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Global microcode compaction is an open problem 
in firmware engineering. Although Fisher’s trace 
scheduling method may produce significant 
reductions in the execution time of compacted 
microcode, it has some drawbacks. There have been 
four methods. Tree. SRDAG, ITSC , and GDDG. 
presented recently to mitigate those drawbacks in 
different ways. 

The purpose of the research reported in this 
paper is to evaluate these new methods. In order to 
do this, ve have tested the published algorithms on 
severa 1 unified microcode sequences of two real 
machines and compared them on the basis of the 
results of experiments using three criteria: time 
efficiency, space efficiency, and complexity. 

One of the critical issuses in developing a 
high level microprogramming language is how to 
generate efficient microcode; the major vay is 
through microprogram compaction. Although the local 
compaction problem is considered to be essentially 
solved and several methods were revieved in [1,7], 
global compaction is still an open problem in 
firmvare engineering. 

There are two kinds of global microcode 
compaction methods 
proposed by Tokoro tl13th~oeP~9"k-~~~"~~~~~l~~thod~ 
the trace-oriented &thod proposed by FisherL * -14. 
Since Fisher’s trace scheduling may produce 
significant reductions in the execution time of 
compacted microcode, it has by57 regarded as the 
most promising global technique ; however, extra 
space may be sometimes required during bookkeeping 
and the efficacy of microcode loopI$yfgqction is 
lower than that of hand compaction 

;h,;;Mtl 
ve been four ~RD#Y’ 

mitigate’ 
and GD~~:SP:::;r:::gg~~~~~~~nt ly t: 

those . ways. 
Although these new algorithms have each been tested 
by their own author, it is very difficult to 
compare their performance because of the big 
differences among the test microcodes in the 
literature. The purpose of the research reported in 
this paper is to evaluate these new methods of 
global microcode compaction. In order to do this, 
we have tested the published algorithms on several 
unified microcode sequences of two real machines 
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and compared them on the basis of the results of 
experiments using three criteria: time efficiency. 
space efficiency, and complexity. 

2. hxacithrs 

A. Tcee akacithr 

The Tree method has been developed by LahC6’ 
for reducing the space requirement of the compacted 
result. It is 1 ike trace scheduling but the 
schedule range is limited. This method partitions 
a given microcode into subtrees -- top trees and 
bottom trees -- and applies the idea of trace 
scheduling to each subtree separately; the root of 
a toptbottom) tree is the entry or rejointexit or 
branch). The movement of microoperations is not 
allowed to cross the root of a subtree; thus the 
number of copies can be reduced and the complexity 
of the algorithm decreased. 

Algorithm: Tree 
1) Identify-Blocks and Live-Reg-Analysis: 
2) Partition-Graph (into top trees) : 
3) FOR each tree DO 

WHILE (uncompacted trace) DO 
BEG IN 

Pick-A-Trace; 
List Scheduling; 
Bookkeeping; 

END; 
4) Partition-Graph(into bottom trees); 
5) Perform 31 until all blocks are compacted; 

B. SEQAG alwxithr 

R AG method is an extent ion of trace 
sched?n~gq. Linn indicated that the trace should 
be reselected after the first block has been 
compacted, 

#le 
rule R4 for moving 

microoperation (as shown in Fig.11 should be used 
and the rule R6 should be used gore generally. The 
list scheduling is applied on a single rooted 
directed acyclic graph (SRDAG) instead of a path 
and only the root block of the SRDAG is compacted 
in each iteration. If a particular microoperation 
is free at the top of several blocks in the SRDAG, 
the SRDAG algorithm may move up such duplicated 
microoperations with rule R4. 

Algorithm: SRDAG 
1) Live-Reg-Analysis; 
21 WHILE (uncompacted block) DO 

BEGIN 
SelectSRDAG: 
Build-DAG: 
CompactfRoot-SRDAG: 
Wodify-Graph and Live-Reg-Analysis; 

END; 
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c. us!z alnorith 
The ITSC method is an improvement of trace 

scheduling [lo]. We have proposed the following: 
1) A modified rule set for moving microoperation; 
2) An Improved Trace Scheduling (ITS) algorithm 

for reducing extra copies and keeping time 
efficiency: 

a) Patition the microoperations of a path into 
two parts; 

bl Compact the RAIN part consisting of 
microoperations in critical path of DAG 
with list schedul inr:; 

c) Arrange each remaining microoperation 
according to its type and characteristic in 
flow graph to prevent overmoving and 
generating unnecssary copies; 

3) An URCR algorithm for loop compaction: 
a) Unroll the loop body to treat two bodies. 
b) Compact the unrolled loop body with list 

scheduling; 
c) Find a new loop body, delete the redundant 

microoperations, and reroll the loop: 

D. GapG algm&bm 

Isoda ‘s ISI algorithm depends upon 
generalized data dependency graph (GDDGI wh ic: 
integrates the DAG with two primitives Y-joint and 
Y -joint, representing the joining and forking of 
control flow respectively. 

Algorithm: CDDG 
1) Building of the initial GDDG; 
2) Flow Analysis to find live registers and loops; 
3) Transformation of the GDDG with five rules; 
4) Compaction of microoperations: 

a) Classifying microoperations according to 
their status on the GDDG: 

b) Determining the compaction order of basic 
blocks depending on frequency comparisons 
for adjacent basic blocks; 

c) Compacting microoperations limited within 
some basic blocks with list scheduling; 

d) Accommodating remaining microoperations in 
the vacant fields of the existing 
microinstruction; otherwise, putting them 
into the less frequently executed adjacent 
basic blocks; 

The first three of the above mentioned 
algorithms are improvements of trace scheduling and 
the last one is essentially a block-oriented 
algorithm. 

3. ikE%xAftn& 

Ve have chosen four floating arithmetic 
n icrocode sequences of the PUMA and five 
complicated microcode sequences of a VAX-1 ike 
machine as examples. PUHA, which is a horizontally 
microprogrammed emulator of the Control Data 6600. 
has a single phase microinstruction cycle and a 
relatively wide microinstruction(81 bits) with 
minimal encoding. It is capable of three concurrent 
data operations: a load or store to the register 
file, a main arithmetic unit operation, and an 
exponent arithmetic unit operationi4I. The VAX-like 
machine has a wide microinstruction(96 bits). It is 

capable of four concurrent operations: 
arithmetic logic unit operation, an expone:: 
arithmetic logic unit operation, shifting and 
unpacking in the data section, and an address 
operation. 

To provide the input to the scheduler we 
rewrote the selected sequences of production 
microcode as sequential microcode of these two 
machines. This was not just a process of 
serializing parallel code. We went back to flow 
charts for the arithmetic operations and tried to 
write the clearest possible sequential code, 
without regard for subsequent compaction. 

The character ist its of the sequential 
microcodes are shown in Table 1 and Table 2. The 
features of PUWA sequential microcods are: 11 The 
basic blocks are rather short; the average number 
of microoperations in a basic block is two. 2) The 
movement range of microoperartion is rather wide. 
Uhereas, the features of the VAX-like sequential 
microcodes are: 1) The average length of basic 
blocks is almost twice as long as PUWA’s. 2) The 
movement range of microoperation is narrow. 3) 
There are microsubroutine calls and case-type 
multiway branches in those microcodes. One of the 
reasons why we selected these two real machines 
with suite different features as our examples was 
to test the applicable scope of global microcode 
compaction methods. 

Experiments were carried out with our 
microcode compaction system WCS. written in PASCAL 
and running on a PDP-11/23. Since we had not 
implemented the whole algorithm of these methods 
expect for ITSC. some simulation with WCS system 
was necessary. In addition to dealing with the 
genera 1 model of compaction, the WCS system has 
special capabilities for : 11 Permitting the valid 
reading of a register up to the time that register 
writes occur. and permitting a write to a register 
following a read of that register within a single 
cycle -- less strict data precedence relationship. 
2) microoperations occupying multiple micro-cycles. 
3) case-type multiway branch. 4) microsubroutine 
call. 

Table 3 and Table 4 summarize the weighted 
average execution time of the results of the four 
new compaction methods. Table 5 and Table 6 show 
the space resu i rement of the results. For 
convenient comparison. the results of local 
compaction, trace scheduling and hand compaction 
(“product ion” microcode). which is probably 
optimally compacted or nearly so, are given in 
Table 3-6. The four new compaction methods are 
evaluated on the basis of Tables 3-6 using three 
criteria: time efficiency, space efficiency and 
complexity. 

Table 5 shows that the space efficiency of the 
results of the Tree algorithm is better than for 
the original trace scheduling algorithm; the 
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percentage of average improvment in Table 5 is 
8.7%. The most obvious example is Floating 
Multiplication, because microoperations can not 
move up above a branch during top tree compaction 
and can not move down below a rejoin during bottom 
tree compaction; the liwited movement of 
microoperations reduces the number of copies 
generated by the movement of microoperations 
through basic block boundaries. LahL61 indicated 
that, in the worst case, the number of copies 
generated by trace scheduling is O(2” 1, where n 
equals the number of microoperations which move 
thrqugh a basic boundary, but it will be reduced to 
O(n 1 with tree compaction. 

The complexity of building the DAG, list 
scheduling and bookkeeping of Tree compaction is 
lower, as paths are shorter within tree and the 
movement of microoperations is simpler. The testing 
and debugging of microprogram are easier, as the 
toplogical structure of microcode is not changed by 
Tree compaction. 

Table 3 and Table 4 indicate that the weighted 
average execution tine of results of tree 
compaction is longer than trace scheduling. The 
worst case is Floating Division on the PUMA. 
because the lirited movement of Microoperations in 
Tree compaction reduces the opportunity for 
compacting microoperations between different 
blocks. In fact, this is related to the 
improvements of space efficiency and complexity of 
Tree compaction. 

B. SRQAG m 

Table 5 and Table 6 show that SRDAG produces a 
slight improvement in the weighted execution time 
and space requirement in PUWA ricrocodes. Our 
experiments prove that the advantage of SRDAG 
compaction over the other three is due to its more 
general use of rule R6 and its use of rule R4. 
which is useful for ca ;;type multiway branches. 
Linn has conjectured “[ that if a particular 
microoperation is free at the top of n successive 
blocks of a case type n way branch, these n 
duplicated microoperations will be moved UP above 
the case type branch and compacted by R4, so the 
execution time and space requirement will be 1 
cycle and n-l copies less than trace scheduling 
does respectively.. Table 4 and Table 6 show that 
both the weighted average execution time and space 
requirement of DIVF, having a case type four way 
branch, are less than the result with trace 
scheduling. 

However, since recomputing the data precedence 
relationship within the rhole SRDAG is necessary 
during each root block compaction, the complexity 
is much higher than trace scheduling. 

Table 3 and Table 4 illustrate that the 
weighted average execution time of the results of 
GDDG compaction is much longer than for trace 
scheduling. The worst cases are Floating Division 
in Table 3 (5.5 cycles longer) and ADDFZ & SUBFZ in 
Table 4 (1.5 cycles longer). The five 

transformation rules used in GDDG do not generate 
any copies, but the effectiveness of global 
compaction essentially depends to a large extent 
on the number of roverents which compact the 
microoperations between different blocks and nay 
generate copies. Consequently, these five rules 
reduce the opportunity of compaction. On the other 
hand. they improve the space requirement as shown 
in Table 5. The advantage of GDDG lies in 
integrating the data precedence relationships with 
the flor graph and automatically determining the 
order of compaction of blocks without dynamic 
frequency information. 

Table 3 and Table 4 show that ITSC compaction 
provides almost as short a time for the outer loop 
microcode as trace scheduling. The results of loop 
compaction of ITSC using the URCR alaoritha were 
quite comparable with the hand compacted code; this 
is shown in the Floating Addition and Floating 
Division of the PUMA and CALL and UULF of the 
VAX-like machine. 

Table 5 shows that the space requirements of 
the output of ITSC compaction are significantly 
better than for the original trace scheduling 
algorithm: the percentage of improvement ranges 
from 9X to 24%. The most obvious example is 
Floating Wultiplication on the PUMA, because the 
ITSC algorithm avoids the many extra copies 
generated by pushing branch microoperations too 
early in the code. Another reason for the 
improvement of the space requirements using ITSC is 
the implementation of the rule dealing with the 
situationI in the microcode where a path forks 
into two basic blocks which subsequently rejoin; 
this rule increases the opportunity for compacting 
microoperations from different blocks and reduces 
the number of copies. 

Because the iaproved trace scheduling and URCR 
algorithms are used in ITSC. its complexity is 
slightly higher than trace scheduling, but the 
iaplementation is not very difficult. However, 
there are two drawbacks to ITSC: 1) The method 
deal ins with case-type multiwar branches may 
significantly increase the space requirements. For 
example, three extra copies were generated in CALL 
of VAX-like machine as a microoperation moves down 
below a case-type four-way branch. Therefore, it 
seems reasonable to set a threshold in algorithm to 
avoid generating too many copies. 2) The rule R4 
for moving aicrooperations has not implemented. so 
that there are more copies than SRDAG produces in 
MULF and DIVF in Table 8. 

. 5. Conclusions ads- 

Table 3-0 indicate that these four new 
compaction nethods. whose results are between those 
of local compaction and hand compaction. have 
different tradeoffs between time efficiency and 
space efficiency as well as between the efficiency 
of cogpacted results and corplexity of algorithm. 

In summary. ITSC method improves both time 
efficiency and space efficiency by using improved 

177 



trace scheduling and URCR algorithms. SRDAC method 
performs a little better than trace scheduling by 
extending the trace scheduling technique. The Tree 
gethod simplifies the compaction algorithm and the 
GDDG rethod does not need dynamic frequency 
information. Unfortunately, although the space 
efficiency of the last two gethods DBY improved, 
their tige efficiency is wrse than trace 
scheduling. 

Since different machines may have quite 
different features of their microcode sequences, we 
should apply an appropriate compaction method to a 
given aachine to obtain the optigug effectiveness. 
For example, the difference between the results of 
local compaction and hand compaction in the PUMA is 
quite big, because the gicrooperation govement 
range is rather vide and basic blocks are short. 
Table 3 and Table 5 show that ITSC compaction 
perform alrost as well as hand compaction both in 
tiue and space efficiency. Although its complexity 
is slightly higher than trace scheduline, ITSC 
coupaction is worth using for the PUl4A. In our 
experiaents, the compacting tiue for ITSC was 20X 
longer than for trace scheduling, but the 
compacting tire for trace scheduling was 200X 
longer than for local cogpaction. 

On the other hand, because the difference 
between local compacted results and hand compacted 
results for the VAX-like machine is small (as shown 
in Table 4 and Table 6). the difference among the 
results of those global compaction gethods is also 
SDall. In this case, one may prefer a simpler 
globai compaction method. 

For the VAX-like machine the relatively low 
efficiency of global compaction is due to the 
narrow gicrooperation movegent range, the rather 
long basic blocks and the case-type gultivay 
branches. Besides, the presence of microsubroutine 
calls is an important factor. We coupact the 
microsubroutine first, and then regard the 
microsubroutine call as the situation mentioned in 
t4.101, vhere a path forks into two basic blocks 
which subse uently rejoin. 
terminology iI1 

If (using Fisher’s 
) the union of readreg, rritereg and 

condreadreg of gicrooperation NO does not intersect 
the readreg or vritereg of any microoperation in 
gicrosubroutine. l40 gay be goved UP above or down 
below the call gicrooperation without any 
associated bookkeeping. This approach is simpler, 
but has lo r efficiency than the method suggested 
by Fisher fiy. To increase the tire efficiency, we 
suggest cogpacting the path which has the highest 
execution frequency, together vith the COPY of 
microsubroutine called by it. The execution tire of 
EDIV in the VAX-like machine with this approach was 
four cycles shorter, but the space requiregent vas 
eight copies gore. 

Ye look forward to gore extensive tests on 
microcode sequences vith l ch longer basic blocks. 
in particular on some compiler produced codes. 

Ue would like to express our appreciation to 
Professor Ralph Grishman of the Courant Institute 
for his valuable encouragegent and sisnificant help 
on igproving the paper. 
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Rule 

Rl 

R2 

R3 

R4 

UO can uove 
TQ llnder*Conditionsti 

82 Bl and 84 the UO is free at the too of B2 

Bl and B4 82 identical copies of the HO are free at the bottom of 
both Bl and 84 

82 83 and B5 the HO is free.at the bottom of B2 

83 and B5 B2 identical copies of the HO are free at the tops of both 
83 and B5 

R5 82 B3(or B5) the HO is free at the bottom of 82 and all registers 
vritten by the HO are dead in BS(or B3) 

R0 Bl(or B5) B2 the WO is free at the top of B3(or B5) and all registers 
vritten by the WO are dead in BS(or B31 

Fig.1 The Rules for Noving Uicrooperation 

Table 1. Characteristics of Sequential Wicrocodes of PUWA 

NO.Loops & 
!hie- 

Floating Addition 41 11 7 23 5 1.8 3*3n 

Floating Uutiplication 38 8 3 14 21 2.7 / 

Floating Division 49 14 7 24 4 2.0 8n 

Normalization 32 9 6 20 4 1.8 6n 

Table 2. Characteristics of Sequential Nicrocodes of VAX-like Uachine 

Uax. Average Na.LooPs 5 
(;adc:- 

&Am.&&& 
/BB a UQ&BB s 

) ,'BpdyLennth 

ADDF2 & SUBFZ 82 9 10 4 2 28 5 2.9 / 

CALL 102 7 4 2 0 19 30 5.4 lln 

EDIV 63 8 5 0 2 20 15 3.2 2n+2n 

UULF 78 6 9 4 3 23 12 3.4 (5n+5n+8)u 

DIVF 56 6 3 1 3 16 10 3.5 2n 

179 



Table 3. Ueiehted Average Execution Timetin cycles) of PUMA 

Loca 1 Trace Tree SRDAG GDDG ITSC Hand 
ileauentitll-Scheduled---w- 

Floating Addition(‘) 24.5+3%31~ 21+3*2n 15.5+382n 15.5+382n 15.5+3%2n 10+3%2n 15+3n 13.5+3n 

Floating Multiplication 33 

Floating Division(‘) 30+4.6n 2::4n 

14 16 14 17 14 14 

13+3.4n 18+3.4n 13+3.4n 18.5+3.4n 14.5+3n 13+3n 

Horaal ixationf3) 17.5+6n 15+2n 11.5+2n 10+2n 10+2n 10+2n 10+2n 10+2n 

= Average number of shift operation = 3.56 
n = Huaber of quotient bits = 48 

(31 n = Average number of shift operation = 0.9 

Table 4. Weighted average Execution Tiae (in cycles)of VAX-like Wachine 

Loca 1 Trace Tree SRDAG GDDG ITSC Hand . 
Seauentlal----w-w 

ADDFS & SUBFZ 19.5 13.5 10.5 11.5 10.5 12 10.5 9.8 

CALL (n=5) 73+6n 39.5+6n 35.5+6n 36.5+6n 36.5+6n 37+6n 34.5+5n 35.5+5n 

EDIV (n=231 37+2n 23.5+n 21.5+n 22.5+n 23+n 23+n 21.5+n 21.5+n 

HULF (wl1.51 38.5*3n 15.5+2n 14.5+2n 14.5+2n 14.5+2n 15.5+2n 14.5+2n 13.5+n 

D IVF (n=23) 31+2n 16.5+n 13.5+n 13.5+n 12.5+n 14.5*n 13.5+n 12.5+n 

Note: n = Average number of loop iterations. 

Table 5. Space Requirement of PUMA 

Local Trace Tree SRDAG GDDG ITSC Hand . 
Seauentlal-Scheduled--w-w 

Floating Addition 41 33 29 27 27 27 27 26 

Floating Uultiplication 38 26 25 20 25 22 19 19 

Floating Division 49 36 33 33 31 31 27 27 

Normalization 32 25 22 19 20 19 20 19 

ADDF2 I?. SUBFP 

CALL 

EDIV 

WULF 

DIVF 

Table 6. Space Resuireaent of VAX-like Wachine 

Loca 1 Trace Tree SRDAG GDDG ITSC Hand --Scheduled----- . 

75 46 44 43 41 45 41 38 

95 56 53 55 55 53 52 48 

60 36 33 35 35 35 33 33 

69 37 36 37 35 36 37 32 

48 33 29 29 28 30 29 28 
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