
An Application of Symbolic Computation in the Physical Sciences

Charles C. Dyer

Departments of Astronomy and Computer Science

and Scarborough College, University of Toronto

1265 Military Trail, Scarborough, Ontario, Canada MIC 1A4

Abstract

An example of a problem in the physical sciences is discussed
where application of various symbolic computation facili-
ties available in many algebraic computing systems leads to

a significant expansion of the range problems that can be
solved. Since most interesting problems in the physical sci-

ences eventually require the numerical solution of systems

of equations, of various types, we will int reduce an example

and describe an apporach to a solution, beginning at the

development of relevant differential equations, using, for ex-
ample REDUCE, and leading eventually to the generation

of highly efficient and stable numerical code for the solution,

using, in our case, the C language. The use of SCOPE and

GENTRAN,as well as series packages in REDUCE will be
discussed.

In many areas of interest, a considerable amount of work

has to be performed to arrive at the symbolic equations
to solve, and this is particularly true in General Relativity
and related gravitation theories. Some packages, such as

REDTEN [1], for calculation in this field will be discussed.

1 Introduction

With the development of good symbolic mathematical sys-

tems, the physical scientist has a set of powerful new tools to

expand the realm of tractable problems related to physical

systems. Initially, this expansion impacts the possibility y of
performing complex symbolic calculations that would have

been much more difficult when done by hand. There are
many useful calculations that are essentially mechanical in

nature, but are discouraging y long to carry out, and conse-
quently prone to errors. One of the basic methods by which

science proceeds is to cast forward well beyond the present
wisdom, and then to derive the consequences of the new

idea, imagining a new and exciting possibility, say for a geo-

metric structure in General Relativity. If the time required
to derive the field equations for the proposed new geometry

is very long, this imposes a significant limitation on the rate
of progress and the daring of such leaps. The case of Gen-
eral Relativity provides a good example of this issue, where

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ISAAC 94- 7/94 Oxford England UK
0 1994 ACM 0-89791 -638-719410007..-$3.50

simply the derivation of the field equations for a particu-
lar situation can take considerable time, and can be prone

to errors which completely alter the physical situation. A
number of systems exist for use in tensor analysis, differ-
ential geometry, etc., with particular on General Relativity,

including EXCALC, MapleTensor, MathTensor, R13DTEN,

SHEEP, and others.

We have developed and used REDTEN [I], which runs
in REDUCE. It provides quite a broad suite of facilities

for dealing with the mathematics of theories like General

Relativity, with the availability of all the usual curvatures,

geodesic equations, Lie derivatives, Killing equations, etc.
We have found REDUCE to be a particularly good plat-

form on which to build such a system as REDTEN, in part
because of its firm basis in LISP, which provides for excellent

garbage collection, easy input/output handling to allow easy
addition of notation specific to particular application areas,

such as tensor derivative notation. In addition, REDUCE
has a very mature body of application packages, frequently
with a strong basis in the physical and engineering sciences.

While the situation has improved in some competitive sys-

tems, our earlier efforts in some sytems were frustrated by
the limitations imposed in some of the above mentioned is-

sues.
The purely formal problems discussed above frequently

lead eventually to systems of equations which do not yield to

analytic methods resulting in closed-form solutions. Even in

the apparently simple case of Newtonian gravitation, with
its rigid geometry, only the very simplest of imaginable phys-

ical sit uations can be solved in closed form. Thus, for much
of the physical sciences, the problem does not end with the

formal mathematical system, but requires the use of com-
plex numerical programs to arrive at physically meaningful

solutions. It is frequently the case that the output from
the symbolic mathematics system is far from the form that

is usable for numerical solution. It is here that the proper
union between algebraic systems and good numerically ori-

ented compilers requires careful consideration, both for ef-

ficiency and for the integrity of the solutions produced. To
illustrate the relationship between symbolic mathematical
systems and useful results in the physical sciences, we will

consider a particular problem whose solution benefits signif-
icantly from the union.

While most symbolic computation systems are highly ca-
pable of solving many problems, they require considerable

re-casting of mathematical notation, simplification rules, etc.,
to be useful as extensions of the normal working modes of
physical scientists. Significant work remains to be done to
address the difficulties in mapping from the “working envi-

181

http://crossmark.crossref.org/dialog/?doi=10.1145%2F190347.190414&domain=pdf&date_stamp=1994-08-01

ronment assumptions” of a typical physical scientist to the

very precise specification of dependencies, etc., required to
obtain correct results from algebraic systems. The impact of

such difficulties in the acceptance of the use of algebraic sys-

tems is considerable, with frequent expressions of frustration
by users when a particular system seems unable to simplify
a particular result when the user can see very clearly that a

simpler forms exists. More subtle, but much more damag-

ing are the cases where a user neglects to specify appropriate
dependencies, frequently because the human being is so ca-

pable of keeping track of side relations without deliberate

effort. There are many stories of truly beautiful results,
which are later (hopefully not too much later, and by the

user, not a referee!) discovered to derive their beauty from

an unfortunately forgotten dependency specification. With
the rapid increase in desltop computing power, going to the

other extreme with regard to dependencies might well be
a workable alteration, where everything depends on every-

thing, unless otherwise specified. Of course at the practical
level, the best compromise would probably be to place a

mark in the order of introduction of objects, after which all
mutual dependencies are assumed until explicit y specified.

2 Solutions for Self-Gravitating Cosmic Strings

As a case study in the range of uses for symbolic com-
putation, we consider the solution of the coupled Einstein

field equations and the Euler-Lagrange equations for a scalar

field in the case of cylindrical symmetry. The details of the
physics involved can be found in [2].

The space-time geometry is described by the metric for

the line element:

ds2 = –e2(~-u)(dt2 – drz) + e-2uW2dq$2 + e2udz2

where U, K and W are unknown functions of r only and

will be solved for in our calculations. Using this metric, the

Euler-Lagrange equations for the scalar field with potential
V become:

‘2(u”K)k+R’$)”Rp2~=~‘1)
‘2(u-K)(p’’-($(2u2))=e2R2p2p‘2)

where ‘ = 8/8T. The energy-momentum tensor, Tgv, can

be computed from the Lagrangian density, and the Ein-
stein tensor, G~V, can be computed from the line element.

These calculations can be performed easily in most ten-

sor manipulation packages, such as REDTEN, MathTen-
sor, or MapleTensor. The resulting Einstein field equations,

Gf,! = 8~T~, which couple the string stress-energy to the
space-time geometry, are then:

[
8ir R’z + ~R2P2 + &P’2 + 2Ve2A-–2u 1

=. ‘$ + Zh’’f$! _ 2UJ2

[
8X R“ – ~R2P2 + GP’2 – 2Ve21’--2u 1

= 2A”% – 2U’2

[
8rr –R’2 + ~R2P2 -I- &P’2 – 2Ve2K–2u 1

(3)

(4)

= 2A’” + 2U’2 (5)

[

~2h-

8rr R’2 + ~R2P2 + &P’2 + 2Ve2$<–2u 1
The integrability of the Einstein field equations requires
that the energy-momentum tensor be divergence-free, ie.

Tyu = O. These conservation laws often give, analogous

to the first integrals of classical mechanics, an important

indication of how to solve the field equations. Using the

energy-momentum tensor given above, the only non-trivial
conservation equation requires that

“(e2(u-K)(R’’+R’a-Rp2=$3+
((-p’(*-’u’))-e2R2p)p’% e’(u–w pll

be zero. Note that this is derivable as a linear combina-

tion of equation (1) and (2) and therefore indicates that one

of equation (1) and (2) can be taken as redundant, Since

the conservation of energy equation was derived from the
Einstein equations, one of these equations can be taken as

redundant. We will take equation (4) as the redundant equa-

tion, which we will nevertheless continue using as a consis-

tency check for our numerical integration, and keep both
equations (1) and (2). Equation (4) can be rewritten as:

“2=Hh’’~-u’2)+~R2p2
plzezu

–= + zve2(h’-u) (7)

