
Experiences with a High-Speed Network Adaptor:

A Software Perspective

Peter Druschel and Larry L. Peterson*

Department of Computer Science

University of Arizona
Tucson, AZ 85721

Abstract

This paper describes our experiences, from a software per-

spective, with the OSIRIS network adaptor. It first identifies

the problems we encountered while programming OSIRIS

and optimizing network performance, and outlines how we

either addressed them in the software, or had to modify

the hardware. It then describes the opportunities provided

by OSIRIS that we were able to exploit in the host operat-

ing system (OS); opportunities that suggested techniques

for making the OS more effective in delivering network

data to application programs. The most novel of these

techniques, called application device channels, gives appli-
cation programs running in user space direct access to the
adaptor. The paper concludes with the lessons drawn from
this work, which we believe will benefit the designers of
future network adaptors.

1 Introduction

With the emergence of high-speed network facilities, sev-
eral research efforts are focusing on the design and im-
plementation of network adaptors [5, 2, 3, 16, 20]. This
paper takes the next step in the evolution of adaptors for
high-speed networks by reporting our experiences with one
particular adaptor—the OSIRISATM board built for the Au-
RORA Gigabit Testbed [4, 8]. We consider the network

adaptor from a software perspective, identifying the subtle

interactions between the adaptor and the operating system

software that drives it. Others have looked at this hard-

ware/software interaction as well [18, 6, 16]. In our case,

*This work supportedin part by National ScienceFoundationGrant
CCR-9102O4OandARPA ContractDABT63-91-C-0030.

ermission to copy without fee all or part of this material is
nted provided that the copies are not made or distributed for
?ctcommercial advantage, the ACM copyright notice and the
) of the publication and its date appear, and notice is given
t copying is by permission of the Association of Computing
chinery. To copy otherwise, or to republish, requires a fee
~/or specific permission.
3COMM 94 -8/94 London England UK
1994 ACM 0-89791 -682-419410008.. $3.50

Bruce S. Davie

Computer Networking Research Department
Bell Communications Research

Morristown, NJ 07963

the flexibility built into the OSIRIS board makes this inter-

action an especially interesting one to study.

The OSIRIS network adaptor was designed specifically to

support software experimentation. Therefore, only the most

critical, high-speed functions are implemented in hardware,

and even these are primarily implemented in programmable

logic. It consists of two mostly independent halves—send

and receive—each controlled by an Intel 80960 micropro-

cessor.

The adaptor board attaches to a TuRBOcharmel option slot

provided by DEC workstations. From the host’s perspec-

tive, the adaptor looks like a 128KB region of memory. A

combination of host software and code running in the on-

board microprocessors determine the detailed structure of

this memory. In general, the memory is used to pass buffer

descriptors between the host and the adaptor. Network data

is not buffered in the dual-port memory; it is transferred

directly from/to main memory buffers using DMA.

In the transmit direction, the software running on the mi-

croprocessor writes commands to a DMA controller and an

ATM cell generator. The general paradigm is that the host

passes buffer descriptors to the microprocessor through the

dual-port RAM, and the microprocessor executes a segmen-

tation algorithm to determine the order in which cells are

sent. For example, the host could queue a number of packets

and the microprocessor could transmit one cell from each

in turn. The microprocessor has the capability to interrupt

the host.

In the receive direction, the microprocessor reads from a

FIFO the VCI and AAL information that is stripped from

cells as they are received. By examining this information,

and using other information from the host (such as a list

of reassembly buffers), the microprocessor determines the
appropriate host memory address at which the payload of

each received cell is to be stored. It then issues commands to

another DMA controller; typically one command is issued

for each ATM cell received. As part of the reassembly

algorithm, the microprocessor decides when it is necessary
to interrupt the host.

The important point to understand from this brief descrip-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F190314.190315&domain=pdf&date_stamp=1994-10-01

tion is that software running on the two 80960s controls the

send/receive functionality of the adaptor, and perhaps just

as importantly, this code effectively defines the sc$ware

interface between the host and the adaptor. The other rel-

evant piece of software, of course, is the OS running on

the host. In our case, it is the Mach 3.0 operating sys-

tem [1], retrofitted with a network subsystem based on the

x-kernel [9, 12]. For the purpose of this paper, there are

two relevant things to note about the OS. First, because

the x-kernel supports arbitrary protocols, our approach is

protocol-independent; it is not tailored to TCP/IP. Second,

because Mach is a microkernel-based system and the x-

kernel allows the protocol graph to span multiple protection

domains, our approach has to allow for the possibility that

network data traverses multiple protection domains; it is not

restricted to kernel-resident protocols.

This paper makes two contributions. First, it reports our

experiences programming the OSIRIS adaptor to achieve

good host-to-host performance. It includes an overview of

the problems we encountered, and how we either addressed

them in the software, or had to modify the hardware. This

discussion is given in Section 2. Second, it describes the

opportunities provided by the board that we were able to

exploit in the OS; opportunities that facilitated new tech-

niques for making the OS more effective in delivering net-

work data to application programs. The most novel of these

techniques, called application device channels, gives appli-

cation programs running in user space direct access to the

adaptor. This discussion is given in Section 3. Section 4

then presents the results of a performance study.

Throughout both Sections 2 and 3 we highlight those is-

sues (lessons) that are specific to an ATM adaptor, and those

that we believe to be applicable to the design of high-speed

network adaptors in general. These lessons are summarized

in Section 5.

2 Basic Functionality

This section describes our experiences programming the

OSIRIS board, highlighting the problems it imposed on the

software, and how we addressed them. For the most part,

this discussion is limited to how we implemented the basic

host-to-host functionality, both correctly, and with the high-

est possible performance; the next section describes how we

exploited certain features of the board to implement novel

OS techniques that turn this host-to-host performance into

equally good user-to-user performance.

2.1 Host/Board Communication

We begin by defining the software interface between the

host’s device driver and the processors on the OSIRIS board.
The host CPU communicates with the on-board processors

through shared data structures in the dual-port memory. In

addition, each on-board processor can issue an interrupt to

alert the host CPU of asynchronous events. The design of

the shared data structures and the discipline for using inter-

rupts was guided by the goals of minimizing packet delivery

latency and host CPU load, and of achieving host-to-host

throughput close to the capacity of the network link. Partic-

ular attention was paid to(1) minimizing the number of load

and store operations required to communicate with the on-

board processors (accesses to the dual port-memory across

the TuRBochannel are expensive), (2) avoiding delays due

to lock contention while accessing shared data structures in

the dual-port memory, and (3) minimizing the number of

interrupts, which place a significant load on the host CPU.

