtil ResSusRand

Av
er
ag
e
W
as
te
d
Co

m
pl
et
io
n
Ti
m
e Wait Time

Suspend Time
Wasted Time by Rescheduling

Figure 3: Average wasted completion time
(in minutes) under normal load.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 105

0

1

2

3

3.5x 105

time

of

 s
us

pe
nd

ed
 jo

bs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 105

0

25

50

75

100

120

U
til

iza
tio

n
(%

)

Figure 4: Suspension (# number of jobs) and Utilization (%) over a one year period.

some environments but not as well in other environments like In-
tel’s. This is because running chip simulation workloads (like the
ones being executed inside Intel’s data centers) on virtualized hosts
often lead to material performance overhead as indicated in recent
experiments [9].

More importantly, our rescheduling approach for waiting jobs
complements either a restart strategy or VM migration method used
to restart or migrate suspended jobs in alternate pools. In fact, as
we show in Section 3, a simple rescheduling scheme applicable
for both suspended and waiting jobs can be very effective and its
implementation can be easily achieved in existing environment.

3. RESCHEDULING STRATEGIES
In this section, we perform a trace-driven simulation analysis to

study the potential benefits of various dynamic rescheduling strate-
gies in IDCP.

3.1 Experimental Setup
Our evaluation is carried out using a hybrid event-based and

agent-based simulator called ASCA (for Agent-based Simulator for
Compute Allocation), developed at Intel [12]. ASCA models the
operational capability and semantics of various fine-grained com-
ponents of IDCP such as sites, pools, queues, job requirements and
priorities, virtual and physical pool managers, round-robin physi-
cal pool scheduling. It samples at each minute the current states
of all IDCP components (e.g., idle, busy) and jobs (e.g., running,

suspended, waiting), as well as the jobs’ resource usages, and out-
puts the results as logs for post-analysis. Reference [12] describes
the implementation of this simulator in greater detail and provides
detailed analysis results to demonstrate that the simulator achieves
the performance characteristics of the actual IDCP deployment in
terms of utilization and job completion times [12]. Here, we incor-
porate with the existing ASCA simulator various dynamic reschedul-
ing strategies for our performance evaluation.

The simulator takes as inputs IDCP traces as described in Sec-
tion 2.2. The IDCP traces describe the complete information of the
jobs submitted to the site (from several sites across the globe) dur-
ing the period, including computing resource and memory require-
ments, submission time and priority. The simulator is configured to
emulate 20 physical pools, each of which contains hundreds to tens
of thousands of machines with varying CPU speed and memory.

To better understand the effect of our dynamic rescheduling ap-
proaches, we focus on the (total of 248000) jobs that are submitted
during a one week busy period in the trace (i.e., with submission
time between 76000 and 86080 minutes as shown in Figure 4).
This particular period of the trace captures a typical burst of high-
priority jobs and as a result, a burst of job suspension. We execute
these jobs on the ASCA simulator until all 248000 jobs are com-
pleted, and gather experimental results based on the following job
and system-wide metrics. All time-based metrics are calculated in
minutes.

3

• The Suspend Rate, which is the fraction of all jobs submitted to
IDCP that have been suspended at least once during the job life-
time.

• The average completion time AvgCT. This is further broken into
two subcategories, where we consider all jobs and only jobs that
have been suspended at least once.

• The average suspend time AvgST of jobs that have been suspended
at least once.

• The average wasted completion time AvgWCT of all jobs, where
wasted time for a job is defined as the average duration in which a
job exists in IDCP, but does not make progress towards job com-
pletion. This waste metric includes the following three compo-
nents: (c1) Wait Time, i.e., time duration in which jobs are waiting
either at the virtual or physical pool level; (c2) Suspend Time, i.e.,
the amount of time the job is suspended in a suspended queue;
and (c3) Wasted Time by Rescheduling, i.e., any completion time
wasted as a result of rescheduling a job.By minimizing the wasted
completion time of jobs, we effectively increase the overall good-
put of the system.

We also conducted similar experiments by fixing a specific time
window instead of number of jobs during each simulation run. The
results under a fixed time window are similar to those under a fixed
number of jobs (the identical set) and thus we only include the re-
sults under the latter.

3.2 Rescheduling of Suspended Jobs
We first examine the benefits of dynamic rescheduling of sus-

pended jobs, using the current default round-robin scheduler used
by IDCP. In this set of experiments, whenever a currently running
job on a machine is suspended by a newly arrived job with high
priority, it could be rescheduled and restarted (from the beginning)
at a different pool. As soon as a rescheduling decision is made, the
job will be sent to the alternate pool directly for re-execution. If
the alternate pool happens to be heavily loaded and cannot execute
the job immediately, the job will be stored in the alternate pool’s
waiting queue until compute resources become available.