Choosing the usually assumed form of the potential, V =

CI:(R2 – 72)2, and K = 2U (derivable from a regularity
condition on the axis), and using the the transformations

W ~ &W/qe , R * rlR , r - &rfVe, and
~u

~ Z, the set of equations to solve becomes (see [2] for
details):

(
p!2

z“ = ;7+23 ~ – 16rY(R’ – 1)2
)

‘z’($+
W“ = –87rv222

(X2 ‘~ + 2CYW(R2 – 1)2
)

(8)

(9)

(11)

R“ = Z’s +4crZ2R(R2 – 1) – R’: (lo)

P“ = 8.22P2P + P’

($-2:)

“2=$$(2$-$)+

(

22 22 R2P2 ~ + 2.(R2 - 1)2)-@- — 5J4T2 (12)

This system of equations is typical of those arising in Gen-
eral Relativity, being strongly coupled and nonlinear. In
our case, the additional complications of the self-consistent
solution with the Euler-Lagrange equations will lead to the
requirement of a series of numerical solutions.

182

3 Conditions for finding solutions

The boundary conditions for the set of equations can be

reduced to the following conditions, on the axis:

z(o) = 1, P(o) = w’(o)

(
Z“(0) = ~ W – 16a

)

(13)

including the free parameters W’(O), R’(0), P“(O). Initial

values are required for higher order derivatives up to the

appropriate order, but these are derived by differentiating
and taking limits onto the axis therefore no new parameter
freedom is introduced. We thus have a 5-parameter (q, a,

W’(0), R’(0), and P“(0)) set of equations. We now want

to find solutions to the Einstein-scalar-gauge field equations
by varying those parameters.

The action of a Lagrangian describing a vortex must re-

main finite in order that the gauge and scalar field ade-
quately describe a vortex solution. Finite action requires

that limr-w R = 1 and limr-.~ P = O. A solution of our

set of coupled equations will be one that can satisfy these

asymptotic conditions.

4 Numerical Solution

The system of differential equations cannot be solved in

closed form, but require numerical solution of some form. A

number of methods were considered, and we concluded that
a Taylor series method was most appropriate in this situa-
tion. Among the reasons for this choice, was the ease with

which a scheme could be implemented, particularly with re-

gard to imposing the variety of boundary conditions cm the
axis of the string, and the ease with which we could in-
vestigate the behaviour at large distance from the string.

For both of these considerations, the availability of ‘Taylor
expansions for all the relevant functions directly from the

numerical integration, as opposed to, for example, fitting to

the functions at a later stage, was particularly convenient.

In addition, since we were particularly in studying the grav-
itational effects of cosmic strings on light propagation and

particle motions, the availability of actual metric functions,

through their Taylor series, was very important. Thus the
scheme which we wished to implement involved obtaining a

reasonably high order Taylor series for the metric functions

on each small integration interval, which would then serve

as the metric on small regions of spacetime.
Even with this set of equations, the task of obtaining all

the relevant Taylor expansions of the differential equations
is a reasonable challenge, particularly to avoid errors that

can creep into the calculation. In addition, since there are

a number of parameters to search and tune for acceptable
solutions, satisfying the asymptotic conditions, the amount

of numerical computation is quite large, and any improve-

ment in the quality of the code is very beneficial. Thus we
considered the possibilities of implementing our scheme us-
ing an algebraic computation, such as Maple or REDUCE,

as much as possible. Both Maple and REDUCE were used
for the calculations, but REDUCE had a number of advan-
tages in our particular case. The availability of high quality

packages well suited to our purposes made the choice clear
to us. We used the TAYLOR [3] and TPS [4] packages dis-

tributed with REDUCE 3.4 to develop the Taylor series and

then manipulate them in order to produce the right hand
sides of the differential equations. These packages are very
easy to use, and both give the user a significant amount of

From the Taylor series, the integration scheme is quite
simple to implement in principle, but the expressions quickly

become very complicated, especially at the higher orders,
say order 5 or 6, which we wish to maintain for later pur-

poses, as well as accuracy. At this point, two other packages
distributed with REDUCE come into play. The GENTRAN

[5] package for transforming REDUCE expressions into nu-

merical code, in languages such as C or FORTRAN, is avail-

able in other systems as well. To add especially good opti-
mization in the production of this numerical code, we used

the SCOPE [6] package in conjunction with GENTRAN.
The use of these packages gave the ability to go from the

formal mathematical statement of the coupled differential
equations to the generation of globally optimized expres-

sions for the expensive to compute terms for the Taylor se-
ries solutions. The optimization was very good, with ex-
cellent recognition of common subexpressions across many
assignments, and excellent elimination of exponentations in

the expressions, particularly appropriate for the C language.
The documentation for SCOPE gives numerous examples of

the level of optimization to obtainable, and the results of

our application were consistent with those examples.

We did attempt a similar approach in MAPLE, using the

code generation facilities available, including the optimiza-
tion option. The results were not comparable with those

produced by the SCOPE/GENTRAN combination. When

combined with the quality of the series manipulation pack-
ages, our confidence in the REDUCE route was confirmed.

5 Code Production

The TAYLOR or TPS packages were used to generate, from
the actual differential equations, the Taylor expansions for
the dependent variables completely expanded in terms of
the functions and their first derivatives, so that the Taylor

integration scheme can be directly generated. The following
extract from a source file for REDUCE and SCOPE reflects

the result of using the Taylor packages. Since the actual

expressions are very large, we only present here the first few

Taylor coefficient terms, and then simply give the number
of similar source lines for the higher order coefficients. The

particular choice of control flags given for REDUCE is typ-
ical, but usually a variety of choices is useful, since their

choice can influence the resulting code size, sometimes quite
dramatically.

load.package scope;
off priall;

optlang!*:=’c;

off pri;
on exp;

UPP :=(- 16*e**(2*u)*a** 2*pet*r**4*W**2 + 32
*e**(2*u) *a**2*pet*r**2* w**2 - 16*e**(
2*u)*a**2*pet*w**2 + e**(2*u)*pet*

pp**2 - 8*up*w*wp)/(8*w* *2)$

UPP:=(2*e** (2*u)*a**2*pet*(- e**(2*u)*p**2*
r**2 - 2*r**4*W**2 + 4*r**2*w**2 -

2*w**2))/w$

FlPP:=(e**(4*u)*a**2*p**2*r + 4*e**(2*u)*a**2
*r**3*W**2 - 4*e**(2*u)*a**2*r*rr**2 -

rp*w*wp)lw**2$

PPP:=(8*e**(2*u)*a**2*p*r**2*w - 2*pp*up*w +
control over their actions.

183

pp*wp)/w$

U3:=(16*e**(4*u)*a**2*p**2*pet*r**2*up*w +
16*e**(4*u)*a**2*p*pet*pp*r**2*w + 16*
e**(2*u)*a**2*pet*r**4*W**2*wp – 64*e

(2*u)*a2*pet*r**3*rp*w**3 – 32*e**

(2*u)*a**2*pet*r**2*w**2*wp+ 64*e**(2
*u)*a**2*pet*r*rp*w**3 + 16*e**(2*u
)*a**2*pet*w**2*wp - 2*e**(2*u)*pet

*PP**2*UP*W - e**(2*u)*pet*pp**2*wp ●

16*up*w*wp**2)/(8*w**3)$

W3:=(2*e**(2*u)*a**2*pet*(- 4*e**(2*u)*p**
2*r**2*up*w + e**(2*u)*p**2*r**2*wp

- 2*e**(2*u)*p**2*r*rp*w – 2*e**(2

*u)*p*pp*r**2*w - 4*r**4*up*w**3

- 2*r**4*W**2*wp - 8*r**3*rp*w**3
~ 8*r**2*up*w**3 + 4*r**2*w**2*wp +

8*rw.-p*w**3 - 4*up*w**3 - 2*W**2*

wp))/w**2$

R3:=(2*e**(4*u)*a**2*p**2*pet*r**2*rp*w + 4
*e**(4*u)*a**2*p**2*r*up*w - 3*e**(4*u
)*a**2*p**2*r*wp + e**(4*u)*a**2*p
2*rp*.a + 2*e(4*u)*a**2*p*pp*r*W +
4*e**(2*u)*a**2*pet*r**4*rp*w**3 - 8*e

