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The twisted GFSR generators proposed in a previous article have a defect m Ii-dlstrlbutlon for k

larger than the order of recurrence, In this follow up article, we introduce and analyze a new

TGFSR variant having better k-distribution property. We provide an efficient algorlthm to

obtain the order of equldistribution, together with a tight upper bound on the order We discuss a

method to search for generators attaining this bound, and we list some of these such generators

The upper bound turns out to be (sometimes far) less than the maximum order of equidistribu-

tlon for a generator of that period length, but far more than that for a GFSR with a working area

of the same size.

Categories and Subject Descriptors: G,2 1 [Discrete Mathematics]: Combinatorics—recur-

rences and clzfference equatzons; G 3 [Probability and Statistics] —random number generatmn

General Terms: Algorithms, Theory, Experimentation
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1. INTRODUCTION

In the previous paper [Matsumoto and Kurita 1992], we introduced a random

number-generating algorithm, the twisted G’FSR generator (TGFSR).

Definition 1.1. A sequence x ~, x ~, x ~, . . . of w-bit integers is a TGFSR

sequence with parameters (LO, n, m, A) (n > m: positive integers) if it satis-

fies

‘l+n =xl+~@x, A (1=0> 1,2,...), (1)

where XL are regarded as row vectors of bits; Q denotes the bitwise exclusive-

or operation; A is a w X w matrix with components in GF(2); and x, A

denotes the multiplication between a row vector and a matrix over GF(2).

If A is an identity matrix, then the sequence is a GFSR sequence based on

a characteristic trinomial. As shown in L’Ecuyer [1994, Sec. 3.7, 3.8], both
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GFSR and TGFSR can be viewed as implementation approaches of digital

matrix generators, and TGFSR generators can also be implemented as large

GFSRS (based on a characteristic polynomial of order wn).

With a suitable choice of (w, n, m, A), the sequence attains the maximal

period 2 ‘w – 1. Here, we treat only TGFSR with maximal periods and simply

call them TGFSR. In the previous article, we dealt with the case where A is

of rational normal form, as below, because it permits an efficient implementa-

tion of the recurrence 1.1.

Definition 1.2. A TGFSR sequence with

I 1

1

A=R=

1
a. al ““” ““” a*L,_~

is called a TGFSR sequence of rational normal form, or TGFSR(R). Unfortu-

nately, a TGFSR(R) has a defect from the viewpoint of k-distribution to u-bit

accuracy [Tootill et al. 1973] defined as follows.

Definition 1.3. A pseudorandom sequence x, of w-bit integers of period P

satisfying the following condition is said to be k-distributed to v-bit accuracy:

let truncU(x) denote the number formed by the leading u bits of x, and

consider the kv-bit vectors

(truncU(x,), truncU(x, +l),..., truncU(x, +k_l)) (O S i < P).

Then, each of the 2 k” possible combinations of bits occurs the same number of

times in a period, except for the all-zero combination that occurs once less

often.

LetxO, xl,... be a sequence of w-bit integers, and let P be its period. For

each v=l,2, ..., w, let k(u) denote the maximum number such that the

sequence is k ( u )-distributed to v-bit accuracy. Clearly we have the inequality

2‘( “)” – 1 < P, since at most, P patterns can occur in one period. In the case

of TGFSR, P = 2’” – 1 holds, so we have k(u) < lnw/u] with n being

the number of words. However, as Tezuka points out in a forthcoming

work, TGFSR(R) is only n-distributed to 2-bit accuracy, far smaller than the

upper bound k(u) < [ nw/u j. Generators attaining this upper bound for every

u (1 < u < w) are called asymptotically random [Tootill 1973]. This led us to

consider k-distribution of TGFSR with other types of A instead of R. The

purpose of this article is to introduce a new feasible variant of TGFSR with

better k-distribution.

It turns out that TGFSR has a tighter upper bound than the one deduced

above, namely, k(u) < n[ w/u]. Consequently, a TGFSR is never asymptoti-

cally random. However, we could find an efficient algorithm to obtain A

attaining this bound and an efficient implementation of the corresponding

TGFSR. We list some TGFSR generators attaining these upper bounds
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256 . M, Matsumoto and Y. Kurita

n[ w \U ] simultaneously for all u. They are much better than the 1n\u 1

achieved by a GFSR of the same size i.e., n words of w-bit integers. One may

still insist that a GFSR of the same period 2 ‘“ – 1 (consuming w times

memory area of TGFSR) may achieve an asymptotically random distribution

k(v) = 17Lw/v ], and consequently, Theorem 2.1 is a negative result. This is

not necessarily the case, as shown in the following comparison with an

asymptotically random GFSR of N-words (N - 72w ) with k(u) = 1N\u J:

(1) To obtain a TGFSR whose k(u) exceeds liV/U 1 for all v, it is sufficient to
take n == [2 N/( w + 1)1 words (<< N). This follows from a simple calcula-

tion. Thus, a TGFSR needs much less memory than a GFSR of the same

k-distribution property. Note that in a multitask system, a memory-

consuming program is sometimes time consuming due to memory swap-

ping.

(2) In the GFSR case, to obtain k(u) for a given initial value, one must
calculate the rank of an N X N matrix for each u, while any initial value

attains the upper bound in the case of TGFSR.

(3) Even an asymptotically random GFSR is rejected by the weight distribu-

tion test, if it is based on a trinomial. See Section 4 and Matsumoto and

Kurita [1992].

A brief sketch of this article is as follows. In Section 2, we provide an

efficient algorithm to obtain k(u) through simple operations on matrix A,

Theorem 2.1, that also shows that TGFSR has the upper bound k(u) <

n[ w /u ]. In Section 3, we discuss how to search for the matrix A that satisfies

the above bounds at once for all u and also allows for efficient implementa-

tion. In Section 3.1, we analyze the bad correlation in TGFSR(R) by applying

Theorem 2.1. In Section 3.2, based on this analysis, we discuss a method to

modify the output sequence of a TGFSR(R) by a simple linear transformation

into a sequence of TGFSR satisfying the bound of Theorem 2.1. This modifica-

tion requires only a few instructions to be added to the previous TGFSR(R)

program. In Section 3.3, we discuss an efficient way to determine a modifying

parameter. In Section 4, we list some efficient generators attaining these

bounds. We conduct empirical tests on these generators and the old TGFSR(R),

and we dismiss the latter type.

2. CRITERION FOR EQUIDISTRIBUTION

The next theorem provides an efficient algorithm to obtain k(u) and its tight

upper bound for the general TGFSR.

THEOREM 2.1. Let (w, n, m, A) be the parameters of a TGFSR. Let d}’)
denote the ith column vector of AJ. Consider the sequence of vectors

d$), d(l) df~-l~, d~o~, d~l),..., dll, d~o),),...() >..., o

Let d~:) be the first vector that is GF(2) linearly dependent with the preceding

vectors. Then we have

k(u) =njo.
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COROLLARY 2.2

nlk(u) and k(v) <rz[w/u] (u = 1,2, . . .. w).

PROOF (by R. Couture). Fix k and u. Let VW := GF(2)’-” be the space of

w-bit integers regarded as a row vector space. Define

and identify Q ~ with the space of k x w matrices. Similarly, define VU, O ~,

and flj.

Let p:VJ - QW map (xo,... ,xl)l) to the first k values (xo, . . ..xl)l) of

the TGFSR sequence (xO, xl, . . . . x~, . . . ) with initial value (xO,..., x. - ~). Let
trunc: VU, + Vu denote the truncation map defined in Definition 1.3, that is,

()
the multiplication by the w X v-matrix Q := 1[ from the right. We denote

the multiplication from the right by x Q and fr’m the left by Q X. Now, the

k-distribution to u-bit accuracy is equivalent to the subjectivity of the compo-

sition map

since the state vector assumes all nonzero values in V; in one period. Let

T ;v-l; + wu,be the map defined by

(xo, xl, . . ..xn_l)

* (Xo, xl>. ... xl, xoxo A,xl A..., x~_l A,xOA2, xoA~,o,x, _lA~),_l A~),

where r and q are the residue and the quotient of k/n, respectively.

