
SOME EXPERIMENTS IN GLOBAL MICROCODE COMPACTION

Bogong Su and Shiyuan Ding

Department of Computer Science and Technology
Tsing Hua University

Beijing, China
Ahstcack

Global microcode compaction is an open problem
in firmware engineering. Although Fisher’s trace
scheduling method may produce significant
reductions in the execution time of compacted
microcode, it has some drawbacks. There have been
four methods. Tree. SRDAG, ITSC , and GDDG.
presented recently to mitigate those drawbacks in
different ways.

The purpose of the research reported in this
paper is to evaluate these new methods. In order to
do this, ve have tested the published algorithms on
severa 1 unified microcode sequences of two real
machines and compared them on the basis of the
results of experiments using three criteria: time
efficiency, space efficiency, and complexity.

One of the critical issuses in developing a
high level microprogramming language is how to
generate efficient microcode; the major vay is
through microprogram compaction. Although the local
compaction problem is considered to be essentially
solved and several methods were revieved in [1,7],
global compaction is still an open problem in
firmvare engineering.

There are two kinds of global microcode
compaction methods
proposed by Tokoro tl13th~oeP~9"k-~~~"~~~~~l~~thod~
the trace-oriented &thod proposed by FisherL * -14.
Since Fisher’s trace scheduling may produce
significant reductions in the execution time of
compacted microcode, it has by57 regarded as the
most promising global technique ; however, extra
space may be sometimes required during bookkeeping
and the efficacy of microcode loopI$yfgqction is
lower than that of hand compaction

;h,;;Mtl
ve been four ~RD#Y’

mitigate’
and GD~~:SP:::;r:::gg~~~~~~~nt ly t:

those . ways.
Although these new algorithms have each been tested
by their own author, it is very difficult to
compare their performance because of the big
differences among the test microcodes in the
literature. The purpose of the research reported in
this paper is to evaluate these new methods of
global microcode compaction. In order to do this,
we have tested the published algorithms on several
unified microcode sequences of two real machines

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Q 1985 ACM O-89791-172~5/85/0012/0175$00.75

and compared them on the basis of the results of
experiments using three criteria: time efficiency.
space efficiency, and complexity.

2. hxacithrs

A. Tcee akacithr

The Tree method has been developed by LahC6’
for reducing the space requirement of the compacted
result. It is 1 ike trace scheduling but the
schedule range is limited. This method partitions
a given microcode into subtrees -- top trees and
bottom trees -- and applies the idea of trace
scheduling to each subtree separately; the root of
a toptbottom) tree is the entry or rejointexit or
branch). The movement of microoperations is not
allowed to cross the root of a subtree; thus the
number of copies can be reduced and the complexity
of the algorithm decreased.

Algorithm: Tree
1) Identify-Blocks and Live-Reg-Analysis:
2) Partition-Graph (into top trees) :
3) FOR each tree DO

WHILE (uncompacted trace) DO
BEG IN

Pick-A-Trace;
List Scheduling;
Bookkeeping;

END;
4) Partition-Graph(into bottom trees);
5) Perform 31 until all blocks are compacted;

B. SEQAG alwxithr

R AG method is an extent ion of trace
sched?n~gq. Linn indicated that the trace should
be reselected after the first block has been
compacted,

#le
rule R4 for moving

microoperation (as shown in Fig.11 should be used
and the rule R6 should be used gore generally. The
list scheduling is applied on a single rooted
directed acyclic graph (SRDAG) instead of a path
and only the root block of the SRDAG is compacted
in each iteration. If a particular microoperation
is free at the top of several blocks in the SRDAG,
the SRDAG algorithm may move up such duplicated
microoperations with rule R4.

Algorithm: SRDAG
1) Live-Reg-Analysis;
21 WHILE (uncompacted block) DO

BEGIN
SelectSRDAG:
Build-DAG:
CompactfRoot-SRDAG:
Wodify-Graph and Live-Reg-Analysis;

END;

175

http://crossmark.crossref.org/dialog/?doi=10.1145%2F18906.18924&domain=pdf&date_stamp=1985-12-01

c. us!z alnorith
The ITSC method is an improvement of trace

scheduling [lo]. We have proposed the following:
1) A modified rule set for moving microoperation;
2) An Improved Trace Scheduling (ITS) algorithm

for reducing extra copies and keeping time
efficiency:

a) Patition the microoperations of a path into
two parts;

bl Compact the RAIN part consisting of
microoperations in critical path of DAG
with list schedul inr:;

c) Arrange each remaining microoperation
according to its type and characteristic in
flow graph to prevent overmoving and
generating unnecssary copies;

3) An URCR algorithm for loop compaction:
a) Unroll the loop body to treat two bodies.
b) Compact the unrolled loop body with list

scheduling;
c) Find a new loop body, delete the redundant

microoperations, and reroll the loop:

D. GapG algm&bm

Isoda ‘s ISI algorithm depends upon
generalized data dependency graph (GDDGI wh ic:
integrates the DAG with two primitives Y-joint and
Y -joint, representing the joining and forking of
control flow respectively.

Algorithm: CDDG
1) Building of the initial GDDG;
2) Flow Analysis to find live registers and loops;
3) Transformation of the GDDG with five rules;
4) Compaction of microoperations:

a) Classifying microoperations according to
their status on the GDDG:

b) Determining the compaction order of basic
blocks depending on frequency comparisons
for adjacent basic blocks;

c) Compacting microoperations limited within
some basic blocks with list scheduling;

d) Accommodating remaining microoperations in
the vacant fields of the existing
microinstruction; otherwise, putting them
into the less frequently executed adjacent
basic blocks;

The first three of the above mentioned
algorithms are improvements of trace scheduling and
the last one is essentially a block-oriented
algorithm.

3. ikE%xAftn&

Ve have chosen four floating arithmetic
n icrocode sequences of the PUMA and five
complicated microcode sequences of a VAX-1 ike
machine as examples. PUHA, which is a horizontally
microprogrammed emulator of the Control Data 6600.
has a single phase microinstruction cycle and a
relatively wide microinstruction(81 bits) with
minimal encoding. It is capable of three concurrent
data operations: a load or store to the register
file, a main arithmetic unit operation, and an
exponent arithmetic unit operationi4I. The VAX-like
machine has a wide microinstruction(96 bits). It is

capable of four concurrent operations:
arithmetic logic unit operation, an expone::
arithmetic logic unit operation, shifting and
unpacking in the data section, and an address
operation.

To provide the input to the scheduler we
rewrote the selected sequences of production
microcode as sequential microcode of these two
machines. This was not just a process of
serializing parallel code. We went back to flow
charts for the arithmetic operations and tried to
write the clearest possible sequential code,
without regard for subsequent compaction.

The character ist its of the sequential
microcodes are shown in Table 1 and Table 2. The
features of PUWA sequential microcods are: 11 The
basic blocks are rather short; the average number
of microoperations in a basic block is two. 2) The
movement range of microoperartion is rather wide.
Uhereas, the features of the VAX-like sequential
microcodes are: 1) The average length of basic
blocks is almost twice as long as PUWA’s. 2) The
movement range of microoperation is narrow. 3)
There are microsubroutine calls and case-type
multiway branches in those microcodes. One of the
reasons why we selected these two real machines
with suite different features as our examples was
to test the applicable scope of global microcode
compaction methods.

Experiments were carried out with our
microcode compaction system WCS. written in PASCAL
and running on a PDP-11/23. Since we had not
implemented the whole algorithm of these methods
expect for ITSC. some simulation with WCS system
was necessary. In addition to dealing with the
genera 1 model of compaction, the WCS system has
special capabilities for : 11 Permitting the valid
reading of a register up to the time that register
writes occur. and permitting a write to a register
following a read of that register within a single
cycle -- less strict data precedence relationship.
2) microoperations occupying multiple micro-cycles.
3) case-type multiway branch. 4) microsubroutine
call.

Table 3 and Table 4 summarize the weighted
average execution time of the results of the four
new compaction methods. Table 5 and Table 6 show
the space resu i rement of the results. For
convenient comparison. the results of local
compaction, trace scheduling and hand compaction
(“product ion” microcode). which is probably
optimally compacted or nearly so, are given in
Table 3-6. The four new compaction methods are
evaluated on the basis of Tables 3-6 using three
criteria: time efficiency, space efficiency and
complexity.

Table 5 shows that the space efficiency of the
results of the Tree algorithm is better than for
the original trace scheduling algorithm; the

176

percentage of average improvment in Table 5 is
8.7%. The most obvious example is Floating
Multiplication, because microoperations can not
move up above a branch during top tree compaction
and can not move down below a rejoin during bottom
tree compaction; the liwited movement of
microoperations reduces the number of copies
generated by the movement of microoperations
through basic block boundaries. LahL61 indicated
that, in the worst case, the number of copies
generated by trace scheduling is O(2” 1, where n
equals the number of microoperations which move
thrqugh a basic boundary, but it will be reduced to
O(n 1 with tree compaction.

