
An Undergraduate Course in Concurrent Programming Using Ad a

Kwok-bun Yue
Division of Computing and Mathematics

University of Houston - Clear Lak e
2700 Bay Area Boulevard
Houston, TX 77058-1098
E-Mail: Yue@cl .uh.edu

Abstract

This paper describes a senior level course in
concurrent programming using Ada . Unlike other
similar courses in the subject area, it is not part of a n
operating systems course, nor is it tied to a particular
hardware architecture. The course is software oriente d
and it discusses in depth a concurrent programmin g
language, Ada, so that students are able to actuall y
develop effective concurrent programs to solve problems
in a wide range of applications . Ada is selected becaus e
of its popularity, superb portability, numerous hardwar e
platforms, and rich concurrent constructs . Classical
issues in concurrent programming are presented in th e
context of Ada . General issues in designing concurren t
programming languages are elaborated using Ada,
together with other concurrent programming language s
such as CSP, Occam, and Linda . Finally, genera l
principles of designing parallel programs are als o
discussed . Therefore, the course provides both th e
depth in a concurrent programming language fo r
program development and the breadth in concurrent
programming theory for insight . Using Ada throughou t
the course strengthens student's expertise in Ada an d
provides an useful reference point for understandin g
concurrent programming theory. The course is heavily
based on handouts, examples, homework an d
programming assignments . A rich set of instructiona l
materials are available from the author .

1 .

	

Introductio n

Concurrent programming has rapidly become a n
integral part of computer science education. As
Carriero and Gelernter put it, "parallelism will become ,
in the not too distant future, an essential part of ever y
programmer's repertoire ." [3] . Frequently, concurren t
programming is either offered in the graduate level, o r
is covered as a part of other undergraduate courses ,
usually the operating systems course. For example ,
Sanders and Hartman described the integration o f
concurrent programming in the Fortran and

programming languages courses [16] . There is muc h
discussion of teaching concurrent programming within an
operation systems course [12, 14, 1S] . There are also
many parallel programming courses that are hardwar e
based, with the course contents closely tied to one or
many particular hardware architectures [15] .

While these efforts are productive, we believe
the growing importance and maturity of the area justify
an independent software oriented concurren t
programming course at the senior level. By separating
it from the operating systems course, both the depth and
the breadth of the subject can be reached . This also
eases the pressure of the ever growing contents of th e
undergraduate operating systems course and allows it a
better coverage of other important topics . This pape r
discusses the framework and organization of such a
course offered at the University of Houston - Clear Lak e
(UHCL) .

2 .

	

Course Objective s

There are two major applications of the
concurrent computation model . The first application i s
to exploit hardware parallelism to solve problems more
quickly by mapping concurrent processes to underlying
parallel hardware architectures for potential speedup .
The term parallel programming is generally used whe n
physical hardware parallelism exists . In this respect, the
goal is to speed up problem solving and many topics ma y
be discussed, for example, parallel models of hardwar e
architectures (such as message passing, shared memory
and data parallel), design of parallel algorithms ,
complexity analysis of parallel algorithms, forma l
methods in developing parallel programs and paralle l
processing .

The concurrent computation model can also be
effectively used in modelling and constructing effectiv e
solutions in areas such as embedded systems and real -
time applications, where it is more suitable than th e
traditional sequential computation model . The main

SIGCS E
BULLETIN Vol . 26 No . 4 Dec . 1994 59

http://crossmark.crossref.org/dialog/?doi=10.1145%2F190650.190664&domain=pdf&date_stamp=1994-12-01

64

concern here is the appropriate design of solutions, an d
not the potential speedup. In fact, many embedde d
systems and real-time applications are implemented on
uni-processors . In this respect, topics such a s
concurrent computation models, concurren t
programming languages, timing, priorities an d
scheduling, control and synchronization theory, etc, may
be discussed .

It is obviously not possible to include all thes e
topics in a single course . Our first decision is to make
the course software oriented . After their graduation, i t
is more likely for students to develop concurren t
programs in a concurrent language than to deal with a
particular parallel hardware architecture directly .
Hardware issues in parallel programming are thus lef t
to other available courses at UHCL, such as th e
graduate courses in high performance architectures an d
parallel processing.

Several objectives of the course are established
to define the course contents . Firstly, the course should
discuss in depth a selected concurrent programmin g
language so that students are able to actually develo p
concurrent solutions in this language for a wide rang e
of applications . This is in contrast to courses that solely
concentrate on the general theory of concurrent
computational models without an in-depth coverage of
a concurrent language. We feel that at the
undergraduate level, actual development of concurren t
programs is very important in helping students to
understand the underlying concepts . A deep
understanding of a concurrent programming languag e
will expose many implementation issues common in
developing concurrent solutions, improve the student
confidence in their skills and provide insight in genera l
issues of concurrent programming. By concentrating at
the concurrent programming language level, we avoid
being tied to the intricacy of a particular hardwar e
architecture, which may not be readily transferred to
other hardware architectures . It is more advantageou s
to have expertise in a language that can be mapped to
different kinds of hardware architectures .

Secondly, students should understand enough
classical issues in concurrent programming to allo w
them to develop concurrent solutions. Thirdly, student s
should have a good understanding of concurren t
programming languages in general . Students may not
be working with the selected language after thei r
graduation and may need to learn another languag e
quickly. A broad knowledge of concurrent
programming languages is essential in developin g
transferable insight in concurrent programming . Such
a grasp of the underlying theory is especially important

SIGCSE

	

Vol . 26 No . 4 Dec . 199 4
BULLETIN

because of the rapid technological advances in compute r
science. Furthermore, students will be more aware of
the strengths and shortcomings of the selected language
and thus be more capable of developing effectiv e
solutions in the language .

