
44 coMMunications of the acM | MArch 2011 | vol. 54 | no. 3

practice

the MethODS OF system administration have
changed little in the past 20 years. While core
IT technologies have improved in a multitude of
ways, for many if not most organizations system
administration is still based on production-
line build logistics (aka provisioning) and
reactive incident handling—an industrial-age
method using brute-force mechanization to
amplify a manual process. As we progress into
an information age, humans will need to work
less like the machines they use and embrace
knowledge-based approaches. That means
exploiting simple (hands-free) automation that
leaves us unencumbered to discover patterns and
make decisions. This goal is reachable if IT itself
opens up to a core challenge of automation that is
long overdue—namely, how to abandon the myth
of determinism and expect the unexpected.

We don’t have to scratch the surface
very hard to find cracks in the belief
system of deterministic management.
Experienced system practitioners know
deep down that they cannot think of
system administration as a simple pro-
cess of reversible transactions to be
administered by hand; yet it is easy to
see how the belief stems from classical
teachings. At least half of computer sci-
ence stems from the culture of discrete
modeling, which deals with absolutes
as in database theory, where idealized
conditions can still be simulated to an
excellent approximation. By contrast,
the stochastic models that originate
from physics and engineering, such
as queueing and error correction, are
often considered too difficult for most
basic CS courses. The result is that sys-
tem designers and maintainers are ill
prepared for the reality of the Unexpect-
ed Event. To put it quaintly, “systems”
are raised in laboratory captivity under
ideal conditions, and released into a
wild of diverse and challenging circum-
stances. Today, system administration
still assumes, for the most part, that
the world is simple and deterministic,
but that could not be further from the
truth.

In the mid-1990s, several research
practitioners, myself included, argued
for a different model of system admin-
istration, embracing automation for
consistency of implementation and
using policy to describe an ideal state.
The central pillar of this approach was
stability.2,4 We proposed that by plac-
ing stability center stage, one would
achieve better reliability (or at the very
least predictability). A tool such as IT
is, after all, useful only if it leads to
consistently predictable outcomes.
This is an evolutionary approach to
management: only that which survives
can be successful.

As a physicist by training, I was sur-
prised by the lack of a viable model for
explaining actual computer behavior.
It seemed that, instead of treating be-
havior as an empirical phenomenon
full of inherent uncertainties, there
was an implicit expectation that com-

testable
system
administration

Doi:10.1145/1897852.1897868

 Article development led by
 queue.acm.org

Models of determinism are changing
IT management.

By MaRK BuRGess

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1897852.1897868&domain=pdf&date_stamp=2011-03-01

MArch 2011 | vol. 54 | no. 3 | coMMunications of the acM 45

I
l

l
u

s
t

r
a

t
I

o
n

 b
y

 s
t

u
a

r
t

 b
r

a
D

F
o

r
D

puters would behave as programmed.
Everyone knows this to be simplistic;
yet still, a system administrator would
worry about behavior only when an inci-
dent reported something to the contrary.

from Demolition to Maintenance
When a problem occurs, many orga-
nizations take affected systems out
of service, wipe them, and restore
them from backup or reinstall from
scratch. This is the only way they
know to assure the state of the system
because they know no simple way of
discovering what changed without an
arduous manual investigation. The
process is crude, like tearing down a
building to change a lightbulb. But
the reason is understandable. Cur-
rent tools are geared for building, not

repairing—and if you’ve only got a
sledgehammer...then you rebuild.

There is growing acceptance of a
test-driven or diagnostic approach
to the problem. This was originally
ushered in by Cfengine,5 and then
partially adopted in other software
such as Puppet.11 In a test-driven ap-
proach, system state is regulated by
continual reappraisal at a microscop-
ic level, like having a groundskeeper
watch continuously over an estate,
plucking the weeds or applying a lick
of paint where needed. Such an ap-
proach required the conceptual leap
to a computable notion of mainte-
nance. Maintenance can be defined
by referring to a policy or model for
an ideal system state. If such a model
could somehow be described in terms

of predictable, actionable repairs, in
spite of environmental indetermin-
ism, then automating maintenance
would become a simple reality. This, in
essence, is how Cfengine changed the
landscape of IT management.

The term compliance is often used
today for correctness of state with re-
spect to a model. If a system deviates
from its model, then with proper au-
tomation it self-repairs,2,4 somewhat
like an autopilot that brings systems
back on course. What is interesting
is that, when you can repair system
state (both static configuration and
runtime state), then the initial condi-
tion of the system becomes unimport-
ant, and you may focus entirely on
the desired outcome. This is the way
businesses want to think about IT—in

46 coMMunications of the acM | MArch 2011 | vol. 54 | no. 3

practice

terms of goals rather than “building
projects”—thus also bringing us clos-
er to a modern IT industry.

convergence to a Desired state
Setting up a reference model for repair
sounds like a simple matter, but it re-
quires a language with the right proper-
ties. Common languages used in soft-
ware engineering are not well suited
for the task, as they describe sequential
steps from a fixed beginning rather
than end goals. Generally, we don’t
know the starting state of a machine
when it fails. Moreover, a lot of redun-
dant computation is required to track a
model, and that would intrude on clari-
ty. The way around this has been to con-
struct declarative DSLs (domain-specif-
ic languages) that hide the details and
offer predictable semantics. Although
Cfengine was the first attempt to han-
dle indeterminism, special languages
had been proposed even earlier.9

Many software engineers are not
convinced by the declarative DSL ar-
gument: they want to use the famil-
iar tools and methods of traditional
programming. For a mathematician
or even a carpet fitter, however, this
makes perfect sense. If you are trying
to fit a solution to a known edge state,
it is cumbersome to start at the oppo-
site end with a list of directions that as-
sume the world is fixed. When you pro-
gram a GPS, for example, you enter the
desired destination, not the start of the

journey, because you often need to re-
compute the path when the unexpected
occurs, such as a closed road. This GPS
approach was taken by Cfengine5 in the
mid-1990s. It says: work relative to the
desired end-state of your model, not an
initial baseline configuration, because
the smallest unexpected change breaks
a recipe based on an initial state. This
has been likened to Prolog.7

In simple terms, the approach
works by making every change satisfy a
simple algorithm:

Change (arbitrary_state) → desired_state (1)
 Change (desired_state) → desired_state (2)

This construction is an expression
of “dumb” stability, because if you per-
turb the desired state into some arbi-
trary state, it just gets pushed back into
the desired state again, like an auto-
mated course correction. It represents
a system that will recover from acciden-
tal or incidental error, just by repeating
a dumb mantra—without the need for
intelligent reasoning.

For example: suppose you want to
reconfigure a Web server to support
PHP and close a security hole. The serv-
er and all of its files are typically part of
a software package and is configured
by a complex file with many settings:

>10kB of complex stuff
MODULES = SECURITY _ HOLE JAVA
 OTHERS

>10kb of complex stuff

To fix both problems, it is sufficient
to alter only this list (for example, a de-
sired outcome):

>10kB of complex stuff
MODULES = JAVA OTHERS PHP
>10kB of complex stuff

Traditionally, one replaces the
whole file with a hand-managed tem-
plate or even reinstalls a new package,
forcing the end user to handle every-
thing from the ground up. Using a de-
sired state approach, we can simple
say: in the context of file webserv-
er.config, make sure that any line
matching “MODULES = something”
is such that “something” contains
“PHP” and does not contain “SECURI-
TY HOLE.” Figure 1 illustrates how this
might look in Cfengine.

Thus, the code defines two inter-
nal list variables for convenience and
passes these to the specially defined
method edit_listvar, which is con-
structed from convergent primitives.
For each item in the list, Cfengine will
assure the presence or absence of the
listed atoms without touching any-
thing else. With this approach, you
don’t need to reconstruct the whole
Web server or know anything about
how it is otherwise configured (for ex-
ample, what is in “complex stuff”)
or even who is managing it: a desired
end-state relative to an unknown start-
state has been specified. It is a highly
compressed form of information.

I referred to this approach as con-
vergent maintenance (also likening
the behavior to a human immune
system2), as all changes converge on
a destination or healthy state for the
system in the frame of reference of the
policy. Later, several authors adopted
the mathematical term idempotence
(meaning invariance under repetition),
focusing on the fact that you can apply
these rules any number of times and
the system will only get better.

Guarded Policy
In the most simplistic terms, this ap-
proach amounts to something like
Dijkstra’s scheme of guarded com-
mands.8 Indeed, Cfengine’s language
implementation has as much in com-
mon with Guarded Command Lan-

figure 1. Reconfiguring a Web server in cfengine.

bundle agent webserver_config
{
vars:
 “add” slist => { “PHP”, “php5” };
 “del” slist => { “SECURITY_HOLE”, “otherstuff” };

column_edits:

 “APACHE_MODULES=.*”
 edit_column => edit_listvar(“$(add_modules)”,”append”);
 “APACHE_MODULES=.*”
 edit_column => edit_listvar(“$(del_modules)”,”delete”);
}

[Note: The syntax (which incorporates implicit guards and iteration)
has the form:

 type_of_promise:

 “Atom”

 property_type => desired_end_state;
]

practice

MArch 2011 | vol. 54 | no. 3 | coMMunications of the acM 47

guage as it does with Prolog.7 The as-
sertion of X as a statement may be
interpreted as:

If not model(X), set model(X)

For example:

“/etc/passwd” create => “true”;

Repeating an infinite number of
times does not change the outcome.
With hindsight, this seems like a trivial
observation, and hardly a revolutionary
technology, yet it is the simplest of in-
sights that are often the hardest won.
The implication of this statement is
that X is not just what you want, but a
model for what should be. The separa-
tion of the intended from the actual is
the essence of the relativity.

There is one more piece to the puz-
zle: Knowing the desired state is not
enough; we also have to know that it is
achievable. We must add reachability
of the desired state to the semantics.

Getting stuck in Local Minima
It is well known from artificial intelli-
gence and its modern applications that
algorithms can get stuck while search-
ing parameter landscapes for the opti-
mum state. When you believe yourself
at the bottom of the valley, how do you
know there is not a lower valley just
over the rise? To avoid the presence of
false or local minima, you have to en-
sure that each independent dimension
of the search space has only a single
minimum, free of obstacles. Then
there are two things at work: indepen-
dence and convergence. Independence
can be described by many names: ato-
micity, autonomy, orthogonality, and
so on. The essence of them all is that
the fundamental objects in a system
should have no dependencies.

What we are talking about is a theo-
ry of policy atoms in an attribute space.
If you choose vectors carefully (such
as, file permissions, file contents, and
processes) so that each change can be
made without affecting another, no
ordering of operations is required to
reach a desired end-state, and there
can be only one minimum. Indeed or-
der-independence can be proven with
periodic maintenance as long as the
operators form irreducible groups.3,6

The discovery of such a simple solu-

tion suggests a panacea, ushering in
a new and perfect world. Alas, the ap-
proach can be applied only partially
to actual systems because no actual
systems are built using these pure con-
structions. Usually, multiple change
mechanisms tether such atoms togeth-
er in unforeseeable ways (for example,
packages that bundle up software and
prevent access to details). The approxi-
mation has worked remarkably well
in many cases, however, as evidenced
by the millions of computers running
this software today in the most exact-
ing environments. Why? The answer
is most likely because a language that
embodies such principles encourages
administrators to think in these terms
and keep to sound practices.

tangled by Dependency:
the Downside of Packaging
The counterpoint to this free atomiza-
tion of system parts is what software
designers are increasingly doing today:
bundling atoms and changes together
into packages. In modern systems
packaging is a response to the com-
plexity of the software management
process. By packaging data to solve one
management problem, however, we
lose the resolution needed to custom-
ize what goes on inside the packages
and replace it with another. Where a
high degree of customization is need-
ed, unpacking a standard “package up-
date” is like exploding a smart bomb in
a managed environment—wiping out
customization—and going back to the
demolition school of management.

We don’t know whether any oper-
ating system can be fully managed
with convergent operations alone, nor
whether it would even be a desirable
goal. Any such system must be able to
address the need of surgically precise
customization to adapt to the envi-
ronment. The truly massive data cen-
ters of today (Google and Facebook)
are quite monolithic and often less
complex than the most challenging
environments. Institutions such as
banks or the military are more repre-
sentative, with growth and acquisition
cultures driving diverse challenges to
scale. What is known is that no pres-
ent-day operating system makes this
a completely workable proposition.
At best one can approximate a subset
of management operations, but even

if you are trying to
fit a solution to a
known edge state,
it is cumbersome
to start at the
opposite end with
a list of directions
that assume
the world is fixed.

48 coMMunications of the acM | MArch 2011 | vol. 54 | no. 3

practice

this leads to huge improvements in
scalability and consistency of pro-
cess—by allowing humans to be taken
out of the process.

from Demanding compliance
to offering capability
What is the future of this test-driven
approach to management? To under-
stand the challenges, you need to be
aware of a second culture that pervades
computer science: the assumption of
management by obligation. Obliga-
tions are modal statements: for exam-
ple, X must comply with Y, A should do
B, C is allowed to do D, and so on. The
assumption is that you can force a sys-
tem to bow down to a decision made
externally. This viewpoint has been the
backbone of policy-based systems for
years,12 and it suffers from a number of
fundamental flaws.

The first flaw is that one cannot gen-
erally exert a mandatory influence on
another part of a software or hardware
system without its willing consent.
Lack of authority, lack of proximity,
lack of knowledge, and straightforward
impossibility are all reasons why this is
impractical. For example, if a comput-
er is switched off, you cannot force it to
install a new version of software. Thus,
a model of maintenance based on ob-
ligation is, at best, optimistic and, at
worst, futile. The second point is that
obligations lead to contradictions in
networks that cannot be resolved. Two
different parties can insist that a third
will obey quite different rules, without
even being aware of one another.1

Realizing these weaknesses has led
to a rethink of obligations, turning
them around completely into an atom-
ic theory of “voluntary cooperation,” or
promise theory.1 After all, if an obliga-
tion requires a willing consent to im-
plement it, then voluntary cooperation
is the more fundamental point of view.
It turns out that a model of promises
provides exactly the kind of umbrella
under which all of the aspects of sys-
tem administration can be modeled.
The result is an agent-based approach:
each system part should keep its own
promises as far as possible without ex-
ternal help, expecting as little as pos-
sible of its unpredictable environment.

Independence of parts is represent-
ed by agents that keep their own prom-
ises; the convergence to a standard is

represented by the extent to which a
promise is kept; and the insensitivity to
initial conditions is taken care of by the
fact that promises describe outcomes,
not initial states.

Promise theory turns out to be a
rather wide-ranging description of co-
operative model building that thinks
bottom-up instead of top-down. It can
be applied to humans and machines in
equal measure and can also describe
human workflows—a simple recipe for
federated management. It has not yet
gained widespread acceptance, but its
principal findings are now being used
to restructure some of the largest orga-
nizations in banking and manufactur-
ing, allowing them to model complex-
ity in terms of robust intended states.
Today, only Cfengine is intentionally
based on promise theory principles,
but some aspects of Chef’s decentral-
ization10 are compatible with it.

the Limits of Knowledge
There are subtler issues lurking in
system measurement that we’ve only
glossed over so far. These will likely
challenge both researchers and prac-
titioners in the years ahead. To verify
a model, you need to measure a sys-
tem and check its compliance with the
model. Your assessment of the state of
the system (does it keep its promises?)
requires a trust of the measurement
process itself to form a conclusion.
That one dependence is inescapable.

What happens when you test a sys-
tem’s compliance with a model? It
turns out that every intermediate part
in a chain of measurement potentially
distorts the information you want to
observe, leading to less and less cer-
tainty. Uncertainty lies at the very heart
of observability. If you want to govern
systems by pretending to know them
absolutely, you will be disappointed.

Consider this: environmental influ-
ences on systems and measurers can
lead directly to illogical behavior, such
as undecidable propositions. Suppose
you have an assertion (for example,
promise that a system property is true).
In logic this assertion must either be
true or false, but consider these cases:

˲˲ You do not observe the system (so
you don’t know);

˲˲ Observation of the system requires
interacting with it, which changes its
state;

Promise theory
is a wide-ranging
description of
cooperative model
building that thinks
bottom-up instead
of top-down.
it can be applied
to humans and
machines in
equal measure
and can also
describe human
workflows—a
simple recipe
for federated
management.

practice

MArch 2011 | vol. 54 | no. 3 | coMMunications of the acM 49

˲˲ You do not trust the measuring de-
vice completely; or

˲˲ There is a dependence on some-
thing that prevents the measurement
from being made.

If you believe in classic first-order
logic, any assertion must be either true
or false, but in an indeterminate world
following any of these cases, you simply
do not know, because there is insuffi-
cient information from which to choose
either true or false. The system has only
two states, but you cannot know which
of them is the case. Moreover, suppose
you measure at some time t; how much
time must elapse before you can no lon-
ger be certain of the state?

This situation has been seen before
in, of all places, quantum mechanics.
Like Schrodinger’s cat, you cannot know
which of the two possibilities (dead or
alive) is the case without an active mea-
surement. All you can know is the out-
come of each measurement reported
by a probe, after the fact. The lesson of
physics, on the other hand, is that one
can actually make excellent progress
without complete knowledge of a sys-
tem—by using guiding principles that
do not depend on the uncertain details.

Back to stability?
A system might not be fully knowable,
but it can still be self-consistent. An
obvious example that occurs repeated-
ly in nature and engineering is that of
equilibrium. Regardless of whether you
know the details underlying a complex
system, you can know its stable states
because they persist. A persistent state
is an appropriate policy for tools such
as computers—if tools are changing
too fast, they become useless. It is bet-
ter to have a solid tool that is almost
what you would like, rather than the
exact thing you want that falls apart
after a single use (what you want and
what you need are not necessarily the
same thing). Similarly, if system ad-
ministrators cannot have what they
want, they can at least choose from the
best we can do.

Systems can be stable, either be-
cause they are unchanging or because
many lesser changes balance out over
time (maintenance). There are count-
less examples of very practical tools
that are based on this idea: Lagrange
points (optimization), Nash equilibri-
um (game theory), the Perron-Froben-

a system is the fundamental challenge:
the test-driven approach is about bet-
ter knowledge management—knowing
what you can and cannot know.

Whether system administration
is management or engineering is an
oft-discussed topic. Certainly without
some form of engineering, manage-
ment becomes a haphazard affair. We
still raise computers in captivity and
then release them into the wild, but
there is now hope for survival. Desired
states, the continual application of
“dumb” rule-based maintenance, and
testing relative to a model are the keys
to quantifiable knowledge.

 Related articles
 on queue.acm.org

A Plea to Software Vendors from
Sysadmins—10 Do’s and Don’ts
Thomas A. Limoncelli
http://queue.acm.org/detail.cfm?id=1921361

Self-healing in Modern Operating Systems
Michael W. Shapiro
http://queue.acm.org/detail.cfm?id=1039537

A Conversation with Peter Tippett
and Steven hofmeyr
January 10, 2009
http://queue.acm.org/detail.cfm?id=1071725

References
1. burgess, m. an approach to understanding policy

based on autonomy and voluntary cooperation.
submitted to IFIP/IEEE 16th International Workshop
on Distributed Systems Operations and Management
(2005).

2. burgess, m. Computer immunology. In Proceedings of
the 12th System Administration Conference, 1998.

3. burgess, m. Configurable immunity for evolving
human-computer systems. Science of Computer
Programming 51, 3 (2004), 197–213.

4. burgess, m. on the theory of system administration.
Science of Computer Programming 49 (2003), 1–46.

5. Cfengine; http://www.cfengine.org.
6. Couch, a., Daniels, n. the maelstrom: network service

debugging via `ineffective procedures.’ Proceedings of
the 15th Systems Administration Conference (2001), 63.

7. Couch, a., gilfix, m. It’s elementary, dear watson:
applying logic programming to convergent system
management processes. In Proceedings of the 13th
Systems Administration Conference (1999), 123.

8. Dijkstra, e. http://en.wikipedia.org/wiki/guarded_
Command_language.

9. hagemark, b., Zadeck, k. site: a language and system
for configuring many computers as one computer site.
Proceedings of the Workshop on Large Installation
Systems Administration III (1989); http://www2.parc.
com/csl/members/jthornton/thesis.pdf.

10. opscode; http://www.opscode.com/chef.
11. Puppet labs; http://www.puppetlabs.com/.
12. sloman, m. s., moffet, J. Policy hierarchies for

distributed systems management. Journal of Network
and System Management 11, 9 (1993), 404.

Mark Burgess is a professor of network and system
administration, the first with this title, at oslo university
College. his current research interests include the
behavior of computers as dynamic systems and applying
ideas from physics to describe computer behavior. he is
the author of Cfengine and is the founder, chairman, and
Cto of Cfengine, oslo, norway.

© 2011 aCm 0001-0782/11/0300 $10.00

ius theorem (graph theory), and the list
goes on. If this sounds like mere aca-
demic nonsense, then consider how
much of this nonsense is in our daily
lives through technologies such as
Google PageRank or the Web of Trust
that rely on this same idea.

Note, however, that the robustness
advocated in this article, using the
principle of atomization and indepen-
dence of parts, is in flat contradiction
with modern programming lore. We
are actively encouraged to make hier-
archies of dependent, specialized ob-
jects for reusability. In doing so we are
bound to build fragilities and limita-
tions implicitly into them. There was
a time when hierarchical organization
was accepted wisdom, but today it is
becoming clear that hierarchies are
fragile and unmanageable structures,
with many points of failure. The alter-
native of sets of atoms promising to
stabilize patches of the configuration
space is tantamount to heresy. Never-
theless, sets are a more fundamental
construction than graphs.

For many system administrators,
these intellectual ruminations are no
more pertinent than the moon land-
ings were to the users of Teflon pans.
They do not see themselves in these
issues, which is why researchers, not
merely developers, need to investigate
them. Ultimately, I believe there is still
great progress to be made in system ad-
ministration using these approaches.
The future of system administration
lies more in a better understanding
of what we already have to work with
than in trying to oversimplify necessary
complexity with industrial force.

conclusion
It is curious that embracing uncer-
tainty should allow you to understand
something more fully, but the simple
truth is that working around what you
don’t know is both an effective and
low-cost strategy for deciding what you
actually can do.

Major challenges of scale and com-
plexity haunt the industry today. We
now know that scalability is about not
only increasing throughput but also be-
ing able to comprehend the system as it
grows. Without a model, the risk of not
knowing the course you are following
can easily grow out of control. Ultimate-
ly, managing the sum knowledge about

