EXPERIENCE USING THE ASA ALGORITHM TEACHING SYSTEM

Mério André Mayerhofer Guimaries
SENAC-DN, R.Gen.Justo 335/5 - § andar - 20021-130, Rio de Janeiro - RJ, BRAZIL.
mario@inf.puc-rio.br

Carlos José Pereira de Lucena
PUC-RJ, Rua Marqués de Sdo Vicente 225 - 22453-900, Rio de Janeiro - RJ, BRAZIL.
lucena@inf.puc-rio.br

Mauricio Roma Cavalcanti
SENAC-DN, R.Gen.Justo 335/5 - 5 andar - 20021-130, Rio de Janeiro - RJ, BRAZIL.

ABSTRACT

This paper describes the experience gained while using a computer based algorithm system called ASA, and explains
why the evaluation motivated the need for high level structures to represent student and algorithmic knowledge. The
system has been used in classrooms at SENAC, a Brazilian company associated with the Brazilian National
Commerce Confederation, which promotes technical education. SENAC has a branch in every state of Brazil {(26)

and every year trains approximately one million students.

1) INTRODUCTION

The first section of the paper describes the available
system. ASA consists of a tutorial with animations and
an environment for program construction.

The next section describes the experience acquired from
using ASA in the classroom environment. It describes its
strong points and its limitations.

The third section focuses on ASA's enhancements (both
implemented and forthcoming) that resulted from the
evaluation of the software.

The last section focuses on ASA's present stage.

The description of the motivation for constructing ASA
and the justification of the methodology it uses (ex:
verbal protocols) as well as its comparison with other
teaching systems, are not part of the present paper since
they have been published elsewhere [Maye91-1,
Maye91-2, Maye91-3, Maye92&Luce92].

2) ASA

ASA is presently a computer based environment for
teaching algorithms at the introductory level. Its features
include: Numeric Systems, Memory, Variables, Logic
Operations, Sequential Operations (assignments, [/O),
Selections, [terations (While and For), Representations
(Flowchart, Nasi-Schneiderman, Pseudo-code), Vectors,
Sorting, and Matrices.

Computer based environments to teach algorithms fall
into two basic categories [Maye92&Luce92]:

SIGCSE

BULLETIN Vol. 26 No. 4 Dec. 1994

Animation of the program in execution,
through data or code, to allow a better
visualization of its properties.

High level programming, possibly with the
use of diagrams, icons or forms.
Sophisticated syntax editors and graphical
interfaces are constructed for these purposes.
These systems aim to free the student from
details of language syntax, permitting greater
concentration on algorithmic reasoning,

ASA includes both features mentioned above. The system
originally consisted of three modules: Presentor, Animator
and Constructor. However, the Presentor and the Animator
have been merged into a single module called Lessons. It
includes eleven chapters presented in tutorial form. The
student is introduced to the subject through descriptive
materials and animations of concepts and algorithms.
Figure 1.1 displays one example of an animation. As the
student clicks the button "Execute Next Command" the
system executes one line of code and highlights the next
line on the algorithm view located on the left of the
screen. Simultaneously, the external and internal data
views on the right of the screen are also updated. On
Figure 1.2, the system prompts the student to type in the
values of variables a, b and ¢ after examining the code on
the left side of the screen. For each answer, the system
sends a message informing the student if it is correct or
not and giving advice or a hint when appropriate.
Furthermore, these answers are recorded on the students'
card (profile) shown in Figure 1.3. Access to the card is
granted only to the teacher.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F190650.190661&domain=pdf&date_stamp=1994-12-01

Figure 1.1

Figure 1.2

SIGCSE
BULLETIN

BEGIH

FOR book FROM 1 TO nBook~1 DO

EHD

FOR next FROM book +1 TO nBook DO
IF size [hook] > size [next] THEN
aux < size [book]

size [hook] < size [next]

size [next) € aux

S8}

vol.