(2*u)*a2*pet*r**2*rp*w**3 + 4*e**(

2*u)*a**2*pet*rp*w**3 + 8*e**(2*u)*
a**2*r**3*up*w**3 - 4*e**(2*u)*a**2*r
3*w2*wp + 12*e**(2*u)*a**2*r**2*rp

*w**3 - 8*e**(2*u)*a**2*r*up*W**3 + 4*
e**(2*u)*a**2*r*W**2*wp - 4*e**(2*u)*a

2*rp*W3 + 2*rp*W*wp**2)/@*3$

P3:=(- 8*e**(4*u)*a**2*p**2*pet*pp*r**2 +
32*e**(2*u)*a**2*p*r**2*W*wp + 64*e**(

2*u)*a**2*p*r*rp*W**2 + 32*e**(2*u)

*a**2*pp*r**2*w**2 - e**(2*u)*pet*pp**
3 + 16*pp*up**2*w**2 - 8*pp*up*w*wp)/(

4*w**2)$

U4:= << 45 lines >>

W4:= << 67 lines >>

R4:= << 45 lines >>

P4:= << 28 lines >>

U5:= << 119 lines >>

W5:= << 172 lines >>

R5:= << 131 lines >>

P5:= << 98 lines >>

X Total of about 750 lines of code in above

x format of about 50 characters per line

% on gcd, factor;
on factor;
on gcd;
gentranout “theworks.trn” ;
optimize {

UPP :=: UPP* U3 ~=~ U39 U4 :=: U49 U5 ~=~ U59

WPP :=: Wpp, W3 :=: W3, W4 :=: U4, W5 :=: W5,

PPP :=: PPP2 P3 :=: P3> P4 :=: P4, P5 :=: P59
rpp :=: rpp, r3 :=: r3, r4 :=: r4, r5 :=: r5

};
gentranshut “theworks.trn”;
end;

After running the above through REDUCE, and thus
SCOPE, the resulting Csource code consists of nearly 600
lines ofcode, with 16 assignment statements forthe variables

of interest, and 414 assignments to intermediate variables,
all of the form “G” followed by an integer. It isimpracti-
cal to show the many lines of code here, so we show below

excerpts from the code produced, with the special notation

that an assignment to an intermediate variable is preceded
by the count of the number of times that value is actually

used in the subsequent code. Some of the assignments to
thevariables of interest are shown, while assignments which

produce many lines ofcode are simply replaced by the count

of the number of lines (of roughly the width shown here) in

the actual assignment.

{
21:
10:

18:
18:
4:

6:

4:
5:

7:

5:
5:
4:

14:
2:

2:

2:

2:

2:

2:

G2=erp(2*u);
G12=exp(6*u);

G24=w*w;
G30=G46*w;

G53=G286*G132 ;
G54=G285*G236 ;

G57=G245*G245*G106 ;
G64=G306*GI07;

G80=G285*G162*wP ;

G181=G393*rp;
G202=wp*w;
G285=p*up;

G486=a*a;
G543=G552+64.0*G140*wp-(192 .0*G251*wp)+96. O

*G123-(4.0*G377) -(448.0*Gl18*pet)+704.0*G146

-(320.0*G149);
G544=2.0*(G119+6 .0*G466*G119+G316-!-4 .O*(-(G496

*G118)-G312)-(G498*G58))-(G368*G21O) ;

G545=2.0*G493*G57-(G466*G77)+4.0*G385*G202
+16,0*(G250*G181-(G374*G373))-G77;

G548=128.0*(G334*G226-(G266*G111)+G24*G90) ;

G549=16.0*(G498*G71-(2 .0*G466*G71)
+G462*G71)-(G498*G76) ;