The complexity of building the DAG, list
scheduling and bookkeeping of Tree compaction is
lower, as paths are shorter within tree and the
movement of microoperations is simpler. The testing
and debugging of microprogram are easier, as the
toplogical structure of microcode is not changed by
Tree compaction.

Table 3 and Table 4 indicate that the weighted
average execution tine of results of tree
compaction is longer than trace scheduling. The
worst case is Floating Division on the PUMA.
because the lirited movement of Microoperations in
Tree compaction reduces the opportunity for
compacting microoperations between different
blocks. In fact, this is related to the
improvements of space efficiency and complexity of
Tree compaction.

B. SRQAG m

Table 5 and Table 6 show that SRDAG produces a
slight improvement in the weighted execution time
and space requirement in PUWA ricrocodes. Our
experiments prove that the advantage of SRDAG
compaction over the other three is due to its more
general use of rule R6 and its use of rule R4.
which is useful for ca ;;type multiway branches.
Linn has conjectured “[that if a particular
microoperation is free at the top of n successive
blocks of a case type n way branch, these n
duplicated microoperations will be moved UP above
the case type branch and compacted by R4, so the
execution time and space requirement will be 1
cycle and n-l copies less than trace scheduling
does respectively.. Table 4 and Table 6 show that
both the weighted average execution time and space
requirement of DIVF, having a case type four way
branch, are less than the result with trace
scheduling.

However, since recomputing the data precedence
relationship within the rhole SRDAG is necessary
during each root block compaction, the complexity
is much higher than trace scheduling.

Table 3 and Table 4 illustrate that the
weighted average execution time of the results of
GDDG compaction is much longer than for trace
scheduling. The worst cases are Floating Division
in Table 3 (5.5 cycles longer) and ADDFZ & SUBFZ in
Table 4 (1.5 cycles longer). The five

transformation rules used in GDDG do not generate
any copies, but the effectiveness of global
compaction essentially depends to a large extent
on the number of roverents which compact the
microoperations between different blocks and nay
generate copies. Consequently, these five rules
reduce the opportunity of compaction. On the other
hand. they improve the space requirement as shown
in Table 5. The advantage of GDDG lies in
integrating the data precedence relationships with
the flor graph and automatically determining the
order of compaction of blocks without dynamic
frequency information.

Table 3 and Table 4 show that ITSC compaction
provides almost as short a time for the outer loop
microcode as trace scheduling. The results of loop
compaction of ITSC using the URCR alaoritha were
quite comparable with the hand compacted code; this
is shown in the Floating Addition and Floating
Division of the PUMA and CALL and UULF of the
VAX-like machine.

Table 5 shows that the space requirements of
the output of ITSC compaction are significantly
better than for the original trace scheduling
algorithm: the percentage of improvement ranges
from 9X to 24%. The most obvious example is
Floating Wultiplication on the PUMA, because the
ITSC algorithm avoids the many extra copies
generated by pushing branch microoperations too
early in the code. Another reason for the
improvement of the space requirements using ITSC is
the implementation of the rule dealing with the
situationI in the microcode where a path forks
into two basic blocks which subsequently rejoin;
this rule increases the opportunity for compacting
microoperations from different blocks and reduces
the number of copies.

Because the iaproved trace scheduling and URCR
algorithms are used in ITSC. its complexity is
slightly higher than trace scheduling, but the
iaplementation is not very difficult. However,
there are two drawbacks to ITSC: 1) The method
deal ins with case-type multiwar branches may
significantly increase the space requirements. For
example, three extra copies were generated in CALL
of VAX-like machine as a microoperation moves down
below a case-type four-way branch. Therefore, it
seems reasonable to set a threshold in algorithm to
avoid generating too many copies. 2) The rule R4
for moving aicrooperations has not implemented. so
that there are more copies than SRDAG produces in
MULF and DIVF in Table 8.

. 5. Conclusions ads-

Table 3-0 indicate that these four new
compaction nethods. whose results are between those
of local compaction and hand compaction. have
different tradeoffs between time efficiency and
space efficiency as well as between the efficiency
of cogpacted results and corplexity of algorithm.

In summary. ITSC method improves both time
efficiency and space efficiency by using improved

177

trace scheduling and URCR algorithms. SRDAC method
performs a little better than trace scheduling by
extending the trace scheduling technique. The Tree
gethod simplifies the compaction algorithm and the
GDDG rethod does not need dynamic frequency
information. Unfortunately, although the space
efficiency of the last two gethods DBY improved,
their tige efficiency is wrse than trace
scheduling.

