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Abstract

For an endomorphism in a finite dimensional vector space,
one can define its characteristic polynomial and rational Jor-
dan normal form. In this article something analogous is done
for differential operators in a finite dimensional vector space.

An overview of (partial) algorithms to compute these invari-
ant is also given. Proofs and more results and details can
be found in [8] on which this article is based.

1 Introduction and notation

In this article k is an arbitrary field of characteristic zero,

K = k((z)) is the field of formal Laurent series and 7 = z $
is the derivation on K with field of constants k.

A differential operator in a finite dimensional vector

space over K is an additive function D: V ~ V which satis-
fies the Leibniz rule:

D(av) = aDv + ~(a)v for all a c K and w E V.

A differential operator D: V ~ V gives V the structure of

a K[~]-module by the action r-u := Dv for all v c V. IKere

K[T] denotes the K-algebra generated by I- with relation

T.a = aT + T(a) for all a in K.

Two differential operators D: V -+ V and D’: V’ –~ V’
are called equivalent or isomorphic if their corresponding
K[~]-modules are isomorphic, i.e., if there exists an invert-

ible linear transformation ~: V ~ V’ such that D’ f = fD.
If D: V + V is a differential operator and Z = (el, ..., en)

a K-basis of the vector space V then M(D, @ ~ Mat~, (K)

is the matrix (aij),,~~{l,,. ,~} defined by

n

D(ej) = ~a,je, for all ~ c {1, . . . ,n}.

i=l

Notice that if ~= (.fl,..., ~n) is another K-basis of V and

T is the transformation matrix from F to ~, i.e., ~T = E’,

then

2’M(D, flT-l – T(~) T-l = M(D, ~.
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We therefore introduce the following notation: for a matrix
A 6 Matn(K) and g ~ Gin(K) define g[A] by

g[A] := gAg-l – T(g)g-l.

An example of a differential operator is

D(y-(:;:)+(i‘$2)(;:)
One can also conceive this differential operator as the fol-
lowing system of first order linear differential equations:

{

Zyl(z) + yl(z) + Y2(*)/~2 = 0!

Zy’(z) + Zyl(z) – ;!/’(z) = 0.

The general solution of this system is

It has a so-called irregular singularity in the origin.

For a differential operator D: V ~ V with a regular sin-
gularity in the origin it is well-known that C := M(D, 0) =

Mat(k) for some K-basis F of V and that the isomorphism

class of D is determined by the conjugacy class of the mon-

odromy matrix exp(2niC). So in this case we have both
the notion of a “characteristic polynomial” (the equivalence

class of the characteristic polynomial of C) and a rational
normal form (the rational Jordan normal form of C).

For a differential operator with an irregular singularity
Levelt defined a characteristic polynomial and a Jordan nor-

mal form in [7]. However the characteristic polynomial does
not contain enough information to determine the isomor-

phism class of the semisimple part of the differential op-

erator and for the Jordan normal form a field extension is

necessary. It is possible that two non-isomorphic differential

operators have the same Jordan normal form.

The characteristic class and rational normal form de-
scribed in the rest of this article do not have these defi-
ciencies.

2 The characteristic class

In this section we will define an invariant of a differential

operator which we will call its characteristic class since it
resembles the characteristic polynomial of a linear t ransfor-
mation. The characteristic class of a differential operator is
defined using eigenvalues.
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Theorem 2.1 (Levelt) Let D: V ~ V be a differential op-

erator with V # O. Then there exists a finite jield extension
L of K, a non-zero element v E VL := L @K v and an
element a E L such that DLV = av.

A differential operator can have many related different eigen-

values. In general, if a c L is an eigenvalue oft he differential

operator DL then a + r(f)/ f is also an eigenvalue of DL for

all f CL*.
We will therefore introduce the notion of a “normalized

eigenvalue.

Definition 2.2 Let D: V ~ V be a differential operator
and let L be a finite field extension of K. Write L = k’K(t)

where k’ is the field of constants of L and t c L satisfies
t= /x c k’ \{O} for some e c N. An element a c L is called a
normalized eigenvalue of the differential operator DL if

1. a C k’[1/t];

2. DLV = au for some non-zero v g K(a)@ V.

Theorem 2.3 Let D: V -+ V be a differential operator wzth

V # O. Then DL has a normalized eigenvalue over some
jinu!e field extension L of K.