|/ New Student

Table of Contents

26 No. 4 Dec. 1994 46




3 Missed fourth field, placed b
.b3 Correct: second selection test.

69 Missed a, placed 9

p
p
p
p
p
p
p
p
p
p
p.b9 Missed b, placed 16

Figure 1.3

25 Used Count <- 1 instead of Count <- Count + 1
25 Used Count <- +1 instead of Count <- Count + 1.

25 Used Count + 1 instead of Count <- Count + 1

25 Correct answer: Contador <- Contador + 1

26 Correct answer: salario = salario + 200,

27 Missed the first assignment (x,v.z|, placed z as 14
27 OK with the first agssignment text [x,v.z]

h

At the end of each lesson the system proposes a list of
exercises to the student. Most of these exercises are to be
done using the Constructor. The Constructor consists of a
flowchart editor and interpreter. The student constructs
his/her algorithms interactively using menus and icons,
and the algorithm is represented graphically. The
algorithms can be executed directly, step by step, or
using breakpoints. An output window (displays strings
and variables resulting from print commands) and a trace
window (displays values of all variables) can be moved
and sized to be placed at the most convenient location on
the screen. The student can also visualize his/her
algorithm in Pseudo-code, Pascal, C, or Clipper. Figure 2
displays a simple algorithm being constructed. Below the
pop-up menus there are nine iconic buttons for creating
algorithms (Variable Declarations, Assignments, Input,
Output, If-Then-Else, While, For, Editing and Deletion)
and three execution buttons (Execute Directly, Step by
Step execution, and Abortion). The rest of the screen is
the work area. In the example the student placed the trace
window and the output window on the left side of the
algorithm's flowchart representation and the Pascal and C
windows on the right.

Every time the student makes changes and executes a
new algorithm, the new version is recorded in the

SIGCSE

BULLETIN Vol. 26 No. 4 Dec. 1994

student's folder, thus allowing the teacher a closer
follow-up on the classroom activities.

3) USING THE EDUCATIONAL SOFTWARE IN THE
CLASSROOM

The first time ASA was used in a classroom environment
was in an "Introduction to Algorithms" course. The
conventional course was approximately 40 hours. With
the software, the goal was to reduce it to 20 hours (it
lasted approximately 25 hours). The first two class
experiments involved only eight students (two per
workstation),

3.1) Positive Observations

3.1.1) As with most educational software, one of the first
noticeable advantages of using the system was
motivation. With ASA, even the students who were
learning at a slower rate enjoyed the classes. There was
no need for homework or auxiliary material. This
contrasts with a conventional course, in which students
who are having difficulty learning a particular subject
become unenthusiastic and tend to avoid the subject
thereafter (ex: Math).



Figure 2

3.1.2) Another advantage of the system which is also
common with educational software in general, is the
possiblity of each student learning at his/her own speed.
In conventional classroom environments, most students
are either bored because the professor is reviewing the
subject slowly, or are lost because the subject is taught
too fast.

3.1.3) The software permitted students to map abstract
into concrete views. In conventional courses, algorithms
were either taught in an abstract form (the student never
used the computer), or in a limited form (the student
learned only one programming language).

3.2) ASA's limitations

Although ASA received much praise from educators and
students, its first version showed two drawbacks, which
reduced its usefulness for teaching introductory
algorithms:

3.2.1) Many students were able to create algorithms
correctly without understanding their purpose. It was
necessary to explain that in a real world environment, the
source code is not furnished to the end-user. This was
done by showing the same algorithms running under

SIGCSE

BULLETIN Vo

26 No. 4 Dec. 1994

- HANDS |

48

DOS. Emphasis was put on such features as step by step
execution and code visualization which do not exist in a
real environment.

3.2.2) The teacher could lose control of the students
during the lessons. It was impossible for the teacher to
correct the students’ algorithms and supply them with the
necessary explanations/feedback (generating test data
and displaying appropriate animation) as fast as they
created new algorithms. During the first course, this
problem was often resolved by the teacher intervening
and furnishing information to the class at the blackboard.
This helped the teacher to know what subject students
were not understanding and to monitor them. However,
this resulted in the loss of one of the biggest advantages
that educational software offers: the possibility of each
student learning at his/her own speed.