Fourthly, students should have a good idea o f
general design principles of concurrent programs ,
independent of the language used . That should cover
the basic mechanism for composing parallel programs .
Ideally, a formal method approach, such as by Chand y
and Taylor [5], with a good treatment of complexity
analysis, is desirable, if time permits .

3 .

	

Course Content s

Ada is selected as the language of choice for th e
course . UHCL is located next to the NASA Johnson
Space Center at Houston with a large Ada community .
There is a SIGAda in Clear Lake. Ada is a require d
core course for every undergraduate program i n
computer science. Beyond the local rationale, there ar e
good general reasons for selecting Ada . Many have
reported using other concurrent languages in a
concurrent programming course : Pascal-FC [6] ,
Concurrent Distributed Pascal [10], Joyce-Linda [13] ,
CSP [15] and custom designed language environments
[11] . Although they have many merits in themselves ,
none can match Ada in terms of popularity, practicality ,
portability and availability in a wide range of platforms .
Portability is especially convenient for students since they
can develop their programs on many platforms . In fact ,
Feldman has demonstrated that sophisticated Ad a
programs can be written using a number of packages an d
tasks to be entirely portable [8] .

Besides, Ada is a modern programming language
with rich constructs and was designed with softwar e
engineering principles as goals, both important for an
instructional language for computer science courses .
Although there are some well reported problems in th e
rendezvous model in Ada, Ada's tasking is powerfu l
enough to solve a wide range of applications effectively.
Furthermore, the new Ada-94 standard has solved many
of these problems as well as further strengthened Ad a
expressiveness.

The course is divided into three parts . Since al l
students have already taken an introductory Ad a
programming course, it is not necessary to review Ad a
sequential programming features . The first half of th e
course contains a very detailed discussion on al l
concurrent constructs in Ada, in parallel with traditiona l
issues in concurrent programming . Classical problem s
such as buffers, mutual exclusion, readers and writers,

6 1

and producers and consumers are also discussed with
Ada solutions of various sophistication . A discussion o f
the relative merits of the Ada rendezvous model end s
the first half of the course .

There are many good textbooks for this par t
(for example, [2, 3, 9, 17]) . The book by Burns [3] is
probably the most authoritative and complete treatmen t
of concurrent programming in Ada. However, it is
relatively hard for undergraduate students to read an d
contains no exercises . Although we have selected the
book by Barnes [2] because it is also the textbook fo r
the prerequisite Ada programming course, any of th e
aforementioned books should be satisfactory .

In the remaining half of the semester, issues i n
designing concurrent programming languages are firs t
elaborated, for examples, choices in asynchronous o r
synchronous communication, process identification ,
creation and termination, scheduling controls and dat a
flows . It also includes a discussion of classica l
synchronization constructs such as semaphores and
monitors, as well as several other concurrent languages ,
such as CSP, Linda and Occam . Linda is especially
emphasized as it is based on an asynchronou s
communication model, as opposed to the synchronous
communication model in Ada . New features in Ada-94
are also covered .

Many examples are developed both in the
syntax of these concurrent languages and that of Ada .
Examples with Ada syntax allow students to focus o n
high level comparison and contrast with Ada ,
illustrating the choices made in the designs of th e
languages. Examples in the syntax of other concurrent
languages allow the students to have a bette r
understanding of these languages . This is the approach
of Ben-Ari and in fact his well-known book is used a s
the textbook for this part [1] . The paper by Elrad an d
Nohl is also useful for the discussion of scheduling
controls [7] .

The last part of the course is the discussion of
the concurrent program design principles as the book by
Carriero and Gelernter [4] : the three concurrent
programming paradigms, specialist parallelism, agend a
parallelism and result parallelism, and their supportin g
data structures . The discussion in [4] is excellent, bu t
it is relatively difficult for the average undergraduate
students to understand . Besides, the language used is
C-Linda, not Ada. Hence, handouts and examples i n
"Ada-Linda" are developed to illustrate the concepts .

4 .

	

Assignment s

SIGCSE

	

Vol . 26 No . 4 Dec . 199 4BULLETIN!

The success of the course depends largely on
whether or not the students can assimilate and practice
the knowledge they learnt in class, which is relatively
new to most of them . Therefore, weekly homework
assignments are assigned to the students . These
assignments usually contain four to eight questions tha t
require a considerable amount of reading and thinking.
Suggested solutions are immediately distributed onc e

the assignments are collected, enabling the students t o
learn by comparison and contrast .

Since one of our major objectives is to trai n
students to be proficient in actually developing
concurrent programs, programming assignments are
integral to the course . In a typical semester, there are
five to six programming assignments, most involving Ada .
The first assignment, such as a concurrent version o f
quicksort, introduces students to the Ada rendezvous
model . The second assignment is usually a simple
hypothetical embedded system, such as a vending
machine, that requires the students to understand tas k
activation and termination, to use the select statemen t
and to be aware of issues in integration to the embedde d
system. The third assignment usually deals with dynamic
task types and the generation of worker tasks . A typica l
example is the polynomial evaluation of P(X) for many
X values . An optional assignment is usually on resourc e
management, simulation or generic . Issues such a s
mutual exclusion, timing and scheduling are essential i n
these assignments . Together, the first four assignment s
help the students to gain expertise in all major Ad a
concurrent programming features and to understan d
classical issues in writing concurrent programs .

The fourth assignment is usually solving a
relatively easy problem, such as matrix multiplication i n
some concurrent programming languages, such as Ada
and Linda. The assignment enhances studