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Extended Abstract

1. Introduction

The Toeplitz-likeness of a matrix (Kailath et al. 1979)

is the generalization of the notion that a matrix is

Toeplitz. Block matrices with Toeplitz blocks, such

as the Sylvester matrix corresponding to the resultant

of two univariate polynomials, are Toeplitz-like, as are

products and inverses of Toeplitz-like matrices. The dis-

placement rank of a matrix is a measure for the degree of

being Toeplitz-like. For example, an r x s block matrix

with Toeplitz blocks has displacement rank r+s whereas

a generic IV x IV matrix has displacement rank IV. A

matrix of displacement rank a can be implicitly rep-

resented by a sum of a matrices, each of which is the

product of a lower triangular and an upper triangular

Toeplitz matrices. Such a XLU representation can usu-

ally be obtained efficiently.

We consider the problem of computing a solution to a

possibly singular linear system Az = b with coefficients

in an arbitrary field, where A is an IV x IV matrix of dis-

placement rank a given in ZLU representation. By use

of randomization we show that if the system is solvable

we can find a vector that is uniformly sampled from the

solution manifold in 0(cr21V(log iV)2 loglog lV) expected

arithmetic operations in the field of entries. In case no

solution exists, this fact is discovered by our algorithm.

In asymptotically the same time we can also compute

the rank of A and the determinant of a non-singular A.

Toeplitz and Toeplitz-like matrices and the corre-

sponding linear systems are ubiquitous in control theory,

of course, but also in symbolic computation. Examples
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are Sylvester resultants and subresultants, extended

subresultants (Sasaki and Furukawa 1984), and slope

resultants (Hong 1993). We have encountered them

in Coppersmith’s block Wiedemann algorithm (Copper-

smith 1994, Kaltofen 1993 and 1994), where a bottle-

neck subproblem is the computation of a non-zero solu-

tion to a homogeneous block linear system with Toeplitz

blocks. That system is derived from a problem for

finding a linear recursion for a sequence of matrices,

whose solution is a sequential component of the other-

wise parallelizable algorithm and whose running time

grows linearly in the number of processors used when

solved by a generalization of the Berlekamp/Massey al-

gorithm (see Diaz et al. 1993, Figures 4 and 5). Toeplitz-

like systems appear in coding theory problems (Feng et

al. 1994). Macaulay matrices and their sparse counter-

parts (Canny and Emiris 1993) also have Toeplitz-like

properties, although the displacement operators used

here do not directly apply. It is an important open

problem to develop the corresponding theory and algo-

rit hms.

Our results build on work by Bitmead and Ander-

son (1980) and Morf (1980). We contribute in two ways.

First, we remove by use of randomization the restriction

that the input matrices are in general position. That

condition is necessitated by the Bit-Anderson/Morf ap-

proach for two reasons. One is the necessary invertibll-

ity of the consecutively computed Schur complements

and the other is the need to compute a minimum length

XLU representation for the occurring Schur comple-

ments from one with more terms than is the known

displacement rank of those matrices. We apply a ran-

domization from Kaltofen and Saunders (1991) to solve

both problems: by multiplying an arbitrary matrix from

the left with a random unit upper triangular Toeplitz

matrix and from the right with a random unit lower tri-

angular Toeplitz matrix, the resulting product matrix

has a generic rank profile with high probability. This

means that such a matrix can be triangularized without

and/or spicific per-mission.
ISAAC 94- 7/94 Oxford England UK
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row or column permutations, a property which is needed

for O (alV2) Levinson-t ype algorithms as well (see, e.g.,

Gohberg et al. 1986 and Delsarte et al. 1985). Our sec-

ond contribution is the generalization of ~lgorithms to

singular systems. Again, we make use of ideas in Kalt-

ofen and Saunders (1991).