4) ENHANCEMENTS TO ASA
4,1) Evaluation of Students
For teachers to closely monitor students an educational

software needs to capture their knowledge. The process
was initiated by:



Making the Lessons more tutorial driven as
opposed to the pure hypertext-like interface it used
before. Questioning the student and recording
their answers permitted the teacher to follow-up
the students more closely in later courses (see
Figure 1.3 of section 2).

Saving a version of the student's algorithm every
time it is modified and executed.

Two more experimental courses were applied. The two
enhancements mentioned above allowed for the teacher
to check on the students' activities. Analyses of the
students' files not only permitted the teachers to evaluate
their students, but also supplied feedback to improve
ASA's content. Whenever the same misconception
occurred with more than one student, ASA was improved
to give further information.

4.2) Program Verification

The next experiments were to be applied in larger
classroom environments, consisting of approximately 20
students. Besides providing tools to evaluate the students,
it was necessary to provide tools to relieve the teachers'
burden. Therefore, the next enhancement built into ASA
was the capacity to automatically verify the students'
program. All the student needs to do is to click the button
Test. ASA will execute the algorithm several times, one
for each set of test data  (that have been previously
stored on disk for that specific algorithm). It will also
inform the student if his algorithm is correct or not). If it
is not correct, ASA will inform which set of test data
caused the error.

4.3) Algorithm and Student Classification System.

Presently, ASA is capable of informing whether the
students' algorithms are correct or not through the
generation of test data. However, if the algorithm
contains bugs, the system is not at present providing any
useful information besides indicating the input data set
that caused errors and showing what the correct output
should have been. For a buggy algorithm, the system
should provide complementary information indicating
why it fails and the student's misconception.

Therefore, the project's next goal is to be able to classify
both student and algorithm knowledge. Artificial
Intelligence, concerning topics such as planning and
knowledge based systems are being analyzed. Software
Engineering topics such as program transformations are
also being studied. These techniques, along with the

SIGCSE .
BULLETIN Vol. 26 No. 4 Dec. 1994

student information described in section 4.1 that was
received, has furnished input data for the Algorithm and
Student Classification System that is being prototyped.

5) FINAL REMARKS

The strategy adopted to achieve the above mentioned
goals has been bottom-up, always accompanied by
testing intermediate steps in classroom environments.
ASA was applied in six experimental courses and
distributed to the states of Brazil. Then, it was distributed
to SENAC's branches. Results of applying ASA in
different states have been reported. The discipline is
now being taught in less than half the time. Besides,
students that complete these courses have shown a better
assimilation than students coming from conventional
COurses.

It is important to note that even though ASA's evolution
is supported by theoretical concepts, it has also been
motivated by practical considerations.

Reference

[ADAMBSB0] Adam, A.; Laurent, J. "LAURA, A System
to Debug Student Programs." Artificial
Intelligence 15, 1980. p.75-122.

[BROWS87] Brown, Marc. "Algorithm Animation", PhD
Thesis, Brown University, May 1987.

[ERRI84] Erricsson, Anders ; Simon, Herbert.
"PROTOCOL ANALYSIS, Verbal
Reports as Data". The MIT Press. London,
England, 1984.

[FOSD76] Fosdick, L.D.; Osterweil, L.J. "Data Flow
Analysis in  Software  Reliability".
Computing Surveys 8, 1976. p.305-330.

[GOEL89] Goel & Pirolli. "Design within Information-
Processing Theory: The Design Problem
Space". Al Magazine, Spring 1989,

[JONES0] Jones, A.C. "Teaching Programming at a
Distance". Institute of Educational
Technology, Summer 1990. p.130-133.
[JOHN86] Johnson, William L. "Intention-Based
Diagnosis of Novice Programming
Errors”, Morgan Kaufmann Publishers Inc.
Los Altos, California, 1986.