We evaluate the following rescheduling schemes which differ in
their approaches to select the alternate pool for the suspended job
to restart:

• ResSusUtil: The pool with the lowest utilization among all candi-
date pools is designated as the alternate pool.

• ResSusRand: A randomly selected pool among all candidate pools
is designated as the alternate pool.

One important consideration in evaluating rescheduling schemes
is how they interact with initial scheduling schemes. As stated in
Section 2.1, IDCP’s virtual pool managers use a round-robin sched-
uler to distribute jobs across candidate pools. To disambiguate
from rescheduling schemes, we call the scheduler at each virtual
pool manager initial scheduler. We consider two initial scheduling
schemes: i) round-robin scheduler, which distributes jobs across
candidate pools in a sequential order and ii) utilization-based sched-
uler, which distributes jobs to the pool in the order of decreasing
utilization.

3.2.1 Round-robin Initial Scheduler
Normal Load Scenario

Table 1 summarizes the results over the aforementioned one week
period with the round-robin initial scheduler. We make the fol-
lowing observations from the table. First, ResSusUtil outperforms
NoRes for all metrics. For instance, there is a 50% reduction (from
2498.7 to 1265.4 minutes) of AvgCT over suspended jobs when

rescheduling is performed. Moreover, the average wasted comple-
tion time reduced by 33% (from 31.0 minutes to 20.8 minutes)
when rescheduling is performed. Second, we observe that dynamic
rescheduling may backfire if the alternate pool is randomly se-
lected, as shown by the performance degradation of ResSusRand.
The reason is that a poor selection such as choosing a pool that is
already has a lot of waiting jobs leading to an even longer wait time
for the restarted job before it can run in the alternate pool.

Suspend
rate

AvgCT AvgST AvgWCTSuspend All
NoRes 1.14% 2498.7 569.8 1189.1 31.0
ResSusUtil 1.56% 1265.4 560.0 82.2 20.8
ResSusRand 1.52% 7580.7 638.7 80.7 91.9

Table 1: Performance under normal load scenario

To further drill down on the throughput improvements due to
rescheduling, Figure 3 details the components constituting the av-
erage wasted completion time of the system for all three strategies.
NoRes does not have wasted time by rescheduling (since it never
reschedules job) but incurs a larger amount of suspend time. In con-
trast, by sending the job to other physical pools, ResSusUtil greatly
reduces the suspend time. Moreover, the benefits of rescheduling
(as reflected by the reduction in suspend time) clearly outweigh its
costs (wasted time by rescheduling), resulting in overall better re-
source utilization. As expected, ResSusRand has a large number
of wait time which results in the worst performance overall, indi-
cated that dynamic rescheduling is most beneficial when the alter-
nate pool is chosen carefully based on system load.
High Load Scenario

Suspend
rate

AvgCT AvgST AvgWCTSuspend All
NoRes 1.26% 5846.1 988.7 4402.4 450.1
ResSusUtil 1.83% 1475.1 962.2 86.2 423.9
ResSusRand 1.60% 6485 1180 73.2 636.3

Table 2: Performance under high load scenario.

To explore the performance of dynamic rescheduling under high
load scenarios, Table 2 shows a similar experiment carried out un-
der a high degree of resource contention and job preemption. To
emulate a high load situation, we reduce the number of compute
cores available to each pool by half while keeping the submitted
job trace unchanged. As expected, under high load, AvgCT for all
jobs (988.7 minutes) is almost doubled compared to that of the
previously described normal scenario (569.8 minutes) due to the
increased system utilization.

Interestingly, we note that the benefits of dynamic rescheduling
on suspended jobs are further enhanced under the high load situa-
tion. As shown in the table, AvgCT of suspended jobs is reduced
by 75% (i.e., from 5846.1 minutes to 1475.1 minutes). This is due
to the fact that under high-load, a low priority job usually experi-
ences a much longer suspend time in the presence of high priority
jobs, and hence suspended jobs have a greater chance of complet-
ing earlier by being rescheduled into another pool with available
resources. In the worst case, if all alternate pools are even more
utilized than the current pool, ResSusUtil will simply retain the sus-
pended job in its current pool, ensuring that rescheduling will not
negatively impact system performance.
High Suspension Scenario

Since the rescheduling of suspended jobs mainly improve the
completion time of suspended jobs, a higher fraction of suspended
jobs naturally leads to a larger impact on the average completion
time of all jobs. In this particular trace, around 1.14% of all jobs
have been suspended. While the suspension rate increases to around

4

1.6% when jobs are dynamic rescheduled (due to a more aggres-
sive use of system resources), it is still relatively low and hence,
does not significantly affect the AvgCT of all jobs. To investigate
the performance of rescheduling under high suspend rate, we cre-
ated a job trace that result in a suspend rate of 14%. Here, there
is a more significant reduction of 7% in AvgCT for all jobs, and an
equally high reduction of 44% in AvgCT of suspended jobs.

3.2.2 Utilization-based Initial Scheduler

Suspend
rate

AvgCT AvgST AvgWCTSuspend All
NoRes 1.50% 5936.0 994.2 4916 456.6
ResSusUtil 1.72% 1466.9 946.2 84.5 407.6
ResSusRand 1.62% 7979.9 1229.9 72.3 686.8

Table 3: Performance with utilization-based initial scheduling

The advantage of the round robin initial scheduler adopted by the
IDCP system is its simplicity in design and implementation. The
virtual pool managers also need not maintain any statistics of their
physical pools. However, by ignoring the varying resource avail-
ability across various physical pools, round robin may result in a
long job waiting time even though there are resources available. In
this section, we run simulations using the utilization-based initial
scheduler, under which each job entering a virtual pool manager is
scheduled to the physical pool that currently has the lowest utiliza-
tion. As before, if a job becomes suspended during execution, a
dynamic rescheduling approach will be applied.

Table 3 shows our evaluation results for the three strategies NoRes,
ResSusUtil, and ResSusRand with utilization-based initial sched-
uler. We present the results under high load scenario, because this
load reflects more closer to the current Intel environments which
have increased utilization since the experimental trace was col-
lected. The same experiments under normal load scenario are also
carried out and the observations are similar.

We can find that dynamic rescheduling ResSusUtil also works
well with the utilization-based initial scheduler, achieving 75% re-
duction in the average completion time for suspended jobs (from
5936.0 to 1466.9 minutes) and a 11% reduction in the average
wasted completion time (from 456.6 to 407.6 minutes). Another
observation is that when no rescheduling method is used, utilization-
based initial scheduling leads to a higher suspend rate compared
to that with round-robin initial scheduler (from 1.26% to 1.50%
). This is possibly due to the fact that the utilization-based ini-
tial scheduler tends to send more jobs to larger pools which leas to
more suspension when high priority jobs burst in those pools.

It is worth noting, however, that exact implementation of the
utilization-based initial scheduling requires the virtual pool man-
ager to know the current situation in every physical pool at any
time, which can be impractical in reality given the unavoidable
propagation latency between different pools in a geographically
distributed system.

3.3 Rescheduling of Waiting Jobs
As evident in earlier experiments, wait time is often the largest

component of job completion time. We observe situations whereby
jobs assigned to heavily utilized pools are stuck for long periods
of time in the waiting queue. This is particularly exacerbated by
IDCP’s use of the round-robin initial scheduler. In these scenar-
ios, rescheduling a suspended job does not improve completion
time, since the waiting jobs stuck in queues are not considered
suspended. In this section, we propose a combined rescheduling
approach which applies the rescheduling approaches to reschedule
not only suspended jobs but also jobs waiting in a queue for longer
than a specific threshold.

• ResSusWaitUtil: Reschedule each waiting job that have passed the
threshold at the pool with lowest utilization.

• ResSusWaitRandom: Reschedule each waiting job that have passed
the threshold at a random pool.

We set the waiting time threshold to be 30 minutes, which is
about twice the expected average waiting time in the original sys-
tem. Note that both schemes mentioned above also reschedule sus-
pended jobs as described in Section 3.2. We use the same high load
scenario and job trace used in Section 3.2.1.

3.3.1 Round-robin Initial Scheduler

Suspend
rate

AvgCT AvgST AvgWCTSuspend All
NoRes 1.26% 5846.1 988.7 4402.4 450.1
ResSusWaitUtil 1.46% 1224.3 951.4 72.7 414.2
ResSusWaitRand 1.50% 1417 954.7 62.3 417.6

Table 4: Performance with round robin initial scheduling

As shown in Table 4, the combined rescheduling approach
(ResSusWaitUtil) additionally improves upon the previous reschedul-
ing approach (ResSusUtil in Table 2). Specifically, by increasing
job mobility and avoiding long waiting time of jobs, the average
completion time of suspended jobs is reduced by 79% (from 5846.1
to 1224.3 minutes). Moreover, the average wasted completion time
of the entire system is reduced by by 8% (from 450.1 to 414.2 min-
utes).

Interestingly, we observe that unlike our earlier observed perfor-
mance of ResSusRand, the random strategy here (ResSusWaitRand)
performs almost as well as a utilization-based approach. The rea-
son is that although the random strategy may make poor choices
of the alternate pool, the rescheduled job can gain multiple second
chances to select another pool and can be restarted again after the
initial choice has led to the job waiting in the long queue. However,
it is important to note that the random strategy can lead to many
more rescheduling activities than the utilization-based approach.

3.3.2 Utilization-based Initial Scheduler

Suspend
rate

AvgCT AvgST AvgWCTSuspend All
NoRes 1.50% 5936 994.2 4916 456.6
ResSusWaitUtil 1.74% 1467.2 937.9 84.5 402.0
ResSusWaitRand 1.71% 1603.1 935.7 100.6s 399.7

Table 5: Performance with utilization-based initial scheduling

Our final experiment uses the combined rescheduling approach
together with utilization-based initial scheduler. As shown in Table
5, the results show again that the random strategy ResSusWaitRand
performs well by allowing the rescheduled job to select another
pool and restart again once it gets stuck.

Such observation inspires the possibility of a simple implemen-
tation of the system without any effort of tracking the physical
pools’ statistics. More importantly, ResSusWaitRand can be imple-
mented without any coordination or changes to the system’s sched-
uler. Each job can simply keeps a timer to keep track of how long
it has been in a queue and when a threshold is reached, dequeues
itself from the queue and resubmits to a randomly selected can-
didate pool. The fact that no system metrics are needed to make
a rescheduling decision enables the rescheduling decision to be
made solely by the waiting job. However, the advantage of de-
sign simplicity does come at a cost of much more frequent restart

5

operations. In certain environments, frequent restarts may not be
desirable since each restart operation may include time consuming
operations like transferring large amount of data and job binaries to
the alternate pool.

The above evaluations demonstrate the effectiveness of reschedul-
ing in unpredictable workload environments. While it is often diffi-
cult to find an optimal initial scheduling policy for such a dynamic
and unpredictable environment, a simple rescheduling – which can
be easily implemented – complements the initial scheduling by pro-
viding a second chance for jobs to adjust to the most recent system
state in case the initial scheduling decision is not optimal.

3.4 Summary of Results
We summarize our experimental results as follows. First, our re-

sults demonstrate that rescheduling of suspended jobs can greatly
improve the average completion time of suspended jobs without
hurting the completion time of other jobs, and also increase system
throughput by reducing average wasted completion time. These
improvements are also apparent under high load scenarios, particu-
larly in cases where suspension rates are high. The effectiveness of
the rescheduling approach is also compatible with different initial
schedulers.

Second, by additionally rescheduling waiting jobs, we can fur-
ther improve average completion times of all jobs. Specifically,
when adopting a simple random scheme in our combined reschedul-
ing approach, the results are surprisingly better than rescheduling
only suspended jobs and are close to that of the utilization-based
strategy. This opens up the possibility of simpler scheduling frame-
work without help from central scheduler, i.e., a job can make de-
cision to restart by itself in certain cases.

4. RELATED WORK
IDCP can be viewed as a real-world deployment of an Internet-

scale grid computing [5] infrastructure. Condor [4, 7] batch pro-
cessing system provides a transparent middle-ware for executing
jobs on shared computational resources. To our best knowledge,
IDCP’s scale of deployment is larger than any existing Condor
pools, both in terms of the number of jobs and machines. IDCP’s
scale is closer to that of p2p computational platforms such as
SETI@Home, with much more stringent requirements on job com-
pletion times.

In addition to our use of job rescheduling, popular techniques
for resource management that are potentially applicable to IDCP in
future include the use of virtual machine migration [4] and redun-
dant executions [6, 13] to trade-off utilization and completion time.
Our approach is orthogonal to these techniques, and our choice of
rescheduling is largely driven by current practical concerns out-
lined in Section 2.1. In addition, our recent internal evaluation
of IDCP typical workloads have shown that although VM perfor-
mance have improved significantly over the years [8], it has yet to
go down to a low single digit before it becomes a viable option from
both performance and cost perspective for the IDCP environment,
where jobs tend to be memory and I/O intensive. Nevertheless,
it is interesting future work to explore ways to integrate dynamic
rescheduling approaches with VMs within the context of the IDCP
platform.

We also note recent work around adaptive job execution tech-
niques after the job is already executed [10]. Unlike our work, Shan
et al. focus on opportunistic job migration when a “better” resource
is discovered and do not discuss about suspended jobs. Our IDCP
workloads and scale will enable us to study these issues in depth in
a realistic yet challenging setting.

5. CONCLUSION AND FUTURE WORK
In this paper, we perform a trace-driven analysis of Intel’s IDCP

system, an Internet-scale data center based distributed computing

platform developed by Intel Corporation for massive chip simula-
tion. We propose a dynamic rescheduling approach which makes
better utilization of the resources by restarting jobs to other pools
with available resources.

Our initial results are promising: by performing rescheduling
on suspended jobs, the average completion time for previously sus-
pended jobs can be reduced by around 50% and we are able to make
better use of the system resource by reducing wasted throughput
by around 33%. Under high load, the improvements to the aver-
age completion time of suspended jobs are even more significant,
achieving a reduction of 75%. Such reduction is further increased
to 79% with the additional rescheduling of jobs in wait queues.

We are currently exploring the use of more sophisticated reschedul-
ing strategies that combine job duplication techniques and inter-
site rescheduling, with the use of multiple metrics (e.g., utilization,
queue lengths, prediction of job completion times within a pool) in
combination for making rescheduling decisions. We are also ex-
ploring improvements to the simulator to incorporate network de-
lays and other rescheduling associated overheads. Finally, we plan
to validate our trace-driven simulation results on the IDCP platform
itself.

While our study is motivated by the practical needs of Intel’s
IDCP, our dynamic rescheduling strategies have broader applica-
bility, particularly in the context of scheduling cloud computing
programs in a heterogeneous environment. Beyond the IDCP sys-
tem, our longer-term goal is to develop a holistic understanding
of the resource management challenges of similar computational
clouds at the global scale. Similar to IDCP’s need to accommodate
multiple classes of jobs, public clouds will soon need to design
more effective scheduling solutions that can accommodate jobs of
different Service Level Agreements (SLAs) and thus pricing. To
this end, we plan to generalize the dynamic rescheduling tech-
niques presented in this paper to other cloud computing middle-
ware [3], in order to perform priority-based allocation of cloud re-
sources in heterogeneous environments.

6. ACKNOWLEDGMENTS
This work is supported in part by NSF grants CNS-0720703,

CNS-0721541, and CNS-0834524.

7. REFERENCES
[1] Amazon Elastic Compute Cloud, Virtual Grid Computing.

http://aws.amazon.com/ec2.
[2] M. Armbrust, A. Fox, R. Griffith, and et al. Above the Clouds: A Berkeley

View of Cloud Computing. Technical Report UCB/EECS-2009-28, UC
Berkeley, Feb. 2009.

[3] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In osdi, 2004.

[4] M. L. et. al. Checkpoint and migration of UNIX processes in the Condor
distributed processing system. Technical Report UW-CS-TR-1346,
UW-Madison, 1997.

[5] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2004.

[6] G. Koole and R. Righter. Resource allocation in grid computing. J. of
Scheduling, 11(3):163–173, 2008.

[7] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations.
In ICDCS, 1988.

[8] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for virtual
machines. In USENIX, 2005.

[9] S. Sammanna, T. Tang, and V. Lal. Server Virtualization using Xen based
VMM. In Intel IT Technical Leadership Conference, 2008.

[10] H. Shan, L. Oliker, and R. Biswas. Job superscheduler architecture and
performance in computational grid environments. SC Conference, 2003.

[11] Srinivas Nimmagadda et al. High-End Workstation Compute Farms Using
Windows NT. In 3rd USENIX Windows NT Symposium, 1999.

[12] G. Tan, D. Duzevik, E. Bunch, T. Ashburn, E. Wynn, and T. Witham.
Agent-based Simulator for Compute Resource Allocation. In Intel IT Technical
Leadership Conference, 2008.

[13] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving
mapreduce performance in heterogeneous environments. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2008.

6

http://aws.amazon.com/ec2

	Introduction
	Architecture and Motivation
	IDCP Architecture
	Priority-based Preemption
	Motivation for Rescheduling

	Rescheduling strategies
	Experimental Setup
	Rescheduling of Suspended Jobs
	Round-robin Initial Scheduler
	Utilization-based Initial Scheduler

	Rescheduling of Waiting Jobs
	Round-robin Initial Scheduler
	Utilization-based Initial Scheduler

	Summary of Results

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

