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ABSTRACT

We present a novel approach to speech-driven facial ani-
mation using a non-parametric switching state space model
based on Gaussian processes. The model is an extension of
the shared Gaussian process dynamical model, augmented
with switching states. Audio and visual data from a talking
head corpus are jointly modelled using the proposed method.
The switching states are found using variable length Markov
models trained on labelled phonetic data. We also propose
a synthesis technique that takes into account both previous
and future phonetic context, thus accounting for coarticula-
tory effects in speech.

Categories and Subject Descriptors

1.5.4 [Image Processing and Computer Vision]: Appli-
cations—Computer vision, Signal processing

Keywords

speech-driven facial animation, visual speech synthesis, ar-
tificial talking head

General Terms

algorithms, theory, experimentation

1. INTRODUCTION

Speech-driven facial animation is a challenging area of re-
search and its aim is to synthesise a talking face uttering
a novel speech sequence in a way such that the animation
looks natural, life-like and respects the dynamics of the face.
Potential applications include animating characters in 3D
animated films, animating avatars in games and virtual en-
vironments, speech therapy for people with disabilities, as
well as devising novel human-computer interaction (HCI)
systems. Our focus is on creating speech-driven facial an-
imation using automated methods as opposed to manual
techniques. This requires building a generative model of the
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face that captures the shape and texture variation in a way
that facial configurations can be represented by a compact
set of parameters. Statistical models of shape and texture
variation, known as appearance models [5, 15], are power-
ful generative models for capturing the distribution of fa-
cial expressions. These models can parameterise any face
as a linear combination of basis vectors and they can also
generate novel faces by reconstructing from the parameter
space. It is possible to use speech signal to automatically
drive the synthesis of facial animation because the visual
and auditory components of speech are highly correlated.
However, audio-visual mapping involves several factors. The
basic unit of speech is the phoneme and the corresponding
visual unit is the viseme. The British English Example Pro-
nunciation Dictionary (BEEP) phone set [21], which repre-
sents the phonemes in the English language consists of 45
phonemes including silence, which can be grouped into 13
visemes. Thus, the mapping from phonemes to visemes is
many-to-one. This mapping can also be considered many-
to-many when noise is introduced, because some phonemes
are visually ambiguous and vice-versa. This phenomenon
has been referred to as the McGurk effect [19]. The visual
appearance of a phoneme also depends on the phonemes that
come before and after it, a phenomenon is known as coar-
ticulation. A successful speech-driven animation technique
needs to address both these issues. Moreover, the generated
speech animation has to be smooth and respect the dynam-
ics of the face, thus making synthesis a challenging task.
In this work, a method is presented that jointly models au-
dio and visual parameters using a shared latent space. The
different dynamics involved during speech are catered for
by augmenting the model with switching states, which are
found automatically by training a variable length Markov
model (VLMM) [20] on phonetic labels. In the next section,
a survey of the state-of-the-art in speech driven facial ani-
mation is presented, followed by a description of the specific
techniques used in our proposed model.

2. BACKGROUND

Bregler et al[2] were one of the first to adopt an image-
based approach, whereby 2D facial images are preprocessed
and subsequently reordered and morphed to generate smooth
animation. In his proposed method, facial animation was
driven by audio, as opposed to being manually created by
animators.

Others have also used audio to drive facial animation.
Brand [1] trained a hidden Markov model (HMM) on vi-



sual data and remapped the underlying Gaussian clusters
to audio data, thus allowing the talking head to be driven
by audio. A geodesic interpolation method was used to gen-
erate a smooth trajectory of visual parameters from a state
sequence of Gaussian clusters. Ezzat et al[11] dealt with
phonetically aligned speech data and modelled visual pa-
rameters as Gaussian clusters indexed by phonemes. A tra-
jectory synthesis method with regularisation was then pre-
sented for synthesis. Coarticulation was not explicitly but
rather implicitly modelled in the trajectory synthesis tech-
nique. A linear dynamical system (LDS) was used in the
work of Shigiler et al[17] to jointly model audio and visual
parameters. During synthesis, a Kalman filter was used to
infer the underlying states from audio data, and a linear
mapping was then used to generate the visual parameters
from the inferred states.