[KEARS87] Kearsley, Greg. "Artificial Intelligence and
Instruction”, Addison-Wesley Publishing
Company. 1987.

[KRIS89] Krishnamoorthy, Kukkai; Swaminathan,
Ramesh. "Program Tools for Algorithm
Animation", Software Practice and
Experience Vol.19 (6), June 1989. p.505-
513.

[LUKE80] Lukey, F.J. "Understanding and Debugging
Programs". International Journal of Man-
Machine Studies, 12, 1980. p. 189-202.

[LURI70] Luria, Alexander R, "Desenvimento

Cognitivo". Editora S3o Paulo, 1970.

[MAYE91-1] Mayerhofer, Mario André. "Projeto de um
Ambiemte para Animagfo e Simulagdo de
Algoritmos (ASA)". Exame de
Qualificagdo, PUC/RJ Dez/1991.

[MAYE91-2] Mayerhofer, Mdrio André. "Aplicacdes de
Protocolos Verbais" Exame de
Qualificagdo, Bruno Feijé. Dept. de
Informética, PUC/RJ. 1991,

(MAYE91-3] Mayerhofer, Méario André. "Protocolos
Verbais, Processos Cognitivos ¢
Construgdo de Algoritmos"”. Boletim
Técnico do SENAC. Vol.17, Numero 2.
Maio/Agosto 1991. p.107-124,

[MAYE92&LUCES2] Mayerhofer, Mirio André;
Lucena, Carlos José P. " Design of an
Algorithm Simulation and Animation
Environment", SIGCSE Bulletin, June
1992, Vol.24, n.12, p. 7-14.

[PAPES80Q] Papert, Seymour. "Mindstorms", Basic Books
Inc., New York, NY., 1980.

[REIG89] Reigeluth, Charles M. "Instructional-Design
Theories and Models: An Overview of
their Current Status”. Lawrence Erlbaum
Associates, Inc. Hillsdale, New Jersey,
1989.

[RICH90] Rich, Charles; Waters, Richard C. "The
Programmer's  Apprentice".  Addison
Wesley Publishing Co., New York, N.Y.,
1990.

[SCANS87] Scanlan, David. "Data Structures Student
May Prefer to Learn Algorithms Using

SIGCSE

BULLETIN 1994

Vol. 26 No. 4 Dec.

Graphical Methods”, SIGCSE Bulletin,
March 1987, p.302-307.
[SHEI81] Sheil, B.A. "Psychological Study of
Programming". Computer Surveys,
Vol.13, No.1, March 1981, p.101-120.

[SHU88] Shu, Nan C. "Visual Programming", Van
Nostrand Reinhold Company Inc., New
York, 1988.

[WENG87] Wenger, Etienne. "Artificial Intelligence and
Tutoring Systems", Morgan Kauffman
Publishers, Inc. Los Altos, California,
1987.

[WERTS2] Wertz, H. "Stereotyped Program Debugging:

an Aid for Novice Programmers."
[nternational Journal of Man-Machine
Studies 16 (1982), p.379-392.

¥+ Teaching Continued From Page 44*****

Both techniques 1require consistent
prodding by the instructor, particularly at the
beginning of the term. If the instructor is not
consistent in demanding the names, students
will stop giving them. Getting back into the
habit is then hard — better to not get out of it!

Which technique is better? It depends on
the class. A highly-interactive class where
instructors often question students,
identifying each student with name cards is
more suitable. A lecture oriented class where
questions tend to originate with students is
better suited for the first method.

min

Several teaching technigques have been
discussed that are relatively inexpensive to
implement, but, at least for one instructor,
have yielded rich rewards.

Bibliography

[Bon91] Bonwell, Charles C. “The
Enhanced Lecture” in A Resource
Book for Faculty, Center for
Teaching and Learning, Southeast
Missouri State University, Sept.

1991.

Gedalos, Allan. How to Make a
Little Professor Go a Long Way.
Seminar presented at University of
Waterloo on April 22, 1992, Gedalos
is at University of Western Ontario,
London, Ontario.

[Ged92]

50