Our algorithm yields a unified approach for comput-

ing in “soft’’- linear time polynomial greatest common

divisors and polynomial Euclidean schemes (Moenck

1973), Sylvester resultants (Schwartz 1980), and solu-

tions to Toeplitz systems (Brent et al. 1980). As said

before, our application is to a bottleneck substep of the

block Wiedemann method (Diaz et al. 1993). For in-

stance, when solving a sparse linear system with 20000

equations 20000 unknowns, and 1.3 million non-zero

entries in the coefficient matrix over the finite field

GF(32 749) on eight computers, the solution of the aris-

ing singular block Toeplitz system by the block Berle-

kamp/Massey algorithm consumes more than 50% of

the total time (ibid., Figure 4). It is, however, un-

known to us if a careful implementation of the meth-

ods presented here can result in superior performance

on such actual problems than the quadratic-time proce-

dures which we currently use.

The next section presents sufficient detail of the the-

ory of Toeplitz-like matrices, which is intended to make

this paper self-contained. In particular, we give a con-

structive proof of the fact that the product of Toeplitz-

like matrices remains Toeplitz-like (Proposition 2). Our

algorithm utilizes recent randomization techniques from

non-numeric linear algebra. In j3 we introduce the nec-

essary ideas and give the key algorithm for reducing a

XLU representation to minimum length (Proposition 4).

In $4 we describe the main divide-and-conquer algo-

rithm for inverting the leading principal of a Toeplitz-

like matrix that has generic rank profile. We also prove

that the arising possibly singular Schur complements

remain Toeplitz-like.

2. Toeplit z-like matrices

In this section we introduce well-known tools from the

theory of Toeplitz-like matrices (Kailath et al. 1979)

needed in our linear system solver. We first define the

notion of the displacement rank of a matrix. We con-

sider N x IV matrices over a field K; define the lower-shift

matrix

1]

o
10 0

z= 1 ““.

0“””10
and define the matrix shift operators

JA = 2A and TA = AZtr,

The matrix J A is equal to A after being shifted down

by one row, filling the first row by zeros, and the matrix

P A is equal to A after being shifted to the right by

one column, filling the first column by zeros. Following

Kailath et al. (1979), we define

4+(A) = A– l(TA) = A - 2A 2“

and

CY+(A) = rank #+(A),

the latter being the displacement rank of A with re-

spect to the displacement operators rj+. The fundamen-

tal property is that given 2a column vectors yl, . . . . ya

and.zl, ..., .zU the functional equation in the matrix X,

x– J(?x) = ‘gyjz;r (1)

j=l

has the unique solution

where L[y] denotes a lower-triangular Toeplitz matrix

whose first column is y and U[ztr] denotes an upper tri-

angular Toeplitz matrix whose first row is Ztr. Therefore

a matrix of displacement rank CYw.r.t. ~+ is a sum of a

products of lower and upper triangular Toeplitz matri-

ces. We shall call the vectors yl, . . . . ya and Z1, . . . . Za

in

I.2 (3)

the left and right generators of the N x N matrix Y.

For our purpose, the matrix Y will be a displaced ma-

trix such as g$+ (X). Furthermore, we shall call the rep-

resentation (2) the XL U representation for X. That

representation requires only the storage of O(ctN) field

elements. Clearly, one may derive a generator (3) for

Y by choosing the vectors yj to be a linearly indepen-

dent columns of Y, and the entries in each column of

the right factor matrix with the rows z~r to be the linear

combination that yields the corresponding column of Y.

The main property of matrices of small displacement

rank is that their inverses also have small displacement

rank. Clearly, the inverse of a Toeplitz matrix is not

Toeplitz but, as we will see, it is Toeplitz-like. However,

the displacement operator O+ does not directly apply to

the inverse; instead, a dual operator is used, which we
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now introduce. Consider the shift operators

~A = Z“A and 7A= AZ.