Normalized eigenvalues determine simple differential opera-
tors up to isomorphism, more precisely:

Theorem 2.4 Let D: V - V and D’: V’ -+ V’ be two
simple differential operators, i. e., there does not exist a

proper subspace of V (resp. V’) that is invariant under D
(resp. D’). Let L be a finite field extension of K and let
a E L be a normalized eigenvalue of DL with minimal

polynomial f(X) c K[X] and a’ G L a normalized e~gen-

value of D; with minimal polynomial g(X) G K[X]. Then

deg(f ) = dim V and deg(g) = dim V’ and the following two

statements are equivalent:

1. D: V * V and D’: V’ - V’ are isomorphic.

2. There exists an T G Z such that g(X) = f(X + r/e).

Here the integer e is the ramification index of the field ex-
tension K(a)/K, i.e., there exists a non-zero t c K(a) such

that K(a) = k’K(t) and t’/x c k’, where k’ is the field of
constants in K(a).

Using theorem 2.4 we can now define the characteristic

class of a simple differential operator:

Definition 2.5 Let D: V -+ V be a simple differential op-
erator. Then the characteristic class of D, notation c(D),

is defined as the set of minimal polynomials of normalized
eigenvalues. Theorem 2.4 shows that

C(D)(A) = {f(A+ :) I r 6 Z}, (1)

where f is a monic irreducible polynomial of degree dim V

with coefficients in K and e is the ramification index of a
splitting field of f over K. We will write [f] for the right
hand side of (1).

Example 2.6 Let

D=X&+(:142)

so 1/& is a normalized eigenvalue. Hence

c(D)(A) = [Az – l/z] = {(A +7-/2)2 – l/z I r E Z}.

For a general differential operator D: V ~ V the character-

istic class of a differential operator is defined using a com-

position series of the K[7]-module V.

Definition 2.7 Let D: V ~ V be a differential operator

and let

O=vocvlc... cv, =v

be a composition series of the lT[’r]-module V. Define the

characteristic class of D, notation c(D), as the set of all
products of the elements in the characteristic classes of the
Di: V,/Vi_I ~ Vi/Vi-l. By the Jordan-Holder theorem,

this does not depend on the composition series of the K[T]-
module V.

The characteristic class is a refinement of the characteristic

polynomial of a differential operator defined in [7].

Using the definition of the characteristic class and theo-

rem 2.4 one can show that the characteristic class has the

following universal property:

Theorem 2.8 Let V denote the Abelian category of dif-
ferential operators. Let M be an Abelian monoid and let
$: V * M be a map satisfying

~((v,~)) = 4(W’, D’)) +@((V’’, D”))

for all short exact sequences

O+v’ +V-v”+o

lD’ lD lD”
O-+v’ +V---+v”+o

Then there exists a homomorphism p: im c - M such that
the following triangle commutes:

AM

[/
c

P.

im c

One can define the semisimple part of a differential operator
(see theorem 3.1 or [7]). The characteristic class completely

determines the isomorphism class of the semisimple part of

a differential operator. Notice that the characteristic poly-
nomial of an endomorphism in a finite dimensional vector

space has the same property.
The Newton-Puiseux polygon of a differential operator

follows from its characteristic class. If

is an element in k [l/z] [A] representing the characteristic
class of a differential operator D: V -+ V, then the Newton-
Puiseux polygon of D is the same as the Newton-Puiseux
polygon of

(z+)”+a._~(z)(z+)’-l + . . . +ao(x)

Then D: K’ ~ K2 is a simple differential operator and

‘(%)=$(%)>
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3 Rational normal form

Theorem 3.1 Let D: V - V be a differential operator.

Then there esxsts a K-basts 0 = (VI,. . . . v~) of V such that

M(D, ii)= diag(Bl, Bz,. .,,13, ),

where s E W and every B, is of the form

SiIO... O

[ 1

0 Si I ‘“. ;

“. “. “.
. . . . o“

‘. ‘.. . I

o . . . . . . 0 s;

Here I stands for the identity matrix and Si is a square

matrix such that r + Si is a simple differential operator.