Let us consider the linear recurrence

Yl+n ‘Yl+m +Ylx (z = 0> 1,2,...)!

where X is an indeterminate, y., . . . . yn _ ~ are indeterminates and y~ (l > n)

is a polynomial of these indeterminates. Then, for any integer N, y~ can be

written as a linear combination of

{y, X]]i=O,l,...,l, z+jn<N },},

and the coefficient of y, X~ for unique (i, j) with N = i + jn does not vanish.

By substituting yl := xl and X := A, we see that there is a regular lower half

triangular k x k-matrix T such that the composition

coincides with p. Now we have a commutative diagram

ACM Transactions on Modeling and Computer Simulation, Vol 4, No 3, July 1994.
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where the two vertical maps are the isomorphisms T X . Hence, it is suffi-

cient to consider the surj ectivity of the upper row, which is the linear

transformation

(xo, xl, . . ..xn_l) - (x OQ, xl Q,. ... xn_l Q,xOAQ,

xl AQ, . . .._l_l AQ, xOA2Q,..., x,_l AqQ),

and this splits to a direct sum according to VW’ = VW @ Vu, 6 . . . 6 V,U. Thus,

the subjectivity of the upper row reduces to the subjectivity of

where U is a w x (q + I)v-matrix

U:= (Q, AQ, A2Q,..., AqQ).

Thus, k-distribution of the u-bit accuracy is equivalent to the rank of U being

(q + l)u.In other words, it is independence of U’s columns. The maximum q

equals j. in the statement of the theorem, and since q = 1k/n], the theorem

follows. Corollary 2.2 is an immediate consequence of the theorem. ❑

Remark 2.3. The jO in the theorem coincides with the order of equidistri-

bution to v-bit accuracy of the matrix linear congruential sequence defined by

z t+l —— z, A, if p~(t) is primitive. It is worth noting that the condition for a

TGFSR with parameters (w, n, m, A) to achieve the upper bound in Corollary

2.2 depends only on A and is independent of n and m, unlike GFSR [Tootill

1973; Fushimi and Tezuka 1983]. This implies that one good A serves for any

n and m, provided that (w, n, m, A) is a tuple of parameters of a maximal

period TGFSR generator.

3. HOW TO ATTAIN THE BOUND

We want to find matrices A satisfying the upper bound in Corollary 2.2,

permitting an efficient implementation. We will show that TGFSR(R) cannot

reach that upper bound, and then, we will propose a way of constructing

matrices A that satisfy those conditions.

3.1 Bad Correlation in TGFSR(R)

We interpret j. in Theorem 2.1 as the degree of the minimal- de~ee relation

between some polynomials in order to investigate bad correlations in
TGFSR(R). Let us fix one set of parameters ( zu, z-z, m, A), providing a TGFSR.

Let -q be an eigenvalue of A. Then q generates GF(2” ) over GF(2) and is of

multiplicity one because the characteristic polynomial of A is irreducible.

Thus, the corresponding row eigenvector can be taken in GF(2W )“. Let

(Z$~,..., 0,,, ) be such a (row) eigenvector of A, namely,

(@l, . . ..@w)A= (n@l. T@u),@u), ~, E GF(2’”)

We can state Theorem 2.1 in terms of degree, as follows.
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THEOREM 3.1.1. Let q c GF(2” ) be an eigenvalue of A and (@l,..., &) be

a corresponding row eigenvector. Let us define the degree of an element of

GF(2” ) as the minimal degree of its representations as a nonzero polynomial

in q. Thus, the degree of O is w. Let v be an integer with 1 < v < w. For a

linear relation ~ ~= ~ y,+, = O in GF(2 w ), we define the degree of the linear

relation as the maximum degree of y, (i = 1, . . . . v).

Then, k(v) equals n times the degree of the minimal-degree relation between

{41> 42,..., 4.}.

PROOF. First we claim that {@l, 42,..., @W} is linearly independent over

GF(2) because if not, they satisfy a linear relation over GF(2), so all Galois

conjugates of the set {@l, 42, . . . . @w,} satisfy the same linear relation. Thus,

the Galois conjugates (there are exactly w) of the vector ( ~1, +2, . . . . @W) are

linearly dependent. This contradicts that each of these vectors lies in an

eigenspace with distinct eigenvalues. By this and Theorem 2.1, k(v) is n

times the minimum j such that the components in the (j + l)v-dim GF(2 ‘“ )-

vector

(+~,oz,..., +U)(Q, AQ, A2Q,..., AJQ),

Q being the w X v matrix defined in the proof of Theorem 2.6, are linearly
dependent over GF(2). In other words, the set

is linearly dependent. Thus, j is nothing but the degree of the minimal-

degree relation between {@l, . . . . ~,,}. ❑

We shall apply this theorem to TGFSR(R). A direct calculation shows the

following.

LEMMA 3.1.2. Let A := R be the matrix in Definition 1.2. Then, a GF(2U )

vector (@l, $2,. ... +,,, ) is a (row ) eigenvector of R if and only if it satisfies the

equations

@L=@t+1+a14w (i=l,...,1)l) (3)

and

a04U, = r141. (4)

Because a. = 1,Eqs. (3) and (4) in the above lemma show that

4L=v(4, +l+aL 41), (i=l,...,l) l). (5)

Thus, in the case of i = 1,this shows that the degree of the minimal-degree

linear relation between 41 and 42 is one, so Theorem 3.1.1 shows that

k(2) = n X 1, recovering a result of Tezuka’s manuscript. Next, we consider

consecutive three bits 4,, 4,+ ~, and 4,+ ~. If a, is zero, then by (3), the
minimal-degree linear relation between @, and @l+ ~ has degree one; hence,

the ith bit and i + lth bit are at most n-distributed. If a,+ ~ is zero, the same
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is true between the i + lth and the i + 2th bits. If at = a,+ ~ = 1, then one

can eliminate @w,from Eq. (3) to obtain

4/ – 4,+1= T41+1 – 774,+2>

which asserts the following.

PROPOSITION 3.1.3. In the TGFSR(R ) sequence, any three consecutive bits

of xl are at most n-distributed.

From (5) we obtain a recurring formula

0,+1 = w-+$,+aL@l)

and by solving this inductively, it is easy to see that

Zj, = @L(?rl)@,

holds for some polynomial @L(t)G GF(2)[ t1 of degree i – I (i < ZO).Thus, any

GF(2)-linear combination of @l, . . . . ~, can be written in the form of T(q - 1)@l

with IP( t) of degree s s – 1. Any two such linear combinations W q- 1) @l

and ~(q-l)’~l have a linear relation of degree < s — 1, namely,

(T(T-l)’TS- l)” Wq-l)ol = (T(q-l)qs-l)” ~(q-l)’dl. BY Theorem 3.1.1, we
have proven the following.

PROPOSITION 3.1.4. Any two linear combinations of (@l,.. ., 4,$) has a

linear relation of degree s – 1. Thus, for a TGFSR(R) sequence, any two

linear combinations of the most significant s bits are at most n(s – 11-

distributed.

3.2 Tempering TGFSR(R)

We shall provide an efficient method to search for a good A based on the

above analysis of TGFSR(R). The idea is the following modification, called

tempering, of TGFSR(R) generators, which is equivalent to considering a

general A.

Let {x,} be a TGFSR(R) sequence, and define a sequence {z,} by putting

z, :=xl P, (6)

where P is a regular GF(2) matrix. By deleting x from (1) using (6), we

realize that {z, } is a TGFSR sequence with parameters ( zo, n, m, P– lRP).

Since the characteristic polynomial of A of a (maximal period) TGFSR is

irreducible, A is similar to a (unique) rational normal form R. That is,
A = P- ‘RP holds for certain P and R. Hence, any (maximal period) TGFSR

can be obtained in this way. Thus, we should choose a simple P such that {z, }

attains the bound in Theorem 2.1.

Let (@l,.. ., 4,,, ) be the row eigenvector of R, as in Section 3.1. Then, the
eigenvector of A = P- ~RP is

(@\,..., @L)= (@l,..., !bu))p,

so Theorem 3.1.1 can be applied.
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We shall investigate a feasible transform x _ x P that permits an efficient

implementation. The linear operations with respect to GF(2) existing in a

usual instruction set are exclusive-or, bit shift, and bitwise AND with a

constant bitmask. Proposition 3.1.3 suggests that bitwise AND will be neces-

sary in some way because the others do not cut off the adjacency of the

()
consecutive bits. Proposition 3.1.4 asserts that a P such as ~ ~ , where U is

an s X 2 matrix and s – 1 < \ w/2], never attains the bound on k(2) since

k(2) < rz(s – 1). To attain the bound, P should add the sth bit of x with

s – 1 > [w/2] to one of the most significant two bits. This observation and

the limitation in the instruction set lead us to a transformation

x+x@(x<<s– 2), (7)

with s – 1 > [w/2], where x << s – 2 denotes the (s – 2)-bit shiftleft opera-

tion on x.

Taking Proposition 3.1.3 into account, we contrive a transformation

y := x @ ((x << some bits)& BITMASK), (8)

where & represents the bitwise AND operation and BITMASK is a suitable

bitmask. A more complicated combinatorial analysis with many case divisions

shows that this transform is not yet sufficient. We extensively examined

several alternatives and finally found a feasible transformation. Namely,

after applying the transform (8) twice, we have the following transform.

Transform 3.2.1. We define P to be the transform x ~ x P = z given by

y:=x@((x<ss)&b);
(9)

z:=y@((y<<t) &c);

where s and t are integers; b and c are suitable bitmasks of word size;

(x << s) indicates the s-bit shiftleft; and & means the bitwise AND operation.

Note that O < s, t < w – 1. To attain the bound on k(2), it is necessary to

satisfy s + t > [w/2J – 1, since P is easily seen to have the form
()

~ ~ with

U of size (s + t + 2) X 2. Empirically, all TGFSR(R) that we have found can

be tempered into TGFSR, which attains the bounds by using Transform 3.2.1.

3.3 How To Find Parameters

In this section, we describe a strategy to determine the bitmasks b and c.

Take s and t satisf~ng the condition stated after Transform 3.2.1. Experi-

mentally, we could find b and c attaining the bound if we choose t near

[w/2] – 1 and s near t/2 (see Table I). Now, we fix such s and t,and explain

a way to find such b and c.

First, set b := O; c := O. Assume that the converted sequence {z,} shows the

optimal order of equidistribution up to (u – I)-bit accuracy in the sense of the

Corollary 2.2. Now, we shall optimize the order of equidistribution to v-bit

accuracy. The bits of b and c possibly affecting the u th bit of z are

~(u), ~(u), ~(c+t),
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Table I. k-distribution of Four Tempered TGFSR, One Plain TGFSR(R), and One GFSR

Generator The order of equidistrlbution

ID Parameters
,/ . . . ,- ..,. ., /.. ., -., /,. . . ..- .,. .

TT400 (w>n, m) = (16,25,11)

a = A875

s=2, b=6A68

t=7, c= 7500

TT403 (w, n, m) = (31, 13,2)

a = 6B5ECCF6

S = 8, b = 102 D12OO

t = 14, C = 66E50000

TT775 (w, n, m) = (31,25,8)

a = 6C6CB38C

S = 6, b = 1ABD5900

t= 14, C = 776AOOO0

TT800 (w, n, m) = (32,25,7)

a = 8EBFD028

S = 7, b = 2B5B2500

t= 15, c = DB8BOOO0
T800 (w, n, m) = (32,25,7)

a = 8EBFD028

k(~)

k(lO)
k(18)

k(26)

200
25
*
*

195
39
13

13

375

75

25

25

400

75

25

25

25

25

25

25

303

60

33
*

k(i)

k(n)

k(19)

k(27)

125

25
*

*

130

26

13

13

250

50

25

25

250

50

25

25

25

25

25

25

202

55

31
*

k(4)

k(12)

k(20)

k(28)

100

25
*

9;

26

13

13

175

50
25
25

200

50
25
25
25
25

25
25

151

50

30
*

G607 (w, n, m) = (23, 607, 334J

(an asymptotically random

GFSR of 607 words

[Tootdl et al. 1973])

* If w = 31, the most significant bit is always zero in 32-bit words

h(l)

k(9)

k(17)

k(25)

400
25

J’

403
39
13
13

775
75
25
25

800
75
25
25

800
25
25
25

607
67
35

k(b)

k(13)

k(21)

k(29)

75

25
*

78

26

13

13

150

50
25
25

150
50
25
25
25
25
25
25

121
46
28
,

k(ti)

k(14)

k(22)

k(30)

50
25
*

6:
26
13
13

125
50
25
25

125
50
25
25
25
25
25
25

101
43
27
,?

k(()

k(15)

k(23)

k(31)

50
25
*
*

52
26
13
13

100
50
25
25

100
50
25
25
25
25
25
25
86
40
26

k(~)

k(16)

k(24)

k(32)

50
25
,
$

39
13
13

7;
25

25

25

100
50
25

25
25
25
25

25
75

37
~

,*

where b(”) denotes the u th bit of b, etc. The easiest bit to control is C[U‘. This

bit does not affect more significant bits in z. Bit 6(U) influences Z( U- ~) if

Z) — t > 0 and c(’’–~) = 1, so should not be changed in thiscase,Bit ~([’‘t)does
not affect more significant bits, but if C(”) = O, then it does not affect Z(”’. In

summary, we may change the bitmasks under the following restrictions.

(o ifv>w —t

c(”) = (o, 1) otherwise,

{

o ifv>w —s
b(u) = as it was if~(U– L) = 1 andu —t>O

(0,1) otherwise,

(b(u+t)= o ifv+t>w —sorc(t’)= O

(o, 1) otherwise.

By checking k(v) in each case, we determine these three bits. We use the

backtracking technique to find a parameter satisfying the bounds on k(v),

V=o, l ,.. .,1—1.
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Note that independence of some columns of P- lRjP, as in Theorem 2.1 and

Equation (6), is equivalent to that of RJP. Instead of using columns of RJP, it

is somewhat easier to use rows of ‘PtRJ. The ith row pi of ‘P is obtained by

Y‘= e, @ ((e,a~) >=- ~)

p, ‘=y@ ((ytizb) >> S),

where e, is the i th unit row vector. The transform x - x ‘R is obtained by

x ‘R = shift left(x) @ q, where q is O or e,0 according to the parity of the

number of 1s in x & a.

4. PRACTICAL GENERATORS AND THEIR TESTS

Table I lists some examples of TGFSR obtained by the method in Section 3.3.

In the table, TT* * * is obtained by tempering T*** in our previous paper

[Matsumoto and Kurita 1992]. Hence, tempering can easily be implemented

by adding two lines (9) to the original programs for T***. T800 is an original

TGFSR(R) generator without tempering and is used here for comparison.

G607 is an asymptotically random GFSR generator proposed by Tootill et al.

[1973].

Observe that k(u) coincides with nlw\v ] for the tempered TGFSR, which

is the upper bound given in Corollary 2.2. Note also that any TGFSR satisfies

k(u) > n, as proven in Matsumoto and Kurita [1992]. In Table I, a, b, and c

are written in hexadecimal form. So, for example, the TT775 3 l-bit pseudo-

random integer generators can be implemented as follows. C-like notations

are used for bit operations.

Define four integer constants n := 25, m := 8, s := 6, and t := 14, and

three 32-bit integers in the hexadecimal notation a := 6C6CB38c, b :=
1ABD5900, and c := 776 AOOO0. Let x[n] be an array of n 32-bit integers, y

be a 32-bit integer variable, and 1 be an integer variable.

Step 1. 1 ~ O

Step 2. Set xIO], X[ 1],... , X[ n – 1] to suitable nonzero initial values (with

most significant bit O).

Step 3. y GX[l] @ ((x[l] << s)& b); y - y Q ((y << t)&c); output y.

Step 4. x[l] ~ x[(l + m)mod n] @ shiftright(x[l]) @{~ ~~~~ “’~~~~~ ~

Step 5. 1 ~ (1 + l)mod n

Step 6. Goto Step 3.

4.1 Statistical Tests

To verify the improvement due to tempering, we performed the following

statistical tests, weight distribution tests. These tests are designed for a

statistical treatment of the deviation of weights of trinomial-based m-se-

quences, which was pointed out by Fredrickson [1975]. Using a randomly

selected initial seed, we generate IV X r uniformly distributed random num-
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hers xl, xz, . . ..x~xr = [0, 1]. This sequence is divided into r pieces: yl ;=

(xl, ~z, . . . . ~~), yz ‘= (x~+~, xN+z, . . . . xz~), . . . . Y, ‘= (~(r-~~~+~,

x(r–l)jV+ 2,...> X.N ). For each y, (1 s i < r), let X, be the number of compo-

nents of y, greater than R, where R is a fixed constant O < R < 1. The

observations X, ( 1 s i s r ) are expected to conform to the binomial distribu-

tion P( X = k) = ( ~] R’- k(1 – R)k. Then, we compare the empirical distribu-

tion of these r observations to the theoretical distribution in a goodness-of-fit

test of the hypothesis. To be precise, we divided the interval [0, IV] into eight

intervals so that the probability of X falling in each interval is roughly equal.

Then, we count the number of X, falling in each of eight categories, and get

the chi-square statistic [Knuth 1981].

The above procedure is iterated t times with randomly sampled initial

seeds, so we get t chi-square statistics, UI, U2, . . . . Ut. These {u,} (1 s i < t)

are expected to conform to the chi-square distribution with 7 degrees of

freedom. Then, we measure the difference between this empirical distribution

and chi-square distribution using Kolmogorov-Smirnov statistics. We get two

observations KS+ and KS-, which are expected to conform to the KS-distri-

bution. We denote by KS’(%) the corresponding percentile values, so, for

example, KS ‘(70) is the probability that the random variable K: will be

KS+ or less. The same holds true for KS,- (%). See Knuth [1981].

Table II lists the results of the above test for various generators with

R = 1/4, N = 256, r = 8192, and t = 64. Since R = 1/4, only the most

significant two bits are tested. This table shows that the tempered TGFSR

generators and LM, L G607,2 and G15633 are not rejected, while the plain

TGFSR(R) generators are rejected. The CPU time consumed by each genera-

tors is also listed. Tempering causes approximately ten percent loss in speed.

As a by-product of this test, we also calculate the third moment MS of the r

observations, {XL(l < z s r)}, t times. Then, we get the mean value of MS for

these t values: [MS] = ~,. ~ {M3}7/t. See Lindholm [1968] about the devia-

tion of M3 of trinomial GFSR. The theoretical value is NR( 1 – R)(2R – 1),

which in this case, is – 24. We do not know the distribution function of MS, so

we cannot perform a formal test of hypothesis. We can, however, clearly
distinguish two groups, one with the mean value within – 24 t 3 and the

other with the mean value less than – 40.

In addition to weight distribution tests with different parameters (R = 1/8,

1/3, 2/3, 3/4 etc.), we performed two other types of tests, the run test and

the KS test (for details, see Matsumoto and Kurita [ 1992]) for various gen-

erators, and these tempered TGFSR sequences always passed. Howeverj
trinomial-based GFSR generators such as G607 and G1563 are rejected in

the weight distribution test with R = 1/2, N = 4096, r = 8192, t = 64, as

shown in Table III.

‘ Lehmer’s congruential method, proposed by Matsumoto and Kurita [ 1992].

2 Based on a primitive trmomlal X G07 + x~Ts + I, proposed by Tootill [ 1973].

3 Based on the recursion x. = x,, .3P + x. .3,,, where p = 521 and q = 32, proposed by Fushimi

[1990].
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Table II. The Result of Weight Distribution Test with R = 1/4, N = 256, r = 8192, t = 64

Generator T400 T403 T775 T800 TT400 TT403 TT775 TT800 LM G607 G1563

KS+(%) 100 100 100 100 91 54 32 4

KS-(%)

84 81 79

0 200 3 26 49 85 22 45 3

[MS] – 44 – 46 – 46 – 44 – 27 – 25 – 23 – 24 – 22 – 23 – 23

cpu time(”) 74 63 72 72 79 70 79 80 92 55 174

Table III. The Result of Weight Distribution Testwith R= l/2, N=4096, r=8192, t =64

Generator T400 T403 T775 T800 TT400 TT403 TT775 TT800 LM G607 G1563

KS+(%) 80 37 57 39 80 18 18 26 3 100 100

KS-(7,) 10 65 12 76 10 86 79 42 87 0 0

[MS] 41 40 102 –72 41 76 17 71 95 –5974 –2730

Remark 4.1.1. The generator G1563 was suggested by one of the referees

as a more contemporary serious competitor. We should emphasize that this

generator is one of the trinomial-based GFSR. Any of them has a serious

deviation in weights for IV more than 2 times the order of recurrence, as

deduced from the warnings in Lindholm [1968] and Fredrickson [1975]. The

characteristic polynomial of G1563 has many terms, but it divides a trinomial

of degree 1563, which should be avoided according to Lindholm [1968]. The

generating algorithm of G1563 shows that the criticizing argument in

Fredrickson [1975] is again valid in this case.

Remark 4.1.2. Recently L’Ecuyer [1992] tested some class of pseudoran-

dom number generators and reported that a TGFSR sequence failed in one
nearest-pair test. This result was possibly caused by the linear relation

between the consecutive three bits (see Proposition 3.1.3).

APPENDIX: C PROGRAM

Here is a C program implementing the generator TT800. The function

genrand( ) returns a uniformly distributed real pseudorandom number (dou-

ble precision) between O and 1. Note that the initial seed, the initial value of

x, a 25-dimensional array of 32-bit integers, can be chosen arbitrarily except

all-zero. This makes the code shorter than that of GFSR generators (cf. the

code in the appendix of Fushimi [1990]).

/* A C-program for TT800 * /
#include (stdio.h)
#define N 25
#define M 7

double
genrand( )
{

unsigned long y;
static int k = O;
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static unsigned long xINI = { /* initial seeds. N = 25 words * /

Ox95f24dab, OxOb685215, Oxe76ccae7, Oxaf3ec239, OX715fad23,
Ox24a590ad, Ox69e4b5ef, Oxbf4561 41, 0x96bcl b7b, Oxa7bdf825,
Oxclde75b7, Ox8858a9c9, Ox2da87693, Oxb657f9dd, Oxffdc8a9f,
Ox8121da71, 0x8b823ecb, 0x885d05f5, 0x4e20cd47, 0x5a9ad5d9,
0x512cOc03, 0xea857ccd,0x4ccl d30f,0x8891a8al, Oxa6b7aadb

};
if(k==N) {/* generate Nwordsatonetlme */

Int kk;
for (kk=O,kk < N – M;kk++) {

if (x[kk] %2 ==0) {x[kAk] =x[kk+M]”(x[kk] >> 1); }

else { x[kk] =x[kk+M] (x[kkl >> 1) Ox8ebfd028; } /* a * /
1

~or (; kk < N;kk++) {
if (x[kk]%2 ==0) {x[kk]=x~kk+(M – N)]”(x[kk] >> 1), }

else { x[kk] =x[kk+ (M – N)] (x[kk] >> 1) 0x8ebfd028; } /+ a * /

}
k=O;

}
y.= x[k++];
yA=(y <7) &Ox2b5b2500; /* sandb *I
y= (y<< 15) &Oxdb8bOOOO; /* tandc */

return( (double) y /(unsigned long) OxffWHf);

}
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