The matrix l’A is equal to A after being shifted up by

one row, filling the last row by zeros, and the matrix

? A is equal to A after being shifted to the left by one

column, filling the last column by zeros. Now define

+-(A) = A– T(7A) = A – Z’rAz

and

a_(A) = rank #_(A),

the latter being the displacement rank with respect to

the displacement operator $-. By transposition along

the anti-diagonal of the matrix X in (1), one obtains a

dual to the 2LU representation; namely,

where z ‘e” is the reverse of a vector z; that is,

[0 . . . 0 II

1 ‘1
o 10

z“V=J. Z with J= . “’” .. e KNXN..”
. .

1 00

We will call the right side of (4) the ZUL representa-

tion of X. There is an explicit formula for converting

a .ELU representation to a EUL representation (cf. Bit-

mead and Anderson 1980, Lemma 5), which we will need

later: for y, z C KN

L[y]?l[z”] = IL[2] + u[j”]l

–U[(ZJy)’r]L[ZJz]j (5)

where 2$’ is the reversed last row of L[~] U[ztr], and ~

the reversed last column of L [y] U[ztr] but with the first

entry set to O. Note that I is the h’ x iV identity matrix.

From (5) and the dual formula

U[z’’]qy] = L[yjI + H7[2’]

–~[ZJz]~[(z~y)tr], (6)

for y, z c KN, where it’ is the first row of U[.ztr]L[y],

and j is the first column of U [,ztr] L [y] with its first

entry set to O, we conclude that for any square matrix

A the inequalities –2 < Q+(A) – a- (A) <2 must hold.

Moreover, the conversions (5) and (6) can be carried out

in O(Af log IV loglog N) arithmetic operations in K. We

finally can formulate the closure property with respect

to matrix inversion.

Proposition 1. For any nonsingular matrix A E

KN ‘N we have for the displacement ranks of the inverse

matrix ~+(A-l) = cL(A) and a-(A-l) = @+(A).

An elegant proof of this property is found in (Pan 1992,

Proposition A.4). Proposition 1 also provides the his-

torical motivation for considering 2LU representations

(2): based on a Toeplitz matrix inversion algorithm by

Trench (1964), Gohberg and Semencul (1973) developed

a formula for the inverse of a Toeplitz matrix consisting

of a sum of two Toeplitz LU-products.

Another property of Toeplitz-like matrices that we

need for our algorithm is the fact that their products

remain Toeplitz-like. Because we encounter rectangular

matrices in our algorithm, we first have to extend the

definitions of the displacement operators to such matri-

ces. By subscripting ZN we shall indicate that the shift

matrix Z is of dimensions AJ x N; we define a rectan-

gular displacement operator

Again, I#J+(X) is generated by a = a+(X) = rank ~+ (X)

vectors yl, . . . ,ya GK”andzl, . . ..z@~KN. @+(X) =

‘r We now have the following product rule (cf.E;=l YJ Zj .
Pan 1992, Proposition A.3).

Proposition 2. Let G 6 KLx~ and H c KMXN

be rectangular matrices with displacement ranks y =

a+(G) and 6 = cr+(.H). Then ~+ (GH) can be gener-

ated by ~ + 6 + 1 vectors.

Proo$ First, we observe that IM = Z~ZM + eMefi,

where IM is the M x M identity matrix and eJ.f is the

M$h unit vector. Therefore

4+(GH)

= GH – ZLGIMHZ~

= GH – (ZLGZfi)(ZMHZ~) – z’LGeMefiHZ~

= (G - ZLGZ~)H + ZLGZ&(H - ZMHz’fi)

–ghtr

= 4+(G)H + ZLGZ;4+(H) – gh’r, (7)

where g = Z~GeM E KL and h = ZNH’re&f C ~N.

R

3. Randomizations

Our algorithm utilizes randomization. We collect the

necessary techniques here.