This form is unzque m the sense that any other such jorm
can be obtained by permuting the blocks B% and replacing

the S; by g~[S,] ~t.th gi ~ G1(K).

The semisimple and nilpotent part of the differential ojJera-

tor follow directly from this form.

The proof of theorem 3.1 is based on lemma 3.2 and 3.3,

the theorem of Jordan for commutative fields and the fact

that
kerad(ll) = { f c EndK(V) I Df = fD }

is a commutative field if D: V A V is a simple differential

operator (see [8, section 3.3] ).

Lemma 3.2 Let D: V -+ V be a semistmple differential
operator. Then

EndK(V) = ker ad(D) @ im ad(D)

as vector spaces over k, where

ad(D): EndK(V) -+ EndK(V)

is defined by f H Df – fD for all f G EndK(V).

Lemma 3.3 Let Dl: V * V and Dz: W * W be two non-

isomorphic simple differential operators. Define the function

p: Hom~(V, W) ~ Hom~(V, W) by g + D2g – gDl for all

g ~ Hom~(V, W). Then p is an isomorphism of vector

spaces over k.

For the simple components a cyclic form representation

is not satisfactory, since the uniqueness is not clear and the
characteristic class cannot be obtained easily from it. The
form described in the next theorem does not have these de-

ficiencies.

Theorem 3.4 Let D: V - V be a differential operator.

Then the following statements hold:

1. If D: V + V is a simple differential operator, there
exist e, f E W with dim V = ef, a K-basis ii of V,

C c Glf(k) and f x f matrices Ao, Al, . . . . A,--l with
entries in k[l/z] such that

(a) C and all A?) are semisimple and all commute

pairwise, where A:) are the constant f x f ma-

trices satisfying

Ai = ~ A~)XJ foralli G{O,...,l} l}.

J<o

(b) The matrix M(D, ~) equals

[ A, CAe-1/x . . . . . . CA1/z \

1
Al Ao–~l “.

‘)

Al ““. “’. ~

“.’.
CA.. 1/X

A:_ 1 Ae_.2 . . . Al Ao – ~~

(c) The characteristic polynomial h of the matrix

M(D, O) + diag(O, ~1,. ,., ~1)

M irreducible.

.2. Conversely, let e, f c W satasfy dim V = ef and let
G be a K-basis of V, C G Glf(k) and f x f matri-

ces Ao, Al, . . . . A.-1 with entries in k[l/z] such that
(a), (b) and (c) hold, then D: V -+ V M a swnple dif-
ferential oper-ator with char-acter-istic class c(D)= [h].

3. If D: V * V is a simple differential operator and g 6

Gle f (K) a transformation matrix such that the matrix

g[fi(D;C)] is o~ the form

I A; ““. “.

with C’ E Glf (k) and A~, Al, . . . . A~–l f x f matrices

with entries in k[l/z]. Then the following conditions

are equivalent:

●

●

C’, A~, A;, . . . . A~_l satisfy condition (a).

There exists an inteaer a ~ 2Z and matrices B. U G

Glf (k) such that B“ is ;emisimple and commutes

wn!h C and with ail Ai and

g = diag(U, UB, . . . . UBe–~)zqle.

If C’=Cand A~=A, foralli ~{ O,. ..,l} th enen
g = diag(T, T, . . . . T) for some semisimple T c Glf (k)

which commutes with C and all Ai.

The proof of this theorem, which can be found in [8, sec-

tion 4.1], is based on Galois descend starting with a normal-

ized eigenvalue. The details of the proof of part 2 and 3 are
cumbersome.

Theorem 3.4 generahzes a result found in [2] in which a
rational normal form of a simple differential operator over a
algebraically closed field of constants appears.

A representation of a differential operator as given in
theorem 3.1 with the simple components in the form given by
theorem 3.4 is called a rational normal form. One can show

that a rational normal form is super-irreducible, a notion
introduced by Hilali (see [4] and [6]).
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4 Some algorithms

The algorithm we will describe in this section leads to a

matrix of the form

Alzr’ + . . + A~zr~ + C, (2)

where rl, . . ..r~ eQwithrl <.. <r~<O andAl, AZ,

. . . . Am, C are square matrices with entries in k satisfying:

●AI, A2, ..., Am, C commute pairwise;

●A1, A2, ..., Am are semisimple and non-zero.

The characteristic polynomial of (2) is the characteristic
class of the differential operator in some finite field extension

of K.
Moreover if the so-called nilpotent case described in sec-

tion 4.6 does not occur during execution of the algorithm

then one can obtain the characteristic class and a rational
normal form of the differential operator.

In [8] more details and additional complete algorithms

to compute the characteristic class and a rational normal

form for the nilpotent case of differential operators in two

and three dimensional vector spaces are described.
Throughout this section we will assume that A is an n x n

matrix with entries in K and

A = Arx’ + Ar+&+l + Ar+2zr+2 +

with all A; in Mat.(k) and r ~ O and A. # O (unless r = O).

Let D be the differential operator T + A on K“.

By first applying a constant transformation matrix one

may assume that the matrix A, is in the rational Jordan
normal form.

We will now distinguish six different cases.

4.1 ‘r=o

If r = O then the differential operator D has a regular stn-
gukwity in the origin. This type of differential operator

has been studied at length in the literature, see [9, Ch. II
and Ch. V, sec. 17]. In this case one can give an algorithm
to compute a rational normal form of the differential oper-

ator D and also the transformation matrix up to a given

order.

Step 1. Construct a transformation matrix g ~ Gl~(k[[z]])

such that
g[A]=A~+ A~z+A~z2 +...

with all A; in Mat~(k) and gcd(j(~), j(~ — 1)) = 1 where

f(~) := det(A1 – AL).

Step 2. Construct (up to a given order) a transformation
matrix ~ c Gl~ (k[[z]]) such that (~g) [A] = AL.

The construction of ~ consists of repeatedly solving X

from (A. + iI)X – XAO = M for given M ~ Matn(k) and
sew.

Characteristic class.

c(D)(J) = [det(N – AL)] = [det(J1 – Ao)].

Rational normal form. Is given by a rational Jordan normaf

form of the matrix AL.

4.2 Splitting lemma

Assume that r <0 and the matrix Ar is of the form

where P, and Q. are square matrices whose characteristic
polynomials are relatively prime.

Step 1. Construct (up to a given order) a transformation
matrix g ~ Gl~ (k[[z]] ) such that

9[4 =(; :),
where P and Q are square matrices with entries in K with

P = Przr + . . and Q = Q,z’ + . . .. This construction is

known under the name sphtting lemma. It requires repeat-

edly solving X from P, X — XQ~ = M for given constant

mat rix M.

Step 2. Recursively apply the algorithm to the differential

operators r + P and 7 + Q.

Characteristic class. c(D) = C(T + P)c(T + Q).

[- )Rational normal form. p ~ where ~ and ~ are ratio-
OQ. -/

nal normal forms of the differential operators -r+ P resp. -r+

Q.

4,3 Squarefree case

Assume that r <0 and det(M – A,) is squarefree.

Step 1. Construct (up to a given order) a transformation
matrix g c Gl~ (k[[z]]) such that

with A; 6 Matn (k), A: = Am and A~A~ = A~A~ for all

i > r. The construction of this g is based on the following
fact. There exists an algorithm that for a given B E Matn (k)
constructs bo, bl, . . . . b~_l 6 k and Y ● Mat~(k) such that

B =boI+blAr +... +bn_l Al-l +AmY– YA,.

Step 2. Construct (up to a given order) a transforma-

tion matrix ~ ~ Gln (k[[x]]) such that (~g) [A] = A~zp +

A;+lz’+l +.. +A&.

Characteristic class.

[(c(D)(A) = det M – ~ A~zi

1<0 )1
Rational normal form. If the matrix A. is in rational Jor-

dan normal form, then a rational normal form of D is given
by A:*T + A:+lN+l + --- + A:.

4.4 One eigenvalue

Assume r <0 and det(J1 – A.) = (J – a)n for some a c k“.

Recursively apply the algorithm to the differential operator
D – ax ’I.

Characteristic class. c(D)(A) = c(D – CM” I)(A – a).

