TAGS: Trains, Agendas, and Gerunds

Roger K.W. Hui
Morgan Stanley
Kenneth E. Iverson

Iverson Software

Trains, agendas, and gerunds have been available in J for some time, and do not conflict with most APL systems. In particular, since there are no noun trains, the trains in J do not conflict with the strands of APL2.
This paper reviews the definitions and uses of trains, agendas, and gerunds, and presents some new extensions that enhance their utility.

TRAINS

The first example of a train was provided by the fork, defined by Iverson and McDonnell [1] as a formalization of the informal use in mathematics of expressions such as $f+g$ and $f-g$ to denote the sum and the difference of functions. For example: mean=. +/ \% \# Sum div by no. of items mean $a=12345$
3
norm=.] - mean Right arg less mean
norm a
_2 _1 0 1 2
(] - +/ q \#) a
$_^{2}$ _ $^{1} 012$
The phrase $1-+/ \%$ \# is an example of a train of more than three elements. The definition of a hook as a train of two elements provides meanings for trains of even length as well as odd. For example:
$\mathrm{pr}=+\mathrm{q} \quad$ Left plus reciprocal of right
2 pr 10
pr/a Continued fraction
1.43312

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
APL 94 - 9/94 Antwerp Belgium
(c) 1994 ACM 0-89791-675-1/94/0009.. $\$ 3.50$
pr/1 $1 \begin{array}{llllll} & 1 & 1 & 1 & 1\end{array}$ Approx golden mean 1.625

NORM=. - +/ \& \# Train of four items
(norm $=$ NORM) a Test functions for
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$ equality
To make the functions more readable we will set the function display to show both the tree and boxed representations of functions. Thus:

9!:3] 42
mean

The utility of trains is enhanced by the $c a p$ (denoted by [: and defined on p. 70 of Iverson [2]), which causes the verb that follows it in a train to be applied monadically. For example, the squares of a normalized list and the standard deviation may be defined by single trains as follows:

```
    sqn=. [: *: ] - +/ % #
    std=. [:%:[:(+/%#)[:*:]-+/%#
    sqn 8 10 12
4 0 4
    std 8 10 12
1.63299
```


GERUNDS

The tie conjunction (`) applied to verbs produces a noun that is called a gerund (because it carries the force of a verb). For example:
$g=.{ }^{\prime}{ }^{*}$
g/a
47
$1+2 * 3+4 * 5$
47
$x=10 \quad[\quad c=.3142$
$9 \mathrm{~g}^{\mathrm{g} / 3, \mathrm{x}, 1, \mathrm{x}, 4, \mathrm{x}, 2}$
2413

```
    }. , x,.c
```



```
    +`*/ }. , x,.c
2413
```

The last expression above is Horner's efficient evaluation of a polynomial with coefficients c.
The adverb \applied to a gerund yields the equivalent train. For example:

```
    ger=. --(+/)`\% \#
    ger\a
\(\_^{2}\) _ \(^{1} 0012\)
    (123 | ger) 1 a Equivalent to mean
3
```


AGENDA

The agenda conjunction (@.) selects from its gerund left argument the item indexed by the result of its verb right argument. For example:
$h=.(=<$.$) * 1: + (=1) Constant fn 1:$
h 4.5 _ 4
012
q=. >.`*:`\%: @. h
q 4.5 Ceiling of non-integer
5
q _4 Square of negative integer

```
16
q 4 Square root of positive integer
2
```


NEW EXTENSIONS

Gerunds are merely boxed lists, and may be formed by means other than the tie. For example:

Repeated boxing in an argument to \backslash will indicate parenthesization. For this purpose we will define a
recursive indexing function such that the boxing of indices is reflected in the boxing of the result:
from=. ($: \&.\rangle<$) froml @. ifopen
ifopen=. (-:>) \& f. ®
froml=. >@ (` (@. (1\&く@\#@[)
For example:

$$
k=.\left(0 ; _2 ; 1 ;(1 \quad 3 \quad 5 ; 3 ; 5) ; 4 ; 5 ; 6\right)
$$

k

k from g2

9!:3] 425 Display: Linear/Boxed/Tree

q

Comparison of the two displays of q shows the relation between boxing and parenthesization. The conjunction q may be used as follows:

$$
\begin{aligned}
& 2 \text { ^ q ! } 3 \\
& 0.727302
\end{aligned}
$$

The agenda is redefined to make use of these results: g @. h is equivalent to (i from g)
, where i is the result of the function h.
Page 70 of Iverson [2] listed twelve basic trains (bidents and tridents), two producing verbs, four producing adverbs, and six producing con-
junctions. This list is now extended to the twelve bidents and twenty-five tridents listed below. The four columns show the case, the class of result, the definition, and an informal name, using the letters $\mathrm{N}, \mathrm{V}, \mathrm{A}$, and C to indicate nouns, verbs, adverbs, and conjunctions. An asterisk marks cases that were previously meaningless:

no	A1	verb	as in APL\360	"apply"
NO	C1	adv	NO C1 x	"with"
vo	N1	noun	as in APL360	"apply"
vo	V1	verb	hook	"hook"
V0	A1	verb	as in APL\360	"apply"
vo	C1	adv	vo C1 x	"with"
AO	V1	*adv	(x AO) V1	
AO	A1	adv	(x A0) A1 "co	"compose"
AO	c1	adv	$(x, A 0) C 1 \times$	"both"
co	N1	adv	x CO N1	"with"
co	V1	adv	x Co v1	"with"
co	A1	conj	(x Co y) A1	"atop"
NO	V1 N2	noun	as in APL1360	"apply"
vo	V1 V2	verb	fork	"fork"
vo	V1 c2	*conj	vo V1 (x C2 y)	
AO	V1 V2	*adv	$(\mathrm{x}$ AO) V1 V2	
co	V1 V2	*conj	(x C0 y) V1 V2	
co	V1 c2	conj	(x CO y) V1 (x C2 y)	y) "fork"
AO	A1 V2	*conj		
A0	A1 A2	adv	(($\mathbf{x} \mathbf{A} 0)$ A1) A2 "com	compose"
co	A1 A2	conj	$\left(\begin{array}{llll}\text { (} & \mathrm{y} & \mathrm{A}\end{array}\right) \mathrm{A} 2$	
No	C1 N2	verb	as in APL1360	"apply"
NO	C1 V2	verb	as in APL360	"apply"
no	C1 A2	* adv	NO C1 (x A2)	
No	C1 C2	*conj	NO C1 (x C2 2 y)	
vo	C1 N2	verb	as in APL\360	"apply"
vo	C1 V2	verb	as in APL 360	"apply"
vo	C1 A2	*adv	vo C1 (x A2)	
vo	C1 C2	*conj	vo C1 (x C2 y)	
A0	C1 N2	*adv	$(\mathrm{x}$ A0) C1 N2	
A0	C1 V2	*adv	(x AO) C1 V2	
AO	C1 A2	conj	(x A0) C1 (Y A2)	"fork"
A.	C1 C2	conj	$(x$ AO) C1 (x C2 y)	
co	C1 N2	* conj		
CO	C1 V2	*conj	(x CO y) C1 V2	
co	C1 A2	conj	(x CO y) C1 (y A2)	
CO	C1 C2	conj	(x CO y) C1 (x C2 y)	y) "fork"

In order to distinguish a noun such as ' $*$ ' from the function * in a gerund, its atomic representation must be used. The atomic representation of a noun is given by the function

$$
\text { ar=. }\left[:<\left(,^{\prime}\right)^{\prime}\right) _; \quad \text {. }
$$

The new trains substantially simplify the results provided by the translators from explicit to tacit definition presented in Hui [3].

EXAMPLES

We conclude with two further examples of the use of gerunds, in recursion and amendment.
Recursion. In the Tower of Hanoi puzzle, a set of n discs (each of a different size) is to be moved from post A to post B using a third post C , under the restriction that a larger disc is never to be placed on top of a smaller.
Recursion using the gerund and agenda provides a simple definition of the sequence of moves in Hanoi:

$$
\begin{gathered}
h=\quad b^{`}(p, . q, . r) @ . c \\
c=.1:<[\\
b=.2 \&, @[\$]
\end{gathered}
$$

$\mathrm{p}=$. <:@[h 1: A.]
$\mathrm{q}=.1: \mathrm{h}$]
$r=$. <:@[h 5: A.]
$3 \mathrm{~h} x=.{ }^{\prime} \mathrm{ABC} C^{\prime}$
AABACCA

BCCBABB

	01	234	<@h"0 $1 \times$
A	AAC	AABACCA	AACABBAACCBCAAC
B	CBB	BCCBABB	CBBCACCBBAABCBB

In the Josephus problem analyzed in Graham et al. [4], items in a circle are eliminated at a fixed interval i until only i-1 remain; the indices of the survivors are to be determined as a function of the interval and the original list of items. This function may be expressed as a recursion in which the odd and even cases are treated differently:

```
    \(J=\). 0 : 'even`odd @. C
    even=. \(+: Q>: 0 J @<: 0-:\)
    odd=. +:@J@-:@く:
    \(c=\). * \(>\) : @ (2\& 1 )
    J"0 b=. i. 20
00202460246810121402468
    <i. 1 J" 0 b
\begin{tabular}{|l|l|llll|lllllllll|lll|}
\hline 0 & 0 & 2 & 0 & 2 & 4 & 6 & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 0 & 2 & 4 \\
\hline
\end{tabular}
```

Amendment. If the amend adverb \} is applied to a numeric argument m, then $x \mathrm{~m}\}$ y yields y amended by x in the positions specified by the indices in m. For example:

```
    '#*' 3 0} 'abcdefg'
*bc#efg
```

If m is a gerund the possibilities are much greater: its middle element determines the numeric argument to the adverb \}, and the others modify the arguments \mathbf{x} and \mathbf{y}.
For example, the following functions $\mathrm{E} 1, \mathrm{e} 2$, and E 3 are the so-called elementary linear operations on a matrix, interchanging two rows of a matrix, multiplying a row by a constant, and adding a multiple of one row to another:

```
E1=. <@] C. [
E2=. f`g`[}
E3=. F`g`[}
    f=. {:@]*{.@] { [
        F=. [:+/(1:,{:@])*(}:@] { [)
    g=. {.@] { i.@$@[
M=. i. 3 3
a1=. M E1 1 2
a2=. M E2 1 10
a3=. M E3 1 2 10
```

M;a1; a2; a3

0	1	2	0	1	2	0	1	2	0	1	2
3	4	5	6	7	8	30	40	50	63	74	85
6	7	8	3	4	5	6	7	8	6	7	8

It should be noted that the function E1 uses a permutation expressed as a cycle rather than the amend adverb. However, it could also be expressed as an amendment using a gerund.

REFERENCES

1. McDonnell E.E. and K.E. Iverson, Phrasal Forms, APL89 Conference Proceedings, APL Quote-Quad Vol 19 Number 4.
2. Iverson, K.E. J Introduction and Dictionary Version 7, Iverson Software.
3. Hui, Roger K.W. et al, Tacit Definition, APL91 Conference Proceedings, APL QuoteQuad Vol 21 Number 4.
4. Graham, Patashnik, and Knuth, Concrete Mathematics, Addison-Wesley, 1989.