G550=2.0*G264*G127- (G220*wD)
-(G385*w)-(G370*G233); ‘

upp=(4.0*G555+G215-G592)/(8 .0*G24);

u3=(4.0*G553+i6.0*(G293+G346-G550)
-(G215*wP)-G591)/(8 .0*G46);

u4=(4.0*G548+24 .0*G547–(32. 0*G545)-G214+160 .O

*GI03-(448.0*G437)-(512.0*G205)+16.0*(-G549

-G546)+128.0*(G402+G428-G544)+8. O*(G543+G591
wp)+G513(192 .0*(2.0*G127-G298-G207))+12.0

*G495*G215)/(32 .0*G30);
u5= << 20 lines >>

wpp=(G555-G590) /w;

w3=(G553+4.0*(G550+4 .0*G208-G289+2. o
*(-G183-G187-G346))+G590*wP)/G24;

w4=(G548+G547+G543+2 .0*(G549+G545+4 .0*GI09
+12.0*G519+2 .O*G1O3-(32.O*G428)-(12O.O*G2O5)
+16.0*(G544-G394)+24 ,0*(G437-G402))+G594

*G123+G597*G219-(16 .0*G229*wp)-(4.0*G590

*G495)+G252*G201- (8.0*G496*G94)-G563) /G596;

w5= << 18 lines >>

184

ppp=(G395-(2.0*G217*pp) +8.0*G258*G128) /w;
p3=(pp*(-G592-(8 .0*G247))+G209* (G570+G569)

-(G474*G2)+64.0*G268*G144+G569*G202*p) /(4.o*G24);
p4=(4,0*(8.0*(G188-G145)+4.0*G585*G369+16.0*G299

*G185+10.0*G571*G237+G557*wp+G293*G213)+r* (64.0
*G260-(8.0*G387))+G12*(64.0*(G138-GIOO))-(8.0*

G560*G68)+Gi73* (4.0*G217-wpl+G206*(G599*G24

-G576)+G496*(128 .0*G237-(64.0*G120*G7))+G598
*PP-(G589*G466) -(16.0*G256*G127)+G595*G326

-(4.0*G386*G201)-(20 .0*G325*G84)-(256, 0*G301

*G120)-(64.0*G197*G122) -G589)/(G596*pet);
p5= << 36 lines >>
rpp=(G586+G391-(G202*rp)-(4.0*G302*G167))/G24;

r3=(G585+12.0*G86+G55+wp* (-G586-(3.0*G391))
+rp*(2.0*G262- (4.0*G153))+G167* (4.0*(G147
+G264*G2)+2 ,0*G366*w)-(8 .0*G140*r)+G600*G87

-(G571*G86)+4.0*G286*G207+2 .0*G239*G55)/G46;
r4= << 15 lines >>

r5= << 44 lines >>

}

This C code insignificantly more compact and efficient
than the input expressions, as evidenced by the following
statistics produced by SCOPE in the process of optimiza-
tion.

thnber of operationa in the input is:
Number of (+,-)-operations : 640

Number of (*)-operations : 4786
Number of integer exponentiations : 2226

Number of other operations : 654

Number of operations after optlmlzati.on is:

Number of (+,-)-operations : 550

Number of (*)-operations : 1156
Number of integer exponentiations : 0

Number of other operations : 20

The improvement is dramatic, particularly sinc~all inte-
gerexponentiations have been removed (none is available in
C!), and the number of multiplications haa been reduced to

about 24 YO of the original number. The total number of
operations has been reducd to about 21 ~0, yielding a five

fold speed increase, ignoring the fact that the relative slow-
nessoffloating multiplies, compared to additions, makes the

increase even more dramatic.
It is instructive to examine the code closely to see the

source of much of the optimization. Each of the local vari-
ables, here of the form “G...”, is used at least twice once

given ava.lue. Inanumber ofcases common subexpressions

are used more than twice, with a resulting significant opti-

mization. While a good human programmer can optimize
small expressions, the scale of vision required even in this

example is beyond the capabilities of most programmers.

6 Code Production Correctness

While the results of using SCOPE, or a similar package,
to produce optimal code are quite impressive, especially for

larger problems, it is important to sound anote of caution.

As in any complicated piece of software, there is a significant
possibility of programming error, either by faulty design,

or by accidentally entering incorrect source. This became
an important issue in the work described here, when owing
to the complexity of the resulting code, we decided that it
would reassuring to do a careful check of the correctness of
the final production C code.

Our procedure was very simple and involved a direct
transformation of the C expression sequence directly into

REDUCE source code. This wasthen read into REDUCE,

along with the original expressions that were supplied to the

SCOPE process. Much to our surprise, on computing dif-
ferences between the formal input and the resulting C code,

which should have simplified to zero, we found a few small,

but irreducible differences remaining.

The impact of the small differences could be transformed
away, by simply adding back the differences to the final C

expressions, which would then produce agreement with the
original input to SCOPE. Since the differences always in-

volved only a small number of terms when compared to the
total number of terms in each expression, the loss of opti-

mization was very small indeed. If the error had not been
discovered, as described, the net impact could have been

quite disastrous, since the essence of the problem we were
studying could be seriously altered, especially in asymptotic

properties by a missing term, ifit happened to contribute

to that aspect of the structure.

Thus, we would urge any user of such packages to al-
ways take the extra step of simply converting the resulting

C, FORTRAN, or similar code back into a form readable
bytheoriginal algebraic software package, and compute dif-

ferences between the intended expressions and the resulting

expressions that will be passed onto the final compiler.
We haeten to add that the SCOPE group found the error

in the distributed version of SCOPE (in REDUCE 3.4) after
we pointed out the problem to them.

Toshow the care that must beusedin using such pack-

ages) we include below a simple c~e where the error OC-
curred, where in this case the error manifested itself by a

simple change in the FACTOR flag within REDUCE.

===== Input file for REDUCE 3.4
load-package scope;

on priall;

optlang!*:=’c;
on factor;

011 gcd;
U2 := (pet/16)*(p2”2*e-(2*uO) - 16*e-
W3 := -2*pet*(rl”2 + 2*e-(-2*uO))$

r3 := rl*(3*pet*p2-2*e- (2*uO) + 32*pw

-2*1.lo))$

*rl”2

+ 24;p2 ~16*(pet - 6)*e-(-2kO))/32$

p4 := (16*pet*p2*e-(-2*uO) + 192*rl-2*e-(-2*uO)
- 3*pet*p2”3*e-(2*uO) - 16*pet*p2*rl”2)/8$

% the OFF FACTOR output file ---
gentranout “badscope.nof”;

off factor;
optimize { n-p4 ;=: p4, n-u2 :=: u2,

n_v3 :=: w3, ns-3 :=: r3 } insme N;
gentrsnshut “badscope.nof”;

% the ON FACTOR output file ---
gentrsnout “badscope,fac”;

on factor;
optimize { f-p4 :=: p4, f_u2 :=: u2,

f-w3 :=: w3, f_r3 :=: r3 } iname F;
gentrenshut IIbadscope.fat”;

end;
=s=5s OUtp@File llbadscope.nof” ‘--

{
N4=exp(2*UO);

N21=R1*R1;
N16=N21*N4*PET;
Ni5=PET*exp(4*UO) *P2*P2;
N22=3.0*N15;
N23=16.O*PET;

185

N-P4=(192.0*N21+P2*(N23-N22-(16. 0*Ni6)))
/(8.0*N4);

N_U2=(N15-N23)/(i6 .0*N4);
N-W3=(-(2.0*N16)-(4.O*PET))/N4;

N_R3=(Rl*(N23+N22+32 .0*N16+24.0*N4*P2)
-(96.O*Rl))/(32.0*N4) ;

3
===== Output File “badscope.fat” ---

{
F4=exp(2*UO);

F15=F4*P2;

F18=R1*R1;

F16=F18*PET;

F19=P2*PET;
F20=3.0*F19*P2 ;
F_P4=(192.0*F18+16. 0*F19-(16.0*F16*F15)

+F20*P2*exp(4*UO))/(8.0*F4);

F-U2=(PET*(F15-4. 0)*(F15+4.0))/(16 .0*F4);

F_W3=-(PET*(4. 0+2.0*F18*F4)) /F4;
F_R3=(Ri*(16. 0*PET+F4*(32. 0*F16+24.0*P2

+F20*F4)-96.0))/(32.0*F4);

3
===== Reduce test file generated

directly from above two files ---

t_u := f_u2 - rl-l12;
t-w := f_w3 - n_w3;

t _r := f-r3 - n-r3;

t _p := f_p4 - n_p4;
end;
===== These should all be zero -- one is not !

T_U :=0
T_W :=0
T_R := O

2*UO 3
3*E *PET*P2

T_P := ----------—-—----

4

Hence, the output generated byscope differs ina real way,
depending onthe FACTOR switch setting. The result with

OFF FACTOR incorrect, while the ON FACTOR result is

quite incorrect! The difference arises due to a single sign
error on the term with numeric coefficient 3. The error is
indicated below:

Wrong expression:

F_P4=(192.0*F18+16 .0*F19-(16.0*F16*F15)
+F20*P2*exp(4*UO))/(8.0*F4);

Correct expression:

F_P4=(192.0*F18+16.0*F19-(16.0*F16*F15)
-F20*P2*eq(4*UO))/(8.0*F4);

7 Conclusions

We have considered atypical problem involving a consider-
able mix of a formal theoretical nature at the outset, where

packages such as REDTEN running in REDUCE can be
used to develop the differential equations describing a phys-
ical system. The difficulty of solving these equations in

closed form leads to the requirement to produce good nu-

mericaJ code for their solution, and in this case, we were led
to the Taylor series method since it yields not only the di-
rect solution, but in addition significant information about
the metric functions and their derivatives at each point in

spacetime. The actual numerical code is sufficiently com-

plicated to make automatic code generation desirable, and
once checked with the aJgebraic system, we can have strong
confidence in the correctness of the production numerical

code.
With the development of good code generation andop-

timization packages, such as SCOPE, with the support of
other good packages, such as are available in REDUCE and

similar systems, it is possible to raise the level of the pro-
gramming language from the usual FORTRAN or C level, to

the formal algebraic level of REDUCE, MAPLE, and other

similar packages. From the point of view of the physical

scientist or engineer, this represents a significant advance.
Unfortunately it will take a reasonably long time for this to

become thestandard mode ofoperation inthese areaa. The
rapid spread of the use of algebraic computing will assist
in this evolution, although a significant number of users of
algebraic systems restrict their use to something similar to

the use of a desk calculator.
In an epoch where the effort put into the development

of excellent compilers for RISC machines is so important,

it is appropriate to view packages such as SCOPE and its
competitors as high level front ends for compilers. This is
particularly important when considered from the point of

view ofglobal optimization ,since these packages are capable
of using knowledge of the algebraic structure across a whole

family of related expressions. This is clearly far beyond

many of the present so-called highly optimizing compilers

designed for modern RISC machines. Many of these are so
ignorant of possible algebraic optimizations, that the direct

product of two square roots remains unchanged, with two

calls to the square root routine, even at the most extreme
Ievel of optimization. The capabilities ofagood algebraic

system in generating code can go much farther than this, as
shown even in the fairly modest example presented here.

8 Acknowledgements

It is a pleasure to thank J. Harper, F. Marleau, E. Shaver,
and G. Starkman for stimulating discussion in this work,
and to acknowledge the support of the Canadian Natural

Sciences and Engineering Research Council fortheir finan-
cial support. In addition, thequick response of J.van Hulzen

and his SCOPE group in discovering the problem with the

SCOPE distributed with REDUCE 3.4 was of great help to
us.

References

[1]

[2]

[3]

[4]

[5]

[6]

J. Harper and C.Dyer, The REDTEN

1986, 1994.

C. Dyer, F. Marleau, E. Shaver,

Phys. Rev. D.

User’s Manual,

submitted to

R. Schopf, in RED UCE3.~ Miscellaneous Documenta-
tion.

A. Barnes, J. Padget, in REDUCE 3..4 Mwcillaneous
Documentation.

B. Gates, M. Dewar, in REDUCE 5’.~ Miscellaneous

Documentation.

J. van Hulzen, in REDUCE 3.4 Miscilianeous Docu-

mentation.

186