Rational normal_form. If ~ is a rational normal
D – az’1, then A + az’ I is a rational normal form

form of

of D.
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4.5 Field extension case

Assume that r <0 and det(M – A,) = f(~)s where ~(~) is

an irreducible polynomial of degree m >1 in IcIJ] and s >1.
Then (the rational normal form of) the matrix A. is of the
form

P* O... O

[1

o P ““. ““. :

“. “.”.
. . . .01

“. P*

o . . . . . . 0 P

where P is a square matrix such that det(A1 – P) = f(J)

and every asterisk stands for either the identity matrix or

zero.

Step 1. Construct (up to a given order) a transformation

matrix g ~ Gl~ (k[[z]]) such that

(

fll(P) . . . &(P)

)

g[A]= ; . . : ,

jsl(p) ~.: f8. (P)

where all -fij are univariate polynomials of degree less than m
with coefficients in K. This can be done by a generalization

of the algorithm needed in the squarefree case of the algo-

rithm.

Step 2. Let k’ = k(a) be a finite field extension of k where

a is an eigenvalue of the matrix P. Define the matrix A’ G
Mats(k’K) by

(

jll(a) ~ jls(a)

A’:= : . . :

L1(C4 : f,.(a) )

and recursively apply the algorithm on the differential op-

erator D’ := 7 + A’.

Characteristic class.

c(D)(A) = N~~~(~),~(~) (c(D’)(J))

= ResY (j(v), c(D’)(~) la=,) ~

where Nk/ ~f~)j~(~) is the norm function of the field exten-

sion k’JY(~)/lY(J) and ResY denotes the resultant w.r.t,. the
variable y.

Rational normal form. Replacing every a by P in the trans-

formation matrix and in the resulting matrix gives a rational

normal form of the differential operator D.

4.6 Nilpotent case

If r <0 and A, is nilpotent, then there are (at least) two
ways to proceed. For both methods ramification might be

necessary, i.e., replacing z by t- for some m c N with m >1.
The first method consists of computing a super-irreduc-

ible form. If for the resulting matrix A one still has r < 0
and A, is nilpotent, then compute the principal level (or

equivalently the invariant of Katz) by one of the methods

described in [3] or [5]. Now replace x by tm where m E N

is the smallest integer such that the principal level is an
element of ( l/m)Z. Using the algorithm of Hilali over the
field K(t)to make the matrix l-irreducible yields a matrix A

with r equal to the principal level and A, not nilpotent.

Another method described in [1, $ 4] uses the theory of

orbits of the adjoint representation of the algebraic group

Glm (k). We will describe this method in some more detail.
Let g~n (k) denote the general linear algebra Mat~ (k)

with bracket operation [z, y] = xy – yz for all z, y c gt’n (k)

and let sl~ (k) denote the special linear algebra: the subal-

gebra of gln (k) consisting of the matrices having trace zero.

Step 1. Compute matrices H and X in sln (k) such that

[H, X] = 2X, [H, A.]= -2 A., [X, A,]= H.

In other words {X, A,, H} span a Lie subalgebra of gtm(k)
which is isomorphic to s12 (k). The triplet (A,, H, X) is

called a standard triplet.

It follows from the representation theory of s12 (k) that

gin(k) = {[A, YI Iy @dn(~)}@
@{y Egln(k)l[x, Y]=o}. (3)

Step 2. Construct a transformation matrix g G Gl~(k[[z]])
such that

g[A] = Arzr + A;+lzr+l + . . . + A;_rn_l#-’n-l + . . .

with A~X=XA~foralli~{r +1, . . ..rnrl} l}. Con-

struction of g uses the direct sum splitting (3).

Step 3. Apply a transformation matrix ~ of the fcmm

~–$H

for some 6 c Q with O <6 ~ Irl such that

(69)[AI= zr+d+6 + ...

with O#~r+a#A. orr+8 =0.

Step 4. Now recursively apply the_algorithm to (~g)[A].

One can prove that if r + 6<0 and Ar+6 is nilpotent, then

d(~,+b) > d(AT), where d(.) denotes the dimension of the

orbit, i.e., for any M in glm (k), d(M) is the dimension of

{gMg-’ I g E Gl(k) }.

This guarantees termination in this case.
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