2.1.1 Sharwd Data Structure

As with any shared data structure, measures must be taken to

ensure consistency in the presence of concurrent accesses.

The dual-port memory itself guarantees atomicity of indi-

vidual 32bit load and store operations only. Each half of the

board provides a test-and-set register that can be used to im-

plement a simple spin-lock. The intended use is to enforce

mutually exclusive access to the dual-port memory by man-

dating that a processor must first acquire the corresponding

lock. This approach allows arbitrarily complex shared data

structures, but it restricts concurrency between host CPU

and on-board processors. As a result, both packet delivery

latency and CPU load can suffer due to lock contention.

To avoid this problem, we use simple lock-free data struc-

tures that rely only on the atomicity of load and store instruc-

tions. The basic data structure used in the dual-port memory

is a simple, one-reader-one-writer FIFO queue used to pass

buffers between the host and the adaptor. The queue con-

sists of an array of buffer descriptors, a head pointer, and a

tail pointer. The head pointer is only modified by the writer

and the tail pointer is only modified by the reader. The

processors determine the status of the queue by comparing

the head and tail pointers, as follows:

head = tail ~ queue is empty

(head +1) = tail mod size w queue is full

The simplicity of these lock-free queues maximizes con-

current access to the dual-port memory, and minimizes the

number of load and store operations required to communi-

cate.

A single queue is used for communication between the

host CPU and the transmit processor. Each queue ele-

ment describes a single buffer in main memory by its

physical address and length. To queue a buffer for trans-

mission, the host CPU performs the following actions

(xmitQueue [head] refers to the buffer descriptor re-
ferred to by the head pointer).

3

● wait until the transmit queue is not full

● queue the buffer using xrai- tQueue [head]
● increment the head pointer (modulo array size)

The transmit processor continuously performs the following

actions.

● wait until the transmit queue is not empty

● read the descriptor at xrai t Queue [t ai 11

● transmit the buffer

● increment the tail pointer (modulo array size)

Two queues are required for communication between the

host and the receive processor. The first queue is used to

supply buffers to the receive processor for storage of incom-

ing PDUS; 1 the second queue holds filled buffers waiting

for processing by the host. Initially, the host fills the free

buffer queue. When a PDU arrives, the receive processor

removes a buffer from this queue, and stores incoming data

into the buffer. When the buffer is filled, or the end of

the incoming PDU is encountered, the processor adds the

buffer to the receive queue. If the receive queue was pre-

viously empty, an interrupt is asserted to notify the host of

the transition of the receive queue from the empty state to

a non-empty state. The host’s interrupt handler schedules

a thread that repeatedly performs the following steps until

the receive queue is found empty:

● remove a buffer from the receive queue

● add a free buffer to the free queue

● initiate processing of the received data

2.1.2 Interrupts

Handling a host interrupt asserted by the OSIRIS board takes

approximately 75ps in Mach on a DecStation 5000/200. For

comparison, the service time for a received UDP/IP PDU is

200ps; this number includes protocol processing and driver

overhead, but not interrupt handling. Given this high cost,

minimizing the number of host interrupts during network

communication is important to overall system performance.

In our scheme, the completion of a PDU transmission,

which is traditionally signalled to the host using an interrupt,

is instead indicated by the advance of the transmit queue’s

tail pointer. The driver checks for this condition as part of

other driver activity—for example, while queuing another
PDU—and takes the appropriate action. Interrupts are used

only in the relatively infrequent event of a full transmit

queue. In this case, the host suspends its transmit activity,

and the transmit processor asserts an interrupt as soon as
the queue reaches the half empty state.

In the receiving direction, an interrupt is only asserted
once for a burst of incoming PDUS. More specifically,

1Forthepurpose ofthis paper, we use the terrnprorocoldata unit (PDU)
to denote a packet processed by a protocol, where the protocol in quest]on

is generatly given by the context. In this case, the PDU corresponds to the

unit of data sent between device drivers.

whenever a buffer is queued before the host has dequeued

the previous buffer, no interrupt is asserted. This approach

achieves both low packet delivery latency for individually

arriving packets, and high throughput for incoming packet

trains. Note that in situations where high throughput is re-

quired (i.e. when packets arrive closely spaced), the number

of interrupts is much lower than the traditional one-per-

PDU.

2.2 Physical Buffer Fragmentation

The OSIRIS board relies on direct memory access (DMA) for

the actual transfer of network data between main memory

and network adaptor. The unit of data exchanged between

host driver software and on-board processors is a physical

buffer-a set of memory locations with contiguous physical

addresses. The descriptors used in the transmit and receive

queues contain the physical address and the length of a

buffer. The on-board processors initiate DMA transfers

based on the physical address of the buffers.

The per-PDU processing cost in the host driver increases

with the number of physical buffers used to hold the PDU.

Thus, one would like to minimize the number of physi-

cal buffers occupied by a single PDU. However, this is

made difficult by the fact that the contiguous virtual mem-

ory pages used to store a PDU are generally not contiguous

in the physical address space. The reason for this lies at

the heart of any page-based virtual memory system—the

ability to map non-contiguous physical pages to contiguous

virtual memory addresses, in order to avoid main memory

fragmentation.

Header Body

Wtual
Addrese Space

Physical
Addrass Space

Figure 1: PDU Buffer Fragmentation

Figure 1 depicts a PDU passed to the OSIRIS driver for

transmission. The PDU consists of two parts-a header

portion, which contains protocol headers, and the data por-
tion. The header portion usually contributes one physical

buffer. The data portion is typically not aligned with page

boundaries, and may thus occupy [(message data size –

I)/page si.zel + 1 pages. When the physical pages oc-
cupied by the data portion are not contiguous, each page

contributes a physical buffer. In practice, a PDU with a data

portion of length n pages usually occupies n + 2 physical

buffers.

Message fragmentation at the protocol level can aggra-

vate this proliferation of physical buffers. The problem is

that unless the fragment boundaries in the original message

coincide with page boundaries, each fragment may gener-

ate excess physical buffers in the driver. As an example of

an extreme case, assume that a contiguous 16KB applica-

tion message is transmitted using UDP/IP with a maximal

transfer unit (MTU) of 4KB,2 which is also the system’s

page size. The inclusion of the 1P header reduces the data

space available in each fragment to slightly less than 4K13.

Consequently, the data portions of most fragments are not

page-aligned, and occupy two physical pages. In addition,

the 1P header attached to each fragment occupies a separate

page. As a result, the transmission of a single, 16KB ap-

plication message can result in the processing of up to 14

physical buffers in the driver. This compounding effect of

1P fragmentation and buffer fragmentation can be avoided

by ensuring page alignment of application messages, and

by choosing an MTU size that is a multiple of the page

size, plus the 1P header size. This ensures that fragment

boundaries align with page boundaries.

A similar problem exists on the receive side. Recall that

the host driver allocates receive buffers, and queues these

buffers for use by the receive processor. Most operating

systems do not support the dynamic allocation of physi-

cally contiguous pages. In this case, the size of the receive

buffers is restricted to the system’s memory page size, since

it represents the largest unit of physically contiguous mem-

ory that the driver can allocate. This limit on the size of

receive buffers causes the fragmentation of all incoming

network packets larger than the page size.

The proliferation of physical buffers is a potential source

of performance loss in the OSIRIS driver. A general so-

lution to this problem would require the use of physically

contiguous memory for the storage of network data. In tra-

ditional operating systems, where network data is copied

between application memory and kernel buffers, this can be

achieved by statically allocating contiguous physical pages

to the fixed set of kernel buffers. Unfortunately, this ap-

proach does not readily generalize to a copy-free data path

[9], since applications generally cannot be allowed to hold

buffers from a statically allocated pool. We are currently

experimenting with OS support for dynamic allocation of

contiguous physical pages on a best-effort basis.

Several modern workstation, such as the IBM RISC Sys-

tem/6000 and DEC 3000 AXP Systems provide support for

virtual address DMA through the use of a hardware virtual-

to-physical translation buffer (scatter/gather map). Host

driver software must set up the map to contain appropriate

mappings for all the fragments of a buffer before a DMA

transfer. When data is transferred directly from and to ap-

2 Keep in mind that the OSIRIS driver, not the hardware, defines the

MTU. We are just using 4KB as an example.

plication buffers, it may be necessary to update the map for

each individual message. As a result, physical buffer frag-

mentation is a potential performance concern even when

virtual DMA is available.

2.3 Cache Coherence

The cache subsystem of the host we were originally using—

the DECstation 5000/200-does not guarantee a coherent

view of memory contents after a DMA transfer into main

memory. That is, CPU reads from cached main memory lo-

cations that were overwritten by a DMA transfer may return

stale data. To avoid this problem, the operating system nor-

mally executes explicit instructions to invalidate any cached

contents of memory locations that were just overwritten by

a DMA transfer. Unfortunately, partial invalidations of the

data cache take approximately one CPU cycle per mem-

ory word (32bits), plus the cost of subsequent cache misses

caused by the invalidation of unrelated cached data.3 This

cost has a significant impact on the attainable host-to-host

throughput, as quantified in Section 4 (Figure 2).

The key idea for avoiding this cost is to take a lazy

approach to cache invalidation, and to rely on network

transmission error handling mechanisms for detecting errors

caused by stale cache data. When a data error is detected

at some stage during the processing of a received message,

the corresponding cache locations are invalidated, and the

message is re-evaluated before it is considered in error. The

feasibility of this approach depends on the following con-

ditions.

1.

2.

3.

The underlying network is not reliable, and therefore

mechanisms for detecting or tolerating transmission

errors are already in place.

The rate of errors introduced by stale cache data is low

enough for the lazy approach to be effective.

Revealing stale data does not pose a security problem.

While the first condition is true for most networks, the

second condition deserves some careful consideration. The

OSIRIS driver employs a free buffer queue and a receive

queue with a length of 64 buffers each, and a buffer size

of 16KB. This implies that once a receive buffer is allo-

cated and queued on the free buffer queue, normally 63

other buffers are processed by the host until that buffers

re-appears at the top of the received buffer queue. In order

to become stale, a cached data word from a particular buffer

has to remain in the cache while 63 other receive buffers

are being processed. During this time, the CPU typically

3The DECstation atso supports a fast instroctlon that swaps the data

and instruction cache, which amounts to an invalidation of the entire cache
contents. However, the high cost of subsequent cache misses makes thk

not an attractive solution.

5

reads the portion of the input buffers occupied by received

data, as well as other data relating to protocol processing,

application processing and other activities unrelated to the

reception of data. These accesses are likely to evict all

previously cached data from the DECstation’s 64KB data

cache.

Experimentally, we have seen no evidence of stale data

at all while tinning our test applications. This suggests that

the error rate should be low enough for this optimization

to be very effective. It should be noted that lazy cache

invalidation is not likely to scale to machines with much

larger caches. Fortunately, hardware designers have recog-

nized the high cost of software cache invalidation, and tend

to provide support for cache coherence on these machines.

For example, the DEC 3000 AXP workstation data cache is

updated during DMA transfers into main memory.

The third condition is satisfied whenever reliable proto-

cols are used that detect data errors before the data is passed

to an unprivileged application. However, with unreliable

protocols, an application could access stale data from a pre-

vious use of the receive buffer, potentially violating the

operating system’s security policy. This problem can be

solved by ensuring the reuse of receive buffers on the same

data stream. In this way, stale data read by an application is

guaranteed to originate from an earlier message received by

that application, thus eliminating security problems. The

reuse of receive buffers on the same data stream has other

advantages, as described in Section 3.1.

2.4 Page Wiring

Whenever the address of a buffer is passed to the OSIRIS

on-board processors for use in DMA transfers, the corre-

sponding pages must be wired. Wiring, also referred to as

pz’nning, refers to the marking of a page as being non-eligible

for replacement by the operating system’s paging daemon.

Since changing the wiring status of a page occurs in the

driver’s critical path, the performance of this operation is of

concern.

Our initial use of the Mach kernel’s standard service for

page wiring resulted in surprisingly high overhead. One

problem is that Mach’s implementation of page wiring pro-

vides stronger guarantees than are actually needed for DMA

transfers. In particular, it prevents not only replacement of

the page itself, but also of any pages containing page table

entries that might be needed during an address translation

for that page. We now use low-level functionality provided
by the Mach kernel to prevent replacement of pages with

acceptable performance.

2.5 DMA Length

The length of DMA transactions has a significant effect

on performance. As mentioned above, DMA usually takes

place one Am cell at a time. This provides maximum

flexibility in the transmit direction (e.g. to interleave sev-

eral outgoing PDUS) and avoids the need for a reassembly

buffer in the receive direction. However, the initial deci-

sion to fix all DMA transactions at exactly one cell payload

(44 bytes, because of AAL overhead) had some undesirable

performance impact, for two reasons: (1) the DMA over-

head for the mmrmchannel is high enough to make transfers

as short as 44 bytes rather inefficient, and (2) fixed-length

DMA, especially when the length is not a power of two,

causes a range of problems at the edges of buffers. We now

discuss each of these problems, in turn.

2.5.1 DMA Overhead

As reported previously [8], the maximum data transfer

speed that can be sustained with 44 byte transfers over the

‘rtmBOchannel on a DECstation 5000/200 is 367 Mbps in

the transmit direction and 463 Mbps in the receive direction.

These figures, which have been measured for brief periods

on the actual hardware, can be derived simply by consid-

ering the minimal overhead for DMA transactions in each

direction—8 cycles for writes, 13 cycles for reads. Thus,

for example, the maximum throughput for transmission is

11/(1 1+13)x 800 = 367 Mbps.

Clearly, it would be advantageous to increase the length

of DMA transfers. In the transmit direction, the only penalty

for increasing DMA length is an increase in the granular-

ity of multiplexing. We argued previously that fine-grained

multiplexing is advantageous for latency and switch perfor-

mance reasons [7]. However, when the adaptor is used in a

mode where the goal is to maximize throughput to a single

application, neither of these reasons is relevant. It is there-

fore reasonable, and straightforward, to modify the DMA

controller so that it can perform DMA transactions longer

than one ATM cell. Note that if we allowed transfers of 88

bytes at a time, the maximum rate that data could be moved

across the bus would be 22/(22+13)x800= 503 Mbps. This

is close to the516 Mbps data bandwidth available in a 622

Mbps SONET/ATM link when 44 byte cell payloads are

used.

In the receive direction, the primary advantage in doing

single-cell DMAs is that it removes the need for a reassem-

bly buffer on the adaptor; cells can be placed directly in

host memory as they arrive. Not only does this reduce the

hardware complexity of the interface, but it also reduces the

likelihood that inadequate reassembly space is available.
In some circumstances, however, it is possible to preserve

the advantages of not having a reassembly buffer on the

adaptor while performing DMAs longer than one cell. The

quantity that we really wish to optimize is the user-to-user

throughput for a single application. In this case, as long

as cells arrive in order, most successively received cells

will contain data that is to be stored in contiguous regions

of host memory, the only exception being at the end of a
buffer. Since there is a small amount of FIFO buffering of
cells on the adaptor, the microprocessor can look at two cell
headers before deciding what to do with their associated
payloads. If the header information suggests that the two
payloads should be stored contiguously, then a single, 88-
byte DMA can be initiated.

We have implemented this change to the DMA controller
logic; the maximum throughput of the hardware is now
22/(22+8) x800 = 587 Mbps—more than the payload of
an OC- 12 channel. Note that the biggest gain is achieved
just by going to double-cell DMAs, since we have already
driven the overhead down from 42% to 26%. With any
further increase in DMA length the returns diminish. The
measured performance of doing 88-byte DMAs is reported
in Section 4.

2.5.2 DMA Length Variation

So far we have considered DMA transactions that are multi-
ples of the Am cell payload. The decision to restrict DMA
length was made to simplify the DMA controller design,
since the logic for this component is by far the most com-
plex part of OSIRIS.It initially seemed reasonable to assume

that data could be passed between the host and the adaptor

in contiguous buffers of arbitrary size, and that only the last

cell of a buffer would need to be partially filled. However,

there are several drawbacks to this approach.

The crux of the problem is that, for reasons of efficiency,

the host should not simply pass contiguous buffers to the

adaptor, but it should pass complete PDUS. Since PDUS are

generally composed of a number of discontinuous buffers,

and the size of the buffers is rarely a multiple of the ATM

payload size, it becomes necessary to send partially filled

cells in the middle of PDUS. Not only is this inelegant,

but it also makes interoperating with other systems impos-

sible and adds sufficient complexity to the microprocessor

reassembly code that it becomes difficult to meet the tight

instruction budget. The consequences for the reassembly

code complexity are even worse when partially filled cells

are received out-of-order, as discussed in Section 2.6.

Another problem arises when PDU sizes are multiples

of the page size, as is the case for network file system

(NFS) traffic. In the transmit direction, the last cell of a

page contains a few bytes of the next physical page. This

is almost certainly data that does not belong to the sending

application, so this maybe considered a security risk. In the

receive direction, the only legitimate option is to stop filling

the page when the next cell would cause the page-boundary

to be crossed, and start on a new buffer. However, this is

likely to break many higher-layer services that expect to see

full pages (e.g. NFS).

The ideal solution would be to implement a DMA con-

troller that could handle arbitrary length DMA transactions.

The main drawback to this approach in our case was the

hardware complexity, which may have exhausted the re-

sources in the available programmable logic. The problem

could also be dealt with by some amount of copying by the

host, but this would adversely affect performance. Fortu-

nately, a solution that avoids copying but which is simpler

to implement than arbitrary-length DMA was found to be

acceptable. It turns out that, in the z-kernel/Mach environ-

ment, it is straightforward to arrange for all the buffers of a

PDU (except the last) to be aligned in such a way that they

end at page boundaries.

Thus, the DMA controller does not need to perform arbi-

trary length DMA, as long as it can avoid doing DMA across

page boundaries. We implemented the following modifica-

tion to the DMA logic: if the address handed to the DMA

controller by the microprocessor is within 44 bytes of a page

boundary, the DMA will stop when it reaches the boundary.

The DMA controller then waits for another address from

the microprocessor, which it uses to DMA enough bytes to

fill the remainder of the ATM cell. Typically, this second

address will be the start address of the next buffer in the

PDU.

It is noteworthy that the cause of the problem here was a

mismatch of abstractions between hardware and software.

The hardware designer’s abstraction was that the host would

pass contiguous buffers to the adaptor. For satisfactory

software performance, however, a better abstraction was to

pass a PDU consisting of a chain of discontinuous buffers.