Since different machines may have quite
different features of their microcode sequences, we
should apply an appropriate compaction method to a
given aachine to obtain the optigug effectiveness.
For example, the difference between the results of
local compaction and hand compaction in the PUMA is
quite big, because the gicrooperation govement
range is rather vide and basic blocks are short.
Table 3 and Table 5 show that ITSC compaction
perform alrost as well as hand compaction both in
tiue and space efficiency. Although its complexity
is slightly higher than trace scheduline, ITSC
coupaction is worth using for the PUl4A. In our
experiaents, the compacting tiue for ITSC was 20X
longer than for trace scheduling, but the
compacting tire for trace scheduling was 200X
longer than for local cogpaction.

On the other hand, because the difference
between local compacted results and hand compacted
results for the VAX-like machine is small (as shown
in Table 4 and Table 6). the difference among the
results of those global compaction gethods is also
SDall. In this case, one may prefer a simpler
globai compaction method.

For the VAX-like machine the relatively low
efficiency of global compaction is due to the
narrow gicrooperation movegent range, the rather
long basic blocks and the case-type gultivay
branches. Besides, the presence of microsubroutine
calls is an important factor. We coupact the
microsubroutine first, and then regard the
microsubroutine call as the situation mentioned in
t4.101, vhere a path forks into two basic blocks
which subse uently rejoin.
terminology iI1

If (using Fisher’s
) the union of readreg, rritereg and

condreadreg of gicrooperation NO does not intersect
the readreg or vritereg of any microoperation in
gicrosubroutine. l40 gay be goved UP above or down
below the call gicrooperation without any
associated bookkeeping. This approach is simpler,
but has lo r efficiency than the method suggested
by Fisher fiy. To increase the tire efficiency, we
suggest cogpacting the path which has the highest
execution frequency, together vith the COPY of
microsubroutine called by it. The execution tire of
EDIV in the VAX-like machine with this approach was
four cycles shorter, but the space requiregent vas
eight copies gore.

Ye look forward to gore extensive tests on
microcode sequences vith l ch longer basic blocks.
in particular on some compiler produced codes.

Ue would like to express our appreciation to
Professor Ralph Grishman of the Courant Institute
for his valuable encouragegent and sisnificant help
on igproving the paper.

[ll

[21

[31

141

r.51

ml

[71

b33

[93

S. Davidson, D. Landskov, B. D. Shriver and
P. V. Wallett, “Soge Exper igents in Loca 1
Wicrocode Coapaction for Horizontal
Machine”. IEEE Trans. on Computers. vol. C-30,
No.7, pp.460-477, July, 1981.
J. A. Fisher, “Trace Scheduling: A Technique
for Global Wicrocode Cogpaction,” IEEE Trans.
on Computers, vol.C-30, No.7, ~~.478-490, July,
1981.
J. A. Fisher, D. Landskov, and B. D. Shriver,
“Microcode Compaction: Lookine Backvard and
Looking Forvard.” AFIPS National Computer
Conference, pp.95-102, 1981.
R. Grishgan and Su Bogong, “A Preliminary
Evaluation of Trace Scheduling for Global
Microcode CoDpaction,“IEEE Trans.on Computers,
vol. C-32, No.12, pp.llQl-1194, Dec., 1983.
S. Isoda, Y. Kobayaski, and T. Ishida, “Global
Corpaction of Horizontal Nicroprogrags Based on
Generalized Data Dependency Graph,” IEEE Trans.
on Computers, vol.C-32. No.10, pp.922-933.1983.
J. Lah and D. E. Atkin, “Tree Cogpaction of
Wicroprogrags,“The Proc. of 16th Annu. Workshop
on Wicroprograguing, ~~.23-33. Oct., 1983.
D. Landskov, S. Davidson. B. D. Shriver, and
P. U. Mallett, “Local Microcode Compaction
Techniques,” Cogputine Survey. ~01.12. No.3
pp.261-294, Sept., 1980.
J. Linn, “SRDAG Compaction -- A Generalization
of Trace Scheduling to Increase the Use of
Global Context Information,” The Proc. of 16th
Annu. Uorkshop on Wicroprograruing. pp.ll-22,
Oct., 1983.
W. D. Poe, “Heuristic for the Global
Optimization of Microprogram,” The Proc. of
13th Annu. Workshop on Wicroprograming,
pp.12-22. 1980 - -

L1O.l Bogong Su, Shiyuan Ding, and Lan Jin, “An
Igprovegent of Trace Scheduline for Global
Wicrocode Cogpaction,” The Proc. of 17th Annu.
Workshop on Microprogramming, pp.78-85, Oct.,
1984.

