practice

Check for

updates

DO0I:10.1145/1897852.1897870

m Article development led by dC[TIUELE

queue.acm.org

Why can’t we all use standard libraries
for commonly needed algorithms?

| BY POUL-HENNING KAMP

B.Y.0.C
(1,342 Times
and Counting)

ALTHOUGH SELDOM ARTICULATED clearly, or even
at all, one of the bedrock ideas of good software
engineering is reuse of code libraries holding easily
accessible implementations of common algorithms
and facilities. The reason for this reticence is probably
because there is no way to state it succinctly, without
sounding like a cheap parody of Occam’s razor:
Frustra fit per plura quod potest fieri per pauciora (it is
pointless to do with several where few will suffice).
Obviously, choice of programming language means
that “few” will never be “a single one,” and until
somebody releases a competent implementation
under an open source license, we may have several
more versions floating around than are strictly
necessary, for legal rather than technological reasons.
It also never hurts to have a few competing
implementations to inspire improvement; in fact,
there seems to be a distinct lack of improvement
where a single implementation becomes too “golden.”

56 COMMUNICATIONS OF THE ACM | MARCH 2011 | VOL.54 | NO.3

So much for theory. Does any of this
hold in practice?

One of the nice side effects of the
“software tools” concept is that pro-
grams are data, too. We can apply data
mining methods to program source
code, allowing us to investigate such
questions.

Cryptography algorithms provide a
good example because they are easier
to identify than other algorithms. Mag-
ic numbers in crypto algorithms make
for good oracular answers to their pres-
ence: you are not likely to encounter
both 0xc76¢51a3 and 0xd192e819 any-
where other than an implementation
of SHA-2. Creating an oracle to detect
sorting algorithms in source code with
(p>0.9) would be a good student proj-
ect (albeit, likely impossible).

For data mining FOSS (free and
open source software) programs, the
FreeBSD operating system ships with
a handy facility called the Ports Collec-
tion, containing strategic metadata for
22.003 pieces of FOSS. A small number
of these “ports” are successive versions
of the same software (Perl 5.8, Perl
5.10, among others), but the vast ma-
jority are independent pieces of soft-
ware, ranging from trivialities such as
XLogo to monsters such as Firefox and
OpenOffice.

A simple command downloads and
extracts the source code to as many
ports as possible into an easily navigat-
ed directory tree:

cd /usr/ports ; make -k extract

You will obviously need both suffi-
cient disk space and patience. (Using
cd /usr/ports ; make -k -j 10
extract will do 10 pieces of software
in parallel, but will be a bandwidth
hog.)

The results are worse. I had not ex-
pected to see 1,342, as shown in the ac-
companying table.*I expect that these
numbers will trisect my readers into
three somewhat flippantly labeled seg-

a Sorry, I forgot to include the DES algorithm in
the search.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1897852.1897870&domain=pdf&date_stamp=2011-03-01

e Rt e trom itieres oac ..,.ﬂ.:mu;:.,

[Er

- R Ealns Taeeriacs for ave-sin

ey ——

secess 1o the 11 gespaical packase

oo ot 511 350 Tt Lot ol
i e

SEIEER o veron e o mone R weinic 1o g
eelication B e et Bt o o g

Trtd rmcs, iregme, b
e

2 T R e

& L ot o By
: .;.m ""T: i binopeapy tormse

3 el

- herscne stiovs oo yep— o, omeniy) comscin

Ty ans S .;,., 04 e bising epstes
ey s -« besed on cuve 2

sy Sacbten setcieny 1o Seons Rl

practice

Crypto algorithms search results.

Cryptographic Implementations

Algorithm Detected
MD2 6
MD4 49
MD5 920
SHA-1 136
SHA-2 192
AES 39
Total 1,342

ments: “huh?,” “sigh,” and “aghast.”

The “huh?” segment wonders what
the big deal is: the absence of a stan-
dardized system library with these
functions means that you have to
“Bring Your Own Crypto” if you want
some.

The “sigh” segment thinks this is
the least of our troubles.

The “aghast” segment will see this
as a total failure of good software engi-
neering practices, a call to arms for bet-
ter education, and reason for a stake
through the heart of the Open Zombie
Group.

And they are all correct, of course,
each from its own vantage point.

Fortunately, what this is not, is The
Next Big Security Issue, even though I
would not be surprised if one or more
“security researchers” would claim so
from their parents’ basement.” If these

b The fact that MD5 seems to be more in de-
mand—yes, I may indeed be to blame for that
myself, but that is a story for another day;
search for “md5crypt” if you cannot wait—
than its quality warrants is a matter of choice
of algorithm, not a matter of implementation
of the algorithm chosen.

had been independent implementa-
tions, then there would be reason to
worry about the security implications,
but they are not.

In a few cases, optimized or license-
sanitized versions have been written,
but overwhelmingly this is just point-
less copy-and-paste of identical source
code in blatant disregard of Occam’s
three-quarters-millennia-old advice.

I am a card-carrying member of the
“aghast” segment. My membership
card is a FreeBSD commit message
shown in the figure here.

My libmd, which is as unencum-
bered by copyright issues as it can be,
later grew more cryptographic hash al-
gorithms, such as RIPEMD-160 and the
SHA family, and it has been adopted by
some other operating systems.

I am also in the “sigh” segment,
because not all mainstream operating
systems have adopted libmd, despite
having 16 years to do so, and if they
have, they do not agree what should
be in it. For example, Solaris seems to
leave MD2 out (see http://hub.opensolar-
is.org/bin/view/Project+crypto/libmd),
which begs the question: Which part
of “software portability” don’t they
understand?

I am, sadly, also in the “huh?” seg-
ment, because there seems to be no
hope. The rational thing to expect
would be that somebody from The
Open Group reads this article, repro-
duces my statistics, and decides that
yes, there is indeed demand for a “lib-
stdcrypto” filled with the usual bunch
of crypto algorithms. That, I am told, is
impossible. The Open Group does not
write new standards; they just bicker
over the usability of ${.CURDIR} in
make (1) and probably also the poten-

A card-carrying member of the “aghast” segment.

src/lib/libmd/Makefile:

r1802 | phk | 1994-07-24 03:29:56 +0000 (Sun, 24 Jul 1994)

Imported libmd. This library contains MD2, MD4, and MD5.

These three boggers pop up all over the place all of the time, so I

decided we needed a library with them.

In general, they are used for

security checks, so if you use them you want to link them static.

58 COMMUNICATIONS OF THE ACM MARCH 2011

VOL. 54 | NO. 3

tial market demand for fire that can be
applied nasally.

The other possible avenue of hope
is that the ISO-C standardization group
would address this embarrassing situ-
ation. Before getting your hopes too
high, bear in mind they have still not
managed to provide for specification of
integer endianness, even though CPUs
can do it and hardware and protocols
have needed it since the days of the AR-
PANET.

If the ISO-C crew decided to do it,
their process for doing so would un-
doubtedly consume 5-10 years before
a document came out at the other end,
by which time SHA-3 would likely be
ready, rendering the standard instantly
obsolete.

But it is all a pipe dream, if ISO is
still allergic to standards with ITAR
restrictions. And you can forget every-
thing about a benevolent dictator lay-
ing down the wise word as law: Linus
doesn’t do userland.

To be honest, what I have identified
here is probably the absolutely worst-
case example.

First, if you need SHA-2, you need
SHA-2, and it has to do the right and
correct thing for SHA-2. There is little
or no room for creativity or improve-
ments, apart from performance.

Second, crypto algorithms are every-
where these days. Practically all com-
munication methods, from good old
email over VPNs (virtual private net-
works) and torrent sites to VoIP (voice
over IP), offers strong crypto.

But aren’t those exactly the same
two reasons why we should not be in
this mess to begin with?

Related articles
on queue.acm.org

Languages, Levels, Libraries, and Longevity
John R. Mashey
http://queue.acm.org/detail.cfm?id=1039532

Gardening Tips
Kode Vicious
http://queue.acm.org/detail.cfm?id=1870147

Poul-Henning Kamp (phk@FreeBSD.org) has
programmed computers for 26 years and is the inspiration
behind bikeshed.org. His software has been widely
adopted as “under the hood" building blocks in both open
source and commercial products. His most recent project
is the Varnish HTTP accelerator, which is used to speed up
large Web sites such as Facebook.

© 2011 ACM 0001-0782/11/0300 $10.00