Theorem 1. Let F(zl,. . . , XV) be a non-zero v-variate

polynomial over an integral domain and let S be a sub-

set of that domain. Then the probability of avoiding the

zeros of F while evaluating in S is bounded as follows:

(Prob F(sl, . . . . sV)#Olsj CSforalll <j< v
)

>1 – (deg F)/(card S).
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Here deg(F) denotes the total degree of 1’, i.e., the max-

imum of all term exponent sums and card(S) denotes

the cardinality of S. The theorem in the above form was

given by Schwartz (1980). Somewhat different versions

are due to DeMillo and Lipton (1978) and Zippel (1979;

1993, $12).

In the following, we consider an N x N singular matrix

A with entries from a field. By A~ we shall denote the

leading i x i principal submatrix, i.e., the i x i submatrix

located in the left upper corner of A, where 1 ~ i < N.

We say that A has generic rank profile (cf. Delsarte et

al. 1985) if Aj is non-singular for all 1 ~ j < rank A.

In such a case, no search for non-zero pivot elements

would have to be performed during triangularization by

Gaussian elimination. The following is Theorem 2 of

Kaltofen and Saunders (1991).

Theorem 2. For an_N x N matrix A of rank r consider

the matrix product A = VA W with

and

[

1 t72 V3 . . . UN

1 V2 . . . vN_l

v= 1.:
“.

w=

[

1

W2

W3

1

W2 1

.,.

01~‘.

W2 1

where the elements of the unit upper triangular Toepiitz

matrix V and the elements of the unit lower triangular

Toeplitz matrix W are randomly and uniformly se~cted

from a subset S of the field of entries. Then A has

generic rank profile with probability no less than 1 –

r(r + 1)/card(S).

As we will see later, it is often useful to work with the

pre-conditioned matrix ~, which has generic rank pro-

file, instead of with A. The following simple lemma from

Kaltofen and Saunders (1991, Theorem 4) shows how to

find random non-zero solutions to inhomogeneous sin-

gular linear systems.

Proposition 3. Let A be an N x N matrix of rank r

and suppose that the leading r x r principal submatrix

A, is non-singular. Then for a random vector y with

coordinates from the fieJd of en tries, the vector

[1~ _ A;lb’
-—

ON-’ – “

is a random solution to Ax = b, where the vector b’

consists of the first r coordinates of b + Ay,

A key problem in the Bitmead-Anderson/Morf ap-

proach of inverting Toeplitz-like matrices is the reduc-

tion of a SLU representation of ~2 for a matrix X to one

with a minimum number of terms under the sum (2).

We can solve this problem by the randomizations dis-

cussed above. Consider that we are given /3 ~ a gener-

ators for a matrix Y = @+(X),

Y=jj .2t’, J,2 E KN@,

and we wish to determine the displacement rank a =

a+(X) and a 2LU representation of length a for X.

We pick random ~atrices V and W as in Theorem 2.

Then the matrix Y = VY W has, with high pr~babilit y,

generic rank profile, Since rank(Y) = rank(Y), every
..-

column to the right of the first a columns of Y is a linear

combination of the first a columns. These linear combi-

nations determine generators for Y; namely, Y = j. itr,

where j,i c KNxa. Here j are the first a columns

of Y and each column in & = [la I . ..] corresponds

to the linear combination, yielding the column of ~ in

the same position. The minimum-length generators for

Y are then obtained as Y = (V-lj) . (.#rW-l). The

running time of this method is stated in the next propo-

sition, whose proof can be found in (Kaltofen 1994, Ap-

pendix A).

Proposition 4. From a XL U representation of X c

KNXN of length ,f3, namely, X = ~{=1 L[j~] U [2~], one

can compute in O(a,L?N +/3N log N loglog N) arithmetic

steps in K a XL U representation X = ~~=1 L[!4j] U[zjrll,

where a = rank ~+(X) is minimum. The algorithm is

randomized and requires 2N – 2 uniformly sampled ei-

ements from a set S C K; it returns with probability no

less than 1 – cr(a + 1)/card(S) a correct result.