[ill W. Tokoro, T. Takizuka etc., “Optimization of
Wicroprograms,” IEEE Trans. on Computers,
vol. C-30, No.7, pp.491-504. July, 1981.

[12] G. Vood, “Global Optimization of Xicroprogrags
through Modular Control Constructs,” The Proc.
of 12th Annu. Workshop on Microprograming,
PP. 1-6, 1979.

178

Rule

Rl

R2

R3

R4

UO can uove
TQ llnder*Conditionsti

82 Bl and 84 the UO is free at the too of B2

Bl and B4 82 identical copies of the HO are free at the bottom of
both Bl and 84

82 83 and B5 the HO is free.at the bottom of B2

83 and B5 B2 identical copies of the HO are free at the tops of both
83 and B5

R5 82 B3(or B5) the HO is free at the bottom of 82 and all registers
vritten by the HO are dead in BS(or B3)

R0 Bl(or B5) B2 the WO is free at the top of B3(or B5) and all registers
vritten by the WO are dead in BS(or B31

Fig.1 The Rules for Noving Uicrooperation

Table 1. Characteristics of Sequential Wicrocodes of PUWA

NO.Loops &
!hie-

Floating Addition 41 11 7 23 5 1.8 3*3n

Floating Uutiplication 38 8 3 14 21 2.7 /

Floating Division 49 14 7 24 4 2.0 8n

Normalization 32 9 6 20 4 1.8 6n

Table 2. Characteristics of Sequential Nicrocodes of VAX-like Uachine

Uax. Average Na.LooPs 5
(;adc:-

&Am.&&&
/BB a UQ&BB s

) ,'BpdyLennth

ADDF2 & SUBFZ 82 9 10 4 2 28 5 2.9 /

CALL 102 7 4 2 0 19 30 5.4 lln

EDIV 63 8 5 0 2 20 15 3.2 2n+2n

UULF 78 6 9 4 3 23 12 3.4 (5n+5n+8)u

DIVF 56 6 3 1 3 16 10 3.5 2n

179

Table 3. Ueiehted Average Execution Timetin cycles) of PUMA

Loca 1 Trace Tree SRDAG GDDG ITSC Hand
ileauentitll-Scheduled---w-

Floating Addition(‘) 24.5+3%31~ 21+3*2n 15.5+382n 15.5+382n 15.5+3%2n 10+3%2n 15+3n 13.5+3n

Floating Multiplication 33

Floating Division(‘) 30+4.6n 2::4n

14 16 14 17 14 14

13+3.4n 18+3.4n 13+3.4n 18.5+3.4n 14.5+3n 13+3n

Horaal ixationf3) 17.5+6n 15+2n 11.5+2n 10+2n 10+2n 10+2n 10+2n 10+2n

= Average number of shift operation = 3.56
n = Huaber of quotient bits = 48

(31 n = Average number of shift operation = 0.9

Table 4. Weighted average Execution Tiae (in cycles)of VAX-like Wachine

Loca 1 Trace Tree SRDAG GDDG ITSC Hand .
Seauentlal----w-w

ADDFS & SUBFZ 19.5 13.5 10.5 11.5 10.5 12 10.5 9.8

CALL (n=5) 73+6n 39.5+6n 35.5+6n 36.5+6n 36.5+6n 37+6n 34.5+5n 35.5+5n

EDIV (n=231 37+2n 23.5+n 21.5+n 22.5+n 23+n 23+n 21.5+n 21.5+n

HULF (wl1.51 38.5*3n 15.5+2n 14.5+2n 14.5+2n 14.5+2n 15.5+2n 14.5+2n 13.5+n

D IVF (n=23) 31+2n 16.5+n 13.5+n 13.5+n 12.5+n 14.5*n 13.5+n 12.5+n

Note: n = Average number of loop iterations.

Table 5. Space Requirement of PUMA

Local Trace Tree SRDAG GDDG ITSC Hand .
Seauentlal-Scheduled--w-w

Floating Addition 41 33 29 27 27 27 27 26

Floating Uultiplication 38 26 25 20 25 22 19 19

Floating Division 49 36 33 33 31 31 27 27

Normalization 32 25 22 19 20 19 20 19

ADDF2 I?. SUBFP

CALL

EDIV

WULF

DIVF

Table 6. Space Resuireaent of VAX-like Wachine

Loca 1 Trace Tree SRDAG GDDG ITSC Hand --Scheduled----- .

75 46 44 43 41 45 41 38

95 56 53 55 55 53 52 48

60 36 33 35 35 35 33 33

69 37 36 37 35 36 37 32

48 33 29 29 28 30 29 28

180