Cao et al[3] explored motion graphs to synthesise novel
speech animation using a greedy graph search algorithm,
which implicitly models the coarticulatory effects. Englebi-
enne et al[10] used a variant of switching linear dynamical
systems (SLDS) to model visual data while audio data was
modelled using a HMM. Both models were coupled by the
phonemes, which represent the states of the HMM as well as
the switching states of the SLDS. Their approach only mod-
elled previous phoneme coarticulation, without taking into
account future phonemes. In addition, certain information
in the speech signal such as intonation and prosody was ig-
nored because the synthesis process was driven by phonemes
inferred from the speech signal, and not driven by the speech
signal directly. More recently, Deena and Galata [6] tried to
address both of these limitations by modeling speech and vi-
sual parameters jointly using a shared latent space based on
Gaussian process observation and dynamical models. The
shared latent space is found by optimising the Gaussian pro-
cess latent variable model (GPLVM) [16] objective function
with respect to two observation spaces instead of one.

A limitation of Deena and Galata’s approach is that a sin-
gle dynamical and observation model is used to account for
the whole parameter space, which is not a valid assumption
because speech involves multiple types of dynamics [10]. In
this paper, we propose a way to circumvent this by aug-
menting the model with switching states that represent the
different types of dynamics. In order to achieve it, we had
two challenges to address: how to segment a corpus of data
into switching states so as to explicitly model coarticulation
and how to synthesise novel animation such there is no dis-
continuity across switching states. In our proposed method,
we address the first problem by using variable length Markov
models trained on phonetic data and propose two algorithms
to synthesise visual features from audio.

2.1 Switching Shared Gaussian Process Dynam-

ical Model

The switching shared Gaussian process dynamical model
(SSGPDM) is a non-parametric switching state-space model
proposed by Chen et al[4] to account for multiple types of
dynamics when jointly modelling silhouettes and 3D pose
data. We begin by describing the shared Gaussian process
dynamical model (SGPDM), which has been previously used
to synthesise speech animation in [6].

2.1.1 SGPDM
In the SGPDM, two observation spaces, Y = [y1,... y7|

and Z = [z, ..., z7], corresponding to audio and visual pa-
rameters respectively, are assumed to be generated from a
common latent space X = [x1,...,Xr| using two non-linear
mappings f and g with Gaussian distributed observation
noise. Each latent point x: is also generated by a dynam-
ical mapping h from the previous latent point x;—1, again
corrupted by Gaussian noise.

yi=Ff(x)+e e ~N©0B5T) (1)
2= g(ze) +e. e ~N(0,58;'T) (2)
Xt = h(Xt_l) + €dyn  €dyn ™~ N(O, /Bd_yln]:) (3)

The model is trained in an unsupervised manner by plac-
ing Gaussian process priors over f, g and h and optimising
the resulting likelihood function with respect to the Gaus-
sian process (GP) hyperparameters and the latent points X.
The likelihood function is given by:

P(Y,Z|X,®) = P(Y|X,®y)P(Z|X,®z)P(X|Payn) (4)

where ® = [®y, Py, Dyyn] is a concatenation of the hyper-
parameters of the GPs for Y, Z and the dynamics. The
likelihood function for Y is given by:
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where N is the number of data points and D is the dimen-
sionality of the observation space for Y. The matrix Wy
is a diagonal matrix of scaling parameters for each output
dimension and is used to account for different variances in
each output dimension.

The elements of the kernel matrix, (Ky);,; are computed
using the kernel function, Ky (x;,x;), which in our case is
taken to be the radial basis function (RBF):

P(Y[X, ®y) =
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The hyperparameters ®y = [ay,~y,fy] are: the vari-
ance of the RBF kernel, its inverse width and the variance
of the noise term, respectively. The likelihood function,
P(Z|X,®z) is very similar to that of P(Y|X,®y). The
likelihood function for the autoregressive dynamics is given
by:
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where d denotes the dimensionality of the latent space of
X. Xin = [x1,--- ,XN,l]T, Xout = [X2,...,xn], Kx is an
RBF kernel matrix constructed from X;,, and p(x1) is an
isotropic Gaussian prior.