4. Fast inversion of a Toeplitz-like matrix

At task is to compute the 2UL representation for the

inverse of a non-singular matrix A given in EL U repre-

sent at ion. If A is singular, but of generic rank profile, we

seek the ZUL representation for the largest non-singular

leading principal submatrix, The aIgorithm follows a

divide-and-conquer matrix partitioning & la Strassen:

let

[1Al,l I A1,2
A=

A2,1 I A2,2 ‘
(8)

~’~, A1,2, A51 ‘= ~where A1,l c K Jfx(N-~), and

A2,2 E K(N-~Jx(N-~). If A1,l is non-singular, we con-

sider the Schur complement A = A2,2 — A2,1A~, ~A1,2.

If both A1,l and A are non-singular, the inverse can be

computed as A-1 =

[

A;,: + A;,; A1,2A-1A2,1A;,j I –A;,;A1,2A-1

–A4A2,1A;,:
I 1A-l “

The key property is:
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Proposition 5. If A, A1,l, and A are the matrices

defined above, Al,l is non-singular and if the top-left

entry of A, A[l, 11 # O, then a+(A) < a+(A).

Proof In case that A is a non-singular matrix, the

stated displacement rank inequality for the Schur com-

plement is proven (without the condition on A [1,11)

in Bitmead and Anderson (1980, Lemma 8) and it is

also stated in Morf (1980). We will reduce the sin-

gular case to the non-singular case. Consider a min-

imum length ~LU representation of A, namely, A =

~;=l ~(~)@) , and suppose without loss of generality

that (L(l)U(lJ) [1, 1] # O. The latter condition is ne-

cessitated by our assumption on the non-vanishing of

the top-left entry of A. Therefore, the parameterized

matrix

is non-singular of displacement rank CYw.r. t. @+. Parti-

tioning A(A) corresponding to (8), we obtain a param-

etrized Schur complement

It follows from the non-singular version of this proposi-

tion that a+(A(A)) < a. We may write A(A) as power

series in ~ with matrix coefficients,

A(A) = A + A(U$J + A2,1A~:L@@11,2

–A2,1A;,:u\;J)

+ higher order terms in A,

using the series expansion

(G+~H)-’

= (1+ ~G-lH)-lG-l

= G-l – AG-l HG-l +A2(G-1H)2G-1 + . . . .

Since no negative powers of A occur, the constant term

in this power series for A(A), which is A, cannot have a

higher displacement rank than A(A), which proves the

proposition. R

We can now sketch the main algorithm (cf. Bitmead

and Anderson 1980, p. 110).

Algorithm Leading Principal Inverse

Input: Vectors yl, . . . . ya, Z1, . . . . .za E KN such that

A = ~~=1 ~[Yj]U[Z~r] E KNXN has generic rank

profile.

Output: An integer r ~ N and vectors jjl,..., @a,

,21, ... ,za E K’ with @ < a such that with high

probability

r = rank(A) and A~l = ~u[ur]q%],

k=l

where Ar is the largest non-singular leading princi-

pal submatrix of A.

If N < a then expand the EL U representation of A and

compute A; 1 explicitly; finally, from q5- (AF 1) explicitly

determine the .X UL representation and return.

Now, let the matrix A be partitioned as (8) with itf =

[N/2] .

Step 1: CaJJ the algorithm recursively to process Al,l.

Note that the ZLU representation of A1,l is given by the

first M entries of yj and zj. If the returned rank of Al, I

is less than Ill, we are done, Otherwise, the algorithm

has produced a XUL representation of A:,;.

Step 2: Compute a XL U representation of length no

more than a for the Schur complement A = A2,2 –

A2,1 A~~A1,2. We further explain this task in the analy-

sis of the algorithm. If A [1, 1] = O, then A4 = rank(A);

else perform the next steps.

Step 3: Call the algorithm recursively to process A.

Note that, with high probability, rank(A) = M +

rank(A) = r.

Step 4: Consider the leading principal submatrix A.

partitioned as

[1Al,l I A~,2
Ar =

A;,l IAi,2

>

where Al,, ~ K~x~, A~ 2,Aj~{ E KMX(’-M), and

A\,2 E K(r-~)x(” ‘~). At ~his point we have the ZUL

representations for A~,~ and for A’ -1, where A’ = Aj,2 —

A; ~A~ ~A~ z. Compute (possibly non-minimum length,)

ge~era~ors for@_ (Bj)l), d-. (l?[,2), and 4- (Bj,l), where

Bj,2 = –A~~Aj,2A’-l, Bj,l = –A’-lA\,lA~~, and

B{,l = A~,; – B~,2A\,1A~,~. Finally, compute a min-

imum length X UL represent ation for

We can now state and prove the running time of the

above algorithm.

Theorem 3. Algorithm Leading Principal Inverse fin-

ishes after O(cr2N(log N)2 loglog N) arithmetic opera-

tions in K. It requires O(N log N) random field elements

that are uniformly sampled from a subset S C K, and it

returns with probability no less than 1 – 4Ncr/card(S)

a correct rank and E UL represent ation of the largest

leading principal submatrix.
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Proof. Let T(Q, N) denote the maximum number of

arithmetic operations required for any input of dimen-

sion N and of at most a displacement rank. Step 1 re-

quires at most T(a, [N/21) arithmetic operations. By

Proposition 5, Step 3 requires at most T(a, [N/2])

arithmetic operations. We shall show that both Step 2

and Step 4 have arithmetic complexity 0(a2 N log N c

loglog N). Hence, for a constant C, we must have

T(a, N) < T(a, [N/21)+ T(a, \N/2~)

+Ccr2N log N loglog N,

which yields the arithmetic complexity ‘T(a, N) = 0(cr2 .

N(log N)2 loglog N).

In Step 2, we first compute generators for ++(A) of

length ~ < 4a + 8, which we then reduce by Proposi-

tion 4 and 5 to a length of no more than a. The former

is accomplished as follows: generators of length no more

than a + 2 can be derived for ~+ (A2)2) from generators

for ~+(A) by correcting for the shift into A2,2 of parts

of row Al and parts of column &l of A. Similarly, gen-

erators of length no more than cr + 1 can be derived

for g$+ (A2,1) and ~+ (A1,2) (cf. Bitmead and Anderson

1980, Lemma 8). The ZIJL representation for A~,~ can

be converted to a IILU representation of length no more

than a + 2 by using formula (6). We do not have 2LU

representations for the rectangular matrices A2,1 and

A1,2. However, we have the ELU representation of A

restricted to these submatrices. Thus, we may effec-

tively use the product rule (7) of Proposition 2. For

instance, the generators

zHfA2,1z;l#+(A~j

arising in the computation of generators for ~+ (A2,1A~,~ )

are found by multiplying each y vector of the generators

of @+(A1)~); first by Z&, then by Az,l, and finally by

Z~-M. Clearly, from the ZLU representation of A re-

stricted to A2,1, such multiplication can be carried out

for a single vector in O(aN log N loglog N) arithmetic

operations. Therefore, the computation of the genera-

tors for A2,1A~,~A1,2 dominates this step at a cost of

0(a2N log N loglog N) arithmetic operations.

The tasks of Step 4 are carried out similarly. After

converting the ~LU representation of A to a XUL repre-

sentation using formula (5), we can obtain generators of

length no more than a + 3 for r#J_(A~,l) and I#_ (Aj,2).

Note that here we need a generalized @_ operator on

rectangular matrices. Then, as in Step 2 with a prod-

uct formula for +– (GH) dual to (7), we find generators

for

q5-(@,2) with a-( B{,2) <3a+ 5,

q$-(BL,l) with a-(13L,l) < 3cr + 5,

@_(.B{,l) with a_(Bj,l) < 6a+ 10.

Finally, the generators for the blocks can be “puzzled”

together to a generator of ~_ (A; 1) of length no more

than 13cr + 22. Note that the length is the sum of the

individual lengths corrected by two extra generators,

which make up for the “cross” of a row and a column

missing in the shift of the individual blocks. Finally,

we reduce the EUL representation of A; 1 to minimum

length, again appealing to a dual of Proposition 4. The

overall cost in this step is again dominated by the im-

plementation of the product formula, which is O(a2N .

log N loglog IV).

Finally, we argue that the algorithm produces, with

the stated probability, the correct result. By Proposi-

tion 5, the displacement rank of the Schur complement

A is no more than a. Furthermore, A has generic rank

profile, as can be deduced from the factorization

A=

[ lM ‘ 0 I“[A:’’lA:’]‘g)@4;,;\IN-M
Thus the algorithm produces a correct result if the ran-

domizations of Proposition 4 needed in Steps 2 and 4

result in correct ZLU representations and the recursive

calls return correct ZUL representations. The straight-

forward analysis yielding the given failure probability

estimate and random element count can be found in

(Kaltofen 1994, Appendix A). H

From Theorem 2, Proposition 3, and the analysis

of algorithm Leading Principle Inverse we immediately

obtain the following corollary. Note that by Proposi-

tion 2 the displacement rank of ~ in Theorem 2 satisfies

Q+(x) < (Y+(A) +4.

Corollary 1. Given a linear system Ax = b over a

field with N equations and N unknowns, where A is

an N x N matrix of displacement rank a given in Z L U

representation, we have a randomized algorithm that

either computes a solution vector x, which is randomly

sampled in the solution manifold, or it determines that

none exists in 0(a2 N(log N)2 loglog N) expected field

operations.

Example: We shall apply Corollary 1 to the problem of

computing extended Euclidean schemes. Consider two

polynomials

and

in K[z] of degree m and n, respectively. The following

problem occurs, e.g., when computing Pad& approxi-

mants: given an integer i < min{rn, n}, compute the
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scheme

sif_l +tifo = j’i, Si, ti, fi E K[z],

where $i is that remainder in the polynomial remainder

chain of ~-1 and ~. whose degree satisfies

d = deg(~i) ~ 1< deg(~i_l);

note that deg(si) = n – deg(~i_ ~). The main difficulty

imposed is that one does not know the actual degree

d in advance. One well-known solution is by Moenck

(1973) (see also Brent et al. 1980 and Strassen 1983) and

makes use of the Knuth/Schi5nhage half-GCD approach.

Alternately, we can use our algorithms for Toeplitz-like

linear systems, which we briefly explain now. Consider

the linear system in the coefficients of the polynomials

S(Z), Z“(z), and F(z),

{

deg(~) <1,

S~- ~ + T~o = F, deg(S) ~ n–i–l, (lo)

deg(T) ~ m–l–l.

Comparing coefficients of the terms 1, x, Z2, . . . . zmtn-~,

we obtain the (rn+n-i+l) x (m+n —1+1) coefficient

matrix

ao () b. () -1(-)

al ao bl ““. “.

al ““.
“.

b. 0 “-1

am : ao

o am b~

o . : 0 ““. ;“. o

0 ““” a; o ““” %~~ ~
n–l m—1 /+1

ideas can be applied to schemes of more than 2 poly-

nomials (cf. Kalkbrener et al. 1993, Kaltofen 1993 b).

❑

It is also easy to harness our algorithm for computing

the determinant of a Toeplitz-like matrix for by (9) we

have Det(A) = Det(Al,l) oDet(A).

Corollary 2. Given an N x N matrix A of displace-

ment t rank a in Z L U represen tation, we have a random-

ized algorithm that computes the determinant t of A in

0(a2N(log N)z loglog N) expected field operations.
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