The clear lesson here is the importance of being able to

design adaptor hardware in concert with the host software

that will drive it. The original scheme of single-length

DMA might have been workable if all the host software

were designed to fit that model. However, it is clearly

unreasonable to design an entire operating system to fit in

with the quirks of a network adaptor. The combination

of programmable logic and software control in the OSIRIS

adaptor enabled it to be modified to suit the requirements of

the host software.

2.6 Cell Disordering

One of the features of the OSIRIS interface is that it uses

striping to achieve a network speed of 622 Mbps. By this

we mean that four 155 Mbps channels are grouped together

and treated as a single logical channel, with data striped

at the cell level. Striping is a well-established technique

that enables an end user to achieve a network bandwidth in

excess of that which cart readily be supported in the network

itself.

The principal drawback of striping in an ATM network is

that it has the potential to introduce disordering, which is

explicitly prohibited in the ATM standard.4 There are three

4Note that the standards do not address striping.

main causes of disordering: (1) different delays experi-

enced by each physical link because of different physical

path lengths; (2) different delays introduced into the physi-

cal links by multiplexing equipment in the network; and (3)

different queuing delays experienced by cells on different

links as they pass through distinct ports on the switches in

the network.

The first cause can be eliminated by multiplexing all

physical links onto a single fiber, as is done in AURORA. It

is also possible to eliminate the third cause by adding some

complexity to the switch; the switch must coordinate the

different ports to keep all queue lengths equal. However,

adding this complexity has the undesirable effect of negating

the advantage of striping—to provide higher bandwidth to

those (presumably few) users who need it, without forcing

an upgrade to the network. The second cause came as a

surprise, and it was not within our power to eliminate it.

For these reasons, we decided to live with the disordering.

The disordering introduced by these factors is not arbi-

trary; cells transmitted on a given physical link will arrive

in order relative to each other, but may be delayed relative

to cells sent on other links. In our case, with four links, the

first and fifth cells of a PDU will travel on the same physical

link, and the fifth will always arrive after the first. However,

the second, third and fourth cells may arrive ahead of the

first. We refer to this limited class of disordering as skew,

and we identified two strategies for coping with it.

The first strategy involves putting a sequence number in

the AAL header of each cell. Since the OSIRIS design allows

each cell to be individually placed at a specific location

in host memory, the only change is to the 80960 code to

handle out-of-order arrivals. The sequence number is used

to determine the host memory address at which each cell is to

be stored. This approach has several drawbacks, however.

First, if skew is introduced by different queuing delays in

the switches, it is essentially unbounded and thus we can

never guarantee that the sequence number space is large

enough. Second, the possibility that the first cell of a PDU

will not be the first one received adds significant complexity

to the reassembly code.

The second approach takes advantage of the fact that this

is not arbitrary disordering. Since cells on a given physical

link arrive in order, we can view the reassembly of a PDU

as four concurrent reassemblies, where the four “packets”

happen to be interleaved with each other in memory. In

this case, we can use AAL5-style reassembly on each of
the four packets and when all four packets are complete, as

indicated by the framing bit in the AAL5 header, we can

declare the reassembly of the PDU to be complete. There is

a small problem if a PDU is less than 4 cells long, since we

would not receive four framing bits in this case. We could

deal with this using one additional framing bit in the ATM

header to indicate the very last cell of a PDU. The only

real drawback of this approach, aside from its impact on

standards, is that it was difficult to implement in the small

instruction budget available in the 80960. Since the goal of

the design was to permit experimentation with algorithms

that would ultimately be implemented in hardware, we feel

this is not a fatal flaw.

Whatever means are used to deal with skew, it does have

a serious disadvantage. As discussed in Section 2.5.1, the

performance of the interface can be significantly enhanced

by combining successively received cell payloads on the

board and transfeming the combined data to the host as a

single, longer DMA. Once skew is introduced, the proba-

bil~y that {WO successive cells

greatly reduced.

2.7 DMA versus PIO

will be received in order is

One of the most lively debates in network adaptor design is

over the relative merits of DMA and programmed I/O (PIO)

for data movement between the host and the adaptor. Both

the literature on the subject (e.g. [16, 2, 6]) and our own

experience have led us to the conclusion that the prefer-

able technique is highly machine-dependent. In the case of

the DEC workstations we used, the low throughput achiev-

able using PIO across the TuRBochannel ensures that, with

well designed software (i.e. no unnecessary copies) DMA

is preferable.

We argue that the best way to compare DMA performance

versus PIO is to determine how fast an application program

can access the data in each case. For example, when data

is DMAed into memory on a DECstation 5000/200, it will

not be in the cache; an additional read of the main memory

is necessary when the application accesses the data. On the

DECstation, reading data into the cache causes a dramatic

decrease in throughput from the pure DMA results, but

the throughput remains above that which can be achieved

by PIO simply because of the high performance penalty

for word-sized reads across the TuRBochannel. On DEC’S

Alpha-based machines, a greatly improved memory system

with a crossbar switch that connects TuRBochannel, main

memory and cache allows cachelmemory transactions to

occur concurrently with DMA transfers on the TURBOchan-

nel. In addition, DMA writes to main memory update the

second level cache. On these machines, applications are

able to access the data at the rate of and concurrent with its

DMA transfer into main memory (see Section 4).

In the PIO case, with carefully designed software, data
can be read from the adaptor and written directly to the ap-

plication’s buffer in main memory, leaving the data in the

cache [13, 6]. If the application reads the data soon after the

PIO transfer, the data may still be in the cache. According

to one study, the PIO transfer from adaptor to application

buffer must be delayed until the application is scheduled for

execution, in order to ensure sufficient proximity of data ac-

cesses for the data to remain cached under realistic system

load conditions [15]. Loading data into the cache too early

is not only ineffective, but can actually decrease overall

system performance by evicting live data from the cache.

Unfortunately, delaying the transfer of data from adaptor

to main memory until the receiving application is sched-

uled for execution requires a substantial amount of buffer

space in the adaptor. With DMA, instead of using dedi-

cated memory resources on the adapter, incoming data can

be buffered in main memory. Using main memory to buffer

network data has the advantage that a single pool of mem-

ory resources is dynamically shared among applications,

operating system, and network subsystem.

3 New OS Mechanisms

This section introduces two novel OS mechanisms facil-

itated by the OSIRIS board--ast buffers (fbufs) and ap-

plication device channels (ADCs)—that are designed to

improve user-to-user throughput and latency, respectively.

Whereas the previous section focuses on how we achieved

good host-to-host performance, the mechanisms discussed

in this section address the problem of delivering equally

strong performance to application programs.

3.1 Fast Buffers

One of the key problems faced by the operating system,

especially a rnicrokernel-based system in which device

drivers, network protocols, and application software might

all reside in different protection domains, is how to move

data across domain boundaries without sacrificing the band-

width delivered by the network. The fbuf mechanism is

designed to address this problem—it is a high-bandwidth

cross-domain buffer transfer and management facility.

The fbuf mechanism itself is simple to understand. It

combines two well-known techniques for transferring data

across protection domains: page remapping and shared

memory. It is equally correct to view fbufs as using shared

memory (where page remapping is used to dynamically

change the set of pages shared among a set of domains), or

using page remapping (where pages that have been mapped

into a set of domains are cached for use by future transfers).

Since fbufs are described in detail elsewhere [10], this sec-

tion concentrates on the OSIRIS features that we were able

to exploit.

The effectiveness of fbufs depends on the ability of the

adaptor to make an early demultiplexing decision. That is,

the “data path” through the system that the incoming packet

is going to traverse must be determined by the adaptor so

that it can be stored in an appropriate buffer; one that is

mapped into the right set of domains. We say that an fbuf
that is already mapped into a particular set of domains is

cached. Being able to use a cached fbuf, as opposed to

an uncached fbuf that is not mapped into any domains, can

mean an order of magnitude difference in how fast the data

can be transferred across a domain boundary.

In the case of the OSIRIS adaptor, the device driver em-

ploys the following strategy. It maintains queues of pre-

allocated cached fbufs for the 16 most recently used data

paths, plus a single queue of preallocated uncached fbufs.

The adaptor performs reassembly of incoming packets by

storing the ATM cell payloads into a buffer in main mem-

ory using DMA. When the adaptor needs a new reassembly

buffer, it checks to see if there is a preallocated fbuf for the

virtual circuit identifier (VCI) of the incoming packet. If

not, it uses a buffer from the queue of uncached fbufs.

One of the interesting aspects of this scheme is how we

use VCIS, The z-kernel provides a mechanism for estab-

lishing a path through the protocol graph, where a path is

given by the sequence of sessions that will process incoming

and outgoing messages on behalf of a particular application-

Ievel connection. Each path is is then bound to an unused

VCI by the device driver. This means that we treat VCIS as

a fairly abundant resource; each of the potentially hundreds

of paths (connections) on a given host is bound to a VCI for

the duration of the path (connection). This approach is not

compatible with a regime that treats VCIS as a scarce re-

source, and in particular, a resource that the network charges

for.

Early demultiplexing has advantages beyond that of en-

abling efficient delivery of data to applications. It is also

the basis for the appropriate processing of prioritized net-

work traffic under high receiver load [11]. The threads that

de-queue buffers from the various receive queues may be

assigned priorities corresponding to the traffic priorities of

the network stream they handle. During phases of receiver

overload, lower-priority receive queues will become full

before higher priority ones, allowing the adaptor board to

drop the lower priority packets before they have consumed

any processing resources on the host.

3.2 Application Device Channels

Fbufs take advantage of the OSIRIS demultiplexing capa-

bility to avoid costs associated with the transfer of data

across protection domain boundaries on the end host. These

costs would otherwise limit the attainable application-

to-application throughput. Application device channels

(ADCS) take the on-board demultiplexing approach a sig-

nificant step further. An ADC gives an application program

restricted but direct access to the OSIRIS network adaptor,

bypassing the operating system kernel. This approach re-

moves protection domain boundaries from both the control

and data path to the network adaptor, resulting in minimal

application-to-application message latencies.
ADCS are implemented as follows. The transmit dual-

port memory is divided into sixteen 4KB pages, each of

which contains a separate transmit queue. The receive

dual-port memory is similarly partitioned so that each page

contains a distinct free buffer queue and receive queue. One

transmit queue, and one pair of free/receive queues are used

by the operating system in the usual way. The remaining

pages are grouped in pairs of one transmit and one receive

page.

When an application opens a network connection, the op-

erating system may decide to map one pair of pages into the

application’s address space to form an application device

channel. Linked with the application is an ADC channel

driver, which performs essentially the same functions as the

in-kernel OSIRIS device driver. Also linked with the appli-

cation is a replicated implementation of the network pro-

tocol stack. The technology of application-linked network

protocols has been demonstrated elsewhere in the literature

[19, 14], and is also supported by the z-kernel.

The operating system assigns a set of VCIS, a priority,

and a list of physical pages to the ADC. The receive pro-

cessor queues incoming PDUS on the receive queue of an

ADC if the VCI of the PDU is in the set of VCIS assigned

to that ADC. The priority is used by the transmit processor

to determine the order of transmissions from the various

ADCS’ transmit queues. The list of physical pages is used

to maintain proper memory access protection; it determines

which pages the application can legally use as receive and

transmit buffers. When an application queues a buffer with

an unauthorized address, the on-board processor asserts an

interrupt, and the operating system in turn raises an access

violation exception in the offending application process,

Host interrupts are always fielded by the kernel’s interrupt

handler. If the interrupt indicates the transition of an ADC’S

receive queue from the empty to a non-empty state, the in-

terrupt handler directly signals a thread in the ADC channel

driver, as described in Section 2.1.2.

At first glance, ADCS may appew similar to the mapped

device drivers used in Mach [17] and other microkernel-

based systems. In these systems, the user-level UNIX server

is granted direct access to, and control of, the network de-

vice. However, application device channels are different

from mapped device drivers in two important ways. First,

the OS kernel remains in control of the device in the case

of ADCS; only certain kinds of access are granted to the ap-

plication domain. Second, the device can be fairly shared

among and directly accessed by a number of untrusted ap-

plications; the device is not mapped into a single domain, as
is the case with mapped device drivers. That is, the device

is shared by multiple end-user domains, rather than a single

network server domain.

The way in which ADCS allow applications direct access

to the network adaptor is analogous to the way an appli-

cation is allowed direct access to the CPU and to main

memory. The operating system restricts the use of certain

CPU instructions, and permits access to only a subset of

main memory in order to remain in control of the machine’s

resources. The OS kernel itself is normally only involved in

scheduling resources, as well as initialization and finaliza-

tion of program execution. In many distributed applications,

such as multimedia, network I/O is a frequent and common

component of program execution. ADCS recognize this

and allow the operating system kernel to be bypassed in the

common case of network data delivery. The OS need only

be involved in connection establishment and termination.

4 Performance

This section reports on several experiments designed to

evaluate the network performance achieved with the OSIRIS

board, and the impact of various optimizations described in

earlier sections. All presented results refer to message ex-

changes between test programs linked into the kernel. For

user-to-user performance using application device channels

(ADCS), the measured results were within the error margins

of those obtained in the kernel-to-kernel case on an other-

wise unloaded system. This is significant, since it implies

that there is no penalty for crossing the protection domain

boundary between OS kernel and unprivileged user pro-

cesses. The effectiveness of fbufs, independent of ADCS,

is reported elsewhere [10].

Machine Protocol Message size (bytes)

DEC model 1 I 1024 I 2048 I 4096

5000/200 ATM 353 I 4171 486 I 778

UDP/IP 598 659 725 1o11

3000/600 ATM 154 215 283 449
I I UDP/IP I 316 I 376 I 446 I 619 I

Table 1: Round-Trip Latencies (ps)

Throughout this section, we report results obtained on

two generations of workstations: the DECStation 5000/200

(25Mhz MIPS R3000), and the DEC 3000/600 (175MHz

Alpha). Table 1 shows the round-trip latencies achieved be-

tween a pair of workstations connected by a pair of OSIRIS

boards linked back-to-back. The rows labeled “ATM” refer

to the round-trip latency of PDUS exchanged between test

programs configured directly on top of the OSIRIS device
driver. In the “UDP/IP” case, round-trip latency was mea-

sured between two test programs configured on top of the

UDP/IP protocol stack5. 1P was configured to use an MTU
of 16KJ3, and UDP checksumming was turned off. The

measured latency numbers for 1 byte messages are com-

parable to-and in fact, a bit better than-those obtained

5Our otherwise standard implementations of 1Pand UDPwere modified

to suppofi message sizes large than 64KB.

10

when using the machines’ Ethernet adaptors under other-

wise identical conditions. This is a reassuring result, since

it demonstrates that the greater complexity of the OSIRIS

adaptor did not degrade the latency of short messages.

Throughput in Mbps

250

200

150

100
I r- ‘

double cell DMA

7

single cell DMA +
50 ~single cell DMA, cache invalidated +1--
01 I I I I I I I I

124816 32 64 128 256
Message size in KBytes

Figure 2: DEC 5000/200 UDP/IP/OSIRIS Receive Side

Throughput

The next set of measurements was designed to evaluate

the network performance of the receiving host in isolation.

For this purpose, the receiver processor of the OSIRIS board

was programmed to generate fictitious PDUS as fast as the

receiving hostcould absorb them. Figure 2shows themea-

sured data throughput achieved on a DEC 5000/200 with

the UDP/IP protocol stack, where the 1P MTU was set to 16

ICB. The graphs depict results measured with DMA transfer

sizes of one and two cell payloads, and with cache invali-

dation in the OSIRIS driver.

We make the following observations. First, the maximal

throughput achieved is 379 Mbps with double cell DMA,

340 Mbps with single cell DMA, and 250 Mbps with single

cell DMA when the data cache is pessimistically invali-

dated after each DMA transfer. The last number shows the

significant impact of cache invalidations on throughput.

In the DECStation 5000/200, all memory transactions oc-

cupy the TuRBochannel and no part of a DMA transaction

can overlap with the CPU accessing main memory. Thus,

memory writes and cache fills that result from CPU activ-

ity reduce DMA performance. Conversely, DMA traffic

increases the average memory access latency experienced

by the CPU. The combined effect of DMA overhead and

main memory contention result in a maximum throughput

rate of 340 Mbps in the receive direction. Note that in this

experiment, network data is never accessed by the CPU. In

the case where the data is read by the CPU (e.g., to compute

the UDP checksum), the maximal throughput decreases to

80 Mbps, due to the limited memory bandwidth on this

Throughput in Mbps

I I I 1

500-)

400-

300- 5

200-
double cell DMA, UDP-CS +

single cell DMA, UDP-CS .x - -

()~
1 2 4 8 16 32 64 128 256

Message size in KBytes

Figure 3: DEC 3000/600 UDP/IP/OSIRIS Receive Side

Throughput

machine.

Figure 3 shows the corresponding results obtained using

DEC 3000/600 workstations. This machine has a greatly

improved memory system. A buffered crossbar allows

DMA transactions and cache fills/cache write-backs to pro-

ceed concurrently, and hardware ensures cache coherence

with respect to DMA. The experiment was run with sin-

gle and double DMA transfers, and with UDP checksum-

ming turned on and off. With double cell length DMA, the

throughput now approaches the full link bandwidth of516

Mbps for message sizes of 16KB and larger. With DMA

checksumming turned on, the throughput decreases slightly

to 438 Mbps. This is an important result; it implies that

the network data can be read and checksummed at close to

9070 of the network link speed. Also, the throughput for

small messages has improved greatly, thanks to the reduced

per-packet software latencies on this faster machine.

The final set of measurements evaluates the network per-

formance on the transmit side. The results for both the

DEC 5000/200 and the 3000/600 are shown in Figure 4.

The maximal throughput achieved on the transmit side is

currently 325 Mbps. This number is limited entirely by

TurboChannel contention due to the high overhead of sin-

gle ATM cell payload sized DMA transfers. A hardware

change to allow longer DMA transfers in this direction is

underway, but was not completed at the time of this writing.

With double cell DMA transfers on the transmit side, the

host-to-host throughput attained is expected to fall between

the graphs for single cell DMA and that for double cell DMA

on the receive side (Figure 3). The exact result depends on

the rate of double cell DMA transfers on the receiving host,

as detailed in Section 2.6.

11

Throughput in Mbps

350 I I I I I I I
A A A 4

300-
n l-! -E 1

200 I-/+/
150

100

Y

3000/600 -6-
3000/600, UDP-CS +

50 5000/200 - I

124816 32 64 128 256
Message size in KBytes

Figure4: UDP/IP/OslrtlS Transmit Side Throughput

5 Conclusions

Based on the experience of writing software for the OSRIS

network adaptor, we draw three broad conclusions. First,

the flexibility built into the adaptor was critical to its success

as an experimental apparatus. This flexibility was primarily

embodied in the fact that both the adaptor’s algorithms, and

the interface it presents to the host, are defined by software;

programmable logic provides additional flexibility. This

provided several distinct benefits.

It allowed us to work around unexpected problems. For

example, in the case of the network introducing skew

that we were powerless to remove, we were able to re-

program the segmentationheassembly code running on

the board’s microprocessors.

It helped us to avoid forcing the abstractions of the

hardware designer onto the software architect. The

major example of this was the problem of fixed-length

DMA.

It allowed us to tune the host/adaptor interface, thereby

making it easier to write efficient operating system

software. Simple examples of how we optimized this

interface include minimizing locking contention be-

tween the host and the board, and reducing receive

interrupts to less than one-per-PDU. More complex

examples include fast buffers and application device

channels.

While speed is often sacrificed for flexibility, it is notewor-

thy that we were still able to reassemble ATM cells in the

common case and in the absence of disordering at approx-

imately OC- 12 speeds in software. Given that production

adaptors will probably use custom hardware for reassembly,

which will be faster but less flexible, we feel this is strong

evidence that the cost of reassembly is not excessive.

Second, there were several difficult (and non-obvious)

problems that the operating system had to address, all of

which are essentially independent of the OSIRIS board. Ex-

amples include dealing with buffer fragmentation, page

wiring, and cache coherence.

Finally, given that the OSIRIS adaptor was designed to

provided maximal flexibility, it contains many more features

than one would include in a production board. Based on our

experience, we have found the following two features to be

important, and would recommend that they be considered

in future board designs.

The ability to make an early demultiplexing decision;

treating VCIS as an abundant resource that represents

end-to-end connections is a reasonable way to do this

on an ATM network. This is used by both the fbuf and

ADC mechanisms.

The ability to support multiple transmit and receive

queues, and map each of them directly into user-level

protection domains. It was this feature that facilitated

the ADC mechanism.

Acknowledgements

Special thanks to David Mosberger for porting the z-kernel

to the DEC Alphas. We also thank Jody Davie for suggest-

ing the name OSIRIS, in honor of the Egyptian god reported

to be the first victim of segmentation and reassembly. Ac-

cording to legend, he was cut into pieces by his brother Seth

and reassembled by his wife, Isis.

llademarks

DECstation and TURBOchannel are trademarks of the Digital

Equipment Corporation. Intel is a trademark of the Intel

Corporation. UNIX is a trademark of the X/Open Company.

RISC System/6000 is a trademark of International Business

Machines.

References

[1]

[2]

M, Accetta, R. Baron, W. Bolosky, D, Golub,

R. Rashid, A. Tevanian, and M. Young. Mach: A
new kernel foundation for Unix development. In Pro-

ceedings of the USENIXSummer ’86 Conference, July
1986.

D. Banks and M. Prudence. A high-performance

network architecture for a PA-RISC workstation.

IEEE Journal on Selected Areas in Communications,

11(2): 191-202, February 1993.

12

[3] G. Blair, et al. A network interface unit to support

continuous media. IEEE Journal on Selected Areas in

Communications, 11(2):264-275, February 1993.

[4] D. Clark, et al. The AURORA gigabit testbed. Computer

Networks and ISDN Systems, 25:599-621,1992.

[5] Eric Cooper, et al. Host interface design for ATM

LANs. In Proc. 16th Con$ on Local Computer Net-

works, Minneapolis, MN, October 1991.

[6] C. Dalton, G. Watson, D. Banks, C. Calamvokis,

A. Edwards, and J. Lumley. Afterburner. IEEE Net-

work, 7(4):36--43, July 1993.

[7] B.S. Davie. A host-network interface architecture for

ATM. In Proc. ACM SIGCOMM ’91, Zurich, Septem-

ber 1991.

[8] B. S, Davie. The architecture and implementation of

a high-speed host interface. IEEE Journal on Selected

Areas in Communications, 11(2):228–239, February

1993.

[9] P. Druschel, M. B. Abbott, M. Pagels, and L. L. Pe-

terson. Network subsystem design. IEEE Network

(Special Issue on End-System Support for High Speed

Networks), 7(4):8–17, July 1993.

[10] P. Druschel and L. L. Peterson. Fbufs: A high-

bandwidth cross-domain transfer facility. In Procee-

dingsof the Fourteenth ACM Symposium on Operating

System Principles, Dec. 1993.

[11] D. C. Feldmeier. Multiplexing issues in communica-

tion system design. In Proc. ACM SIGCOMM ’90,

pages 209–219, Philadelphia, PA, Spetember 1990.

[12] N, C. Hutchinson and L. L. Peterson. The x-kernel:

An architecture for implementing network proto-

cols. IEEE Transactions on Soflware Engineering,

17(1):64–76, Jan. 1991.

[13] V. Jacobson. Efficient protocol implementation. ACM

SIGCOMM ’90 tutorial, Sept. 1990.

[14] C. Maeda and B. Bershad. Protocol service decompo-

sition for high-performance networking. In Proceed-

ings of the Fourteenth ACM Symposium on Operating

Systems Principles, Dec. 1993.

[15] M. Pagels, P, Druschel, and L. L, Peterson. Cache

and TLB effectiveness in the processing of network

data. Technical Report 93-4, Department of Computer

Science, University of Arizona, Mar. 1993.

[17] F. Reynolds imd J, Heller. Kernel support for network

protocol servers. In Proceedings of the USENIXMach

Symposium, pages 149–162, Monterey, Calif., Nov.

1991.

[18] J. M. Smith and C. B. S. Traw. Giving applications

access to Gb/s networking. IEEE Network, 7(4):44-

52, July 1993.

[19] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska.

Implementing network protocols at user level. In

Proceedings of the SIGCOMM ’93 Symposium, Sept.

1993.

[20] C. B. S. Traw and J. M. Smith. Hardware/software

organization of a high-performance atm host interface,

IEEE Journal on Selected Areas in Communications,

11(2):240-253, February 1993.

[16] K. K. Ramakrishnan. Performance considerations

in designing network interfaces. IEEE Journal on
Selected Areas in Communications, 11(2):203–219,

February 1993.

13