Optimisation of Eq(4) is done through scaled conjugate
gradient optimisation and this gives a regularised latent space
that respects the dynamics of the data.

In order to provide a inverse mapping from Y or Z so
as to ensure distance preservation from a observation space
to the latent space, a back-constraint mapping can be used.
Eq(8) illustrates a back constraint placed with respect to Y:

xi = b(yi,0) (8)

b is a parametric mapping such as multilayer perceptron



(MLP), radial basis function (RBF) or kernel-based regres-
sion (KBR) with parameters 6. A back-constraint with re-
spect to Y can also be used to ensure a many-to-one map-
ping from Y to Z by ensuring a one-to-one correspondence
between Y and the latent points X. The graphical model
for the SGPDM is shown in Figure 1(a).

2.1.2  Switching SGPDM

The Switching SGPDM is an extension of the SGPDM
where multiple SGPDMs are indexed by switching states

m = [m1,...,7n]. The state-space equations then become:
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It is to be noted that the state-space equations of the SS-
GPDM are more similar to the stochastic segment model [7]
than the switching linear dynamical system because continu-
ous states are not propagated across switching states. If the
switching states are known, then the training of SSGPDM
reduces to training a separate SGPDM for each switching
state. In this work, switching states are found automati-
cally using variable length Markov models [13, 20, 12]. The
graphical model for the SSGPDM is shown in Figure 1(b).

2.2 Variable Length Markov Model

Training higher-order Markov models is often infeasible as
the number of higher-order states is exponential in the or-
der of the Markov model, and thus requires a large amount
of data to robustly estimate their parameters. It is noted
that most higher-order states are only observed sparsely in
the training data, if at all; and that higher-order states
sometimes do not provide significantly better predictions
than their lower-order counterparts. Variable length Markov
models (VLMMs) [20] are a powerful extension of nth-order
Markov models which take into account these observations
and the memory length to vary locally based on the specific
realisation of preceding states (i.e., the context).

A VLMM generally contains fewer states than an equiva-
lent nth-order Markov model as higher-order states not sup-
ported by the training data are automatically pruned from
the model during training, and is therefore much more ef-
ficient space-wise. VLMMSs have been applied to behaviour
modelling [12] to capture higher-order temporal dependen-
cies in some part of the behaviours and lower-order temporal
dependencies elsewhere. VLMMSs have also been applied to
language modelling [13].

In their work, Ron et al. [20] formulated a VLMM as a
Probabilistic Finite State Automaton (PFSA). The PFSA is
specified by M = (Q, X, 7,7, s), where X is a set of tokens
representing the finite alphabet of the VLMM and Q is a fi-
nite set of model states. Each VLMM state corresponds to a
string of tokens of at most length N, representing the mem-
ory in the conditional transition distribution of the VLMM.
The transition function 7, the output probability function ~y
and the probability distribution over the initial states, s are
given as follows:

T:QXY—=Q v:@QxX—10,1] s:Q —[0,1]

Training a VLMM involves scanning through the train-
ing sequences and building a prediction suffiz tree such that
every contiguous subsequence (i.e., context) w of at most
length N —1 is represented by a node in the suffix tree. The
parent node of a context ow is its suffix w, consisting all but
the earliest word o. The predictive distribution P(o’|w) for
tokens appearing after the context w is computed from the
training data using simple frequency counting. The predic-
tion suffix tree is then pruned by removing any node whose
context does not provide significant amount of new infor-
mation compared to its parent. Given a context cw and
its parent w, the amount of information gained by using
P(o'|ow) for prediction instead of P(o'|w) is measured us-
ing weighted Kullback-Leibler divergence (KL):

—~
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AH(ow,w) = P(ow) Y P(c’'|ow)log Blo'lw) (13)

If AH(ow,w) exceeds a given threshold ¢, then the longer
memory cw is retained, otherwise ocw is pruned and the
suffix w is used instead. The final stage of training involves
converting the suffix tree to a PFSA representing the trained
VLMM. A more detailed description of the VLMM training
algorithm is given by Ron et al[20].

3. PROCESSING AUDIO AND VISUAL DATA

In this section, we describe the data used in our exper-
iments, as well as techniques for parameterising audio and
visual data.

3.1 Data

The proposed model is evaluated on the LIPS corpus [22],
which consists of 278 high quality video sequences featuring
a female subject speaking sentences from the Messiah corpus
[21]. The original corpus consists of image frames of size
576 x 720 sampled at a rate of 50 fps. A frame from the
LIPS corpus is shown in Figure 2(a). Audio data in the
form of WAV files has also been made available, as well as the
phonetic annotation for each frame. In the following section,
we describe how to parameterise the audio and visual data
for use in our experiments.

3.2 Visual processing

We downsampled the data to 25 fps by skipping every
other frame in order to obtain a manageable corpus size. In
our approach, we use the Active Appearance Model (AAM)
[5] for visual parameterisation.

For training the AAM, we select 184 prototype images by
randomly choosing 4 frames from each of the 45 phonemes
and 1 silence frame. This has been done automatically using
a Matlab script. 56 markup points are then placed around
the face, lips and nose in each of the prototype images (Fig-
ure 2(b)). An AAM is built on the shapes and images, by
first aligning the shapes using Procrustes analysis and then
computing a mean shape. The texture sampled from the
convex hull of the shape for each prototype is then warped
to the mean shape using a piecewise affine warp algorithm.
The piecewise affine warp requires that a Delaunay triangu-
lation of the shape vertices to be performed (Figure 2(c)).
PCA is then applied to the shape and texture separately
and then again to the concatenated shape and texture PCA
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Figure 1: (a) Graphical Model for SGPDM. (b) Graphical Model for Switching SGPDM.

parameters. By retaining 99% of the variance of both the
shape, texture and combined parameters, a 33-dimensional
vector of AAM parameters is obtained.

The AAM search algorithm [5] is then applied to the whole
corpus, after which the shape, texture and combined param-
eters are projected to the corresponding retained eigenvec-
tors, in order to obtain the AAM parameters for the whole
corpus. Reconstruction of an image is done by first recon-
structing the combined shape and texture PCA coefficients
from its AAM parameters. This is followed by projecting
the shape and texture PCA parameters to the data space.
Finally, the texture is warped from the mean shape to the
reconstructed shape. A frame reconstructed from AAM pa-
rameters is shown in Figure 2(d).

It should also be noted that our proposed method requires
visual data with minimal pose variation in order to obtain
good results. Such variations in each sequence of a cor-
pus can be minimised by normalising its AAM parameters
and centering their modes of variation around zero. This is
done by first computing the mean of the parameters for each
mode of variation in a sequence and then subtracting that
mean from the corresponding parameters. Reconstructions
of sequences show that all the resulting sequences have the
same uniform pose. In the LIPS corpus, approximately 75
sequences have major pose variation while other sequences
exhibit minor variations and these are removed using the
above method.

3.3 Audio processing

We extracted speech features using Mel-Frequency Cep-
stral Coefficients (MFCC) [14]. An auditory window of 60ms
and a hop window of 40ms is used to obtain overlapping win-
dows and capture dynamical properties in the speech signal.
This results in a 25Hz sampling rate, so as to provide align-
ment with the visual parameters. Theobald et al[23] have
shown that processing speech at 25Hz produces similar re-
sults in speech animation as compared to processing speech
at higher sampling rates, whilst increasing the correlation
between audio and visual features. 20 MFCC coefficients
are used, which is slightly more than the 13 coefficients used
in speech recognition. This is done in order to make the au-
dio (Y) and visual (Z) spaces of comparable dimension, so
that the likelihoods P(Y|X, ®y) and P(Z|X, ®z) are bal-
anced.

4. PROPOSED METHOD

Our proposed method assumes audio signals can be seg-
mented into commonly occurring fragments of speech, such
that each fragments belongs to a primitive unit of speech,
and each unit captures a different type of coarticulation dy-
namics above the level of phonemes. Synthesising speech

driven animation therefore involves identifying the speech
units in an input sequence and then estimating a sequence
of visual parameters that respects the dynamics of the cor-
responding speech unit at each point in time.

Instead of learning such speech units directly from audio
signals, our method relies on the fact that each input se-
quence has been annotated with the underlying phonemes.
These are in turn temporally aligned with the correspond-
ing audio parameters. Such annotations can either be ob-
tained manually or it can be estimated automatically using
speech recognition systems such as HTK [27], as is the case
for the LIPS corpus [22]. By treating the phonetic labels
as tokens in an alphabet, a VLMM can be trained on the
phonetic annotations to discover commonly occurring pat-
terns of phonemes and estimate the transition probabilities
between these patterns. The dynamics of each pattern or
switching state are modelled using a SGPDM model.

Out of of 278 sequences, a random set of 250 sequences
was used for training and the remaining 28 sequences were
used for testing.

4.1 Training

Given a VLMM trained on phonetic labels, let 7 denote a
VLMM state that correspond to a string of M, phonemes.
For each VLMM state 7 in the training corpus, the corre-
sponding M, frame-long sub-sequences of audio and visual
features are extracted from the training data. The extracted
sub-sequences for a particular VLMM state are modelled
together within the same SGPDM as multiple sequences,
rather than as a single sequence. Learning Gaussian pro-
cess dynamical models using multiple sequences has been
demonstrated by several researchers [24, 25]. Due to the na-
ture of VLMM, the extracted frames for a particular VLMM
state often overlap with other VLMM states, thus creating
some redundancy in the model. These redundancies, how-
ever, help to model the coarticulation dynamics within each
unit represented by a particular VLMM state.

A shared Gaussian process dynamical model (SGPDM) is
learnt for each VLMM state. Each SGPDM is intialised by
computing a linear subspace with respect to each data space
using Principal Components Analysis (PCA), which are then
averaged to form a shared latent space. We found in our ex-
periments that a PCA initialisation produces a better model
than a latent space initialised with respect to Canonical
Correlation Analysis (CCA), primarily because CCA only
finds directions of maximal correlation whilst neglecting the
variance pertinent to each data space. No back constraints
are used since the audio data corresponding to a particular
VLMM state are less likely to be visually ambiguous, as op-
posed to when all the phonemes are modelled using a single
SGPDM model [6]. The dynamics models used are an au-
toregressive Gaussian Process dynamics with the parameters



(b)
Figure 2: (a) A frame from the LIPS corpus. (b) AAM Markup points. (c¢) Delaunay Triangulation. (d) AAM Reconstruction.

of the RBF and noise terms set such that the signal to noise
ratio is: 100 : 1. In contrast to the method proposed by
Englebienne et al[10], which uses a linear dynamical system
to model the dynamics within each phoneme, our choice of
non-linear dynamical models is motivated by the fact that
phonetic contexts can exhibit highly non-linear behaviour.
We use a 6-dimensional latent space because we found it to
give decent reconstructions for both audio and visual data,
without overfitting.

Figure 3 shows the first 3 dimensions of the latent spaces
for SGPDM models corresponding to different VLMM states.

4.2 Synthesis

New speech animation is synthesised by determining the
VLMM state 7; for each audio frame in the testing sequence
and then inferring the corresponding latent point X; from
the SGPDM associated with ;. Visual data can then be
generated from the latent points. In this work, we assume
that the phonetic labels are available for the test sequence,
so that the VLMM state for each frame can be found by
simply traversing through the PFSA corresponding to the
learnt VLMM, using its transition function (see section 2.2).
Two methods are proposed for inferring the latent points X:.

4.2.1 Inferring VLMM States

For the purpose of synthesis, we wish to associate each au-
dio frame in the test sequence to a VLMM state, such it is
not overlapping with frames belonging to any other VLMM
states, so that we can synthesise from the corresponding SG-
PDM model. This is done by traversing the PFSA starting
from the start state, and selecting the nodes corresponding
to the incoming phoneme and moving to the corresponding
VLMM state. This is repeated until all the phonemes in the
testing sequence have been processed. Occasionally when
traversing the PFSA, a VLMM state can be reached such
that is no outgoing node for the next phoneme, in which
case, the algorithm moves back to the start state and for-
gets all previous memory.

Once the last phoneme is reached, a backtracking step is
carried out, starting from the last VLMM state 7, which
has a memory length of My,.. All previous My, frames are
marked as state 7. We then move to frame L — My, — 1,
where L is the length of the sequence and find the VLMM
state, m; for that frame. Taking My, to be the length of
VLMM state m; at frame ¢, the previous M, frames are
marked as state m;. This is repeated until the beginning
of the sentence is reached. This gives us a non-overlapping
VLMM state sequence for the sentence.

(d)

4.2.2 Optimising Latent Points

In this section, we describe two different ways for esti-
mating latent points from the inferred VLMM states and
the test audio data. For both methods, an initial estimate
of the latent points, x., is found using a nearest-neighbour
comparison of the test audio features, against the training
audio features in the current SGPDM model.

Algorithm 1 describes a sequential optimisation algorithm
which assumes the entire test sequence is available from the
start, so that synthesis can be performed in an offline man-
ner. Here, the latent point for each frame is locally optimised
based on the current SGPDM model, which depends on the
current VLMM state. If the current state is occupied by
only the current frame, a GPLVM point optimisation is car-
ried out [9, 8], whilst on the other hand, a GPLVM sequence
optimisation is carried out [9, 8, 6].

Algorithm 1 Sequential optimisation of latent points.

Let 7 be the VLMM state of the ¢ frame, y: be the tth
audio frame and T be the length of the sequence
t—1
while t <= T do
if Tt4+1 7é Tt then
Eq(1):
Xt — arg maXx, p(ytlx*7 Y7 Xﬂ't ) (I)Yﬂ—t)
else
t; — t
T < Tt
while Tt+1 # Tt do
t—t+1
end while
tj — 1t
Eq(2):
itiit]’ < argimaxx, p(yti:tj 1%, Yr,, Xy, q)Yﬂs ) (I'dyﬂ,rs )
end if
end while

If the assumption is that the data is coming in an online
fashion, then Algorithm 2 allows the prediction of the next
frame from the previous. This is done using a GPLVM point
optimisation for only the first frame in a given VLMM state
and then, using the dynamical GP to predict the next frames
for that state. This is repeated for all audio frames.

4.2.3 Smoothness constraint

_ Once the latent points are obtained, the visual features,
Z = |21,...,27] can be obtained from the mean prediction
of the visual observation GP, corresponding to the VLMM
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Figure 3: (a) SGPDM for VLMM state y y uw uw uw. (b) SGPDM for VLMM state m aa aa aa aa. (¢) SGPDM for VLMM
state r ey ey ey ey ey.

Algorithm 2 Sequential prediction of latent points.

Let 7: be the state of the t" frame, y: be the tt" audio
frame and T be the length of the sequence
t—1
X¢ < arg maxx, p(yt|x*7 Yoy Xy, q)y_”)
whilet <=T -1 do
if Tt+1 7& Tt then
Eq(3):
Xi41 — argmaxs, p(Ye+1|X«, Y11 Xrypns q)thH)
else
Xer1  hry (Xe)
end if
t—t+1
end while

state at frame ¢, as depicted by Eq(14).

2 = k(%e,Xr,)" (Ka)7, Zr, (14)

The algorithms above consider the switching states to be
independent. We found that by taking these states to be
independent, discontinuities arise from when there is a tran-
sition from one state to the next. To deal with this, we
introduce an additional term in the likelihood that is to be
optimised to find latent points. First, the visual feature of
the previous frame, z,_; is synthesised according to Eq(14).
Then, the term p(Z¢—1|X¢—1,Zr, , Xn, 1, Pz,,_, ) is multi-
plied to the term in the likelihood function of Eq(1) and
Eq(2) in Algorithm 1 as well as in Eq(3) in Algorithm 2.
This formulates a joint probability distribution between the
test audio data and the previous visual features, which when
optimised constrains the visual features synthesised from a
given SGPDM model of VLMM state ¢, to be similar to the
visual features belonging to the SGPDM model of the pre-
vious VLMM state, m;_1, thus ensuring continuity across
states. To further smooth the synthesised visual features
and minimise jumps, a low-pass filter is applied to the data,
using the Matlab function interp.

4.2.4 Modelling coarticulation

The method presented in this paper explicitly models coar-
ticulation. The dynamics of phonetic contexts are captured
by modelling each VLMM state using a SGPDM model.
When synthesising the visual parameters, previous phonetic
context is taken into account by the smoothness constraint
mentioned in section 4.2.3. This accounts for carryover coar-
ticulation [18]. In addition, each VLMM state encapsulates

the context of phonemes. The sequential optimisation algo-
rithm takes into account future phonemes that occur within
a particular VLMM state, thus accounting for anticipatory
coarticulation [18]. Hence, by using phonetic VLMM states
as switches for the SSGPDM model, together with the se-
quential optimisation algorithm, we explicitly model both
forward and backward coarticulation in synthesis of visual
speech.

S. EVALUATION

The AAM features for the 28 test sequences are synthe-
sised based on our proposed method. We compute Average
Mean Squared Error (AMSE) as well as Average Correla-
tion Coefficient (ACC) [26] between ground truth and syn-
thesised AAM features for each of the test sequences. We
compute the results using both the sequential optimisation
and prediction algorithms. The results are also compared
against the Voice Puppetry method [1] as well as a SSG-
PDM with phonemes as switching states, which does not
explicitly model phonetic context. The SGPDM model with
no switching states [6] is not directly comparable because
its training is intractable on the 250 sequences, due to the
O(N?®) complexity of SGPDM training, where N is the num-
ber of data points in the model.

Table 1 shows the AMSE and the ACC between the ground
truth and synthesised AAM features, obtained from the dif-
ferent techniques. The results show that the SSGPDM model
with sequential optimisation gives the best results, thus hint-
ing that a framework that explicitly models both carryover
and anticipatory coarticulation is the most effective. More-
over, a joint model of audio and visual data is a more in-
tuitive way of modelling speech animation, as opposed to
learning Gaussian clusters on visual data and remapping
them to audio data as in Brand’s Voice Puppetry [1]. The
quantitative results also support this.

Figure 4 shows frames synthesised by our proposed method
for a test sequence, using sequential optimisation. The corre-
sponding phonetic labels are shown underneath each frame.

6. CONCLUSIONS AND FUTURE WORK

We have presented the use of a non-parametric switch-
ing state-space model based on Gaussian process prediction
and observation functions, to visual speech synthesis. The
switching states are found using the variable length Markov
model on phonetic data. In addition, we have devised two
synthesis algorithms for generating visual features from au-



Method Switching State Synthesis method AMSE ACC

SSGPDM Phoneme VLMM | Sequential Optimisation 0.04383 £ 0.04104 | 0.4438 + 0.3838
SSGPDM Phoneme VLMM | Sequential Prediction 0.05238 £ 0.04394 | 0.3410 £ 0.3278
SSGPDM Phoneme Sequential Optimisation 0.07252 + 0.06167 | 0.1451 + 0.2688
SSGPDM Phoneme Sequential Prediction 0.06594 4+ 0.05601 | 0.1927 + 0.3042
Brand’s Voice Puppetry | N/A Geodesic Interpolation [1] | 0.05978 + 0.04871 | 0.2631 + 0.2757

Table 1: Quantitative evaluation results.

ae ae ae k k k k sil sil sil

Figure 4: Synthesis results using the SSGPDM method with phoneme VLMM switching states and sequential optimisation
method. The phonemes correspond to the sentence: “You judge whether the boy you met is worthy to help Jack”.



dio signals that ensure smooth transitions across switching
states. Quantitative experiments show that the switching
shared Gaussian process dynamical model, which explicitly
models forward and backward coarticulation gives the best
results.

One limitation of our proposed method is that we need
to have phonetic labels for both the training and test data.
A direction for future work will be to investigate techniques
for training and synthesis using unlabelled phonetic data.
We also plan to conduct qualitative evaluations with human
subjects to assess realism and intelligibility of animations
generated by the proposed technique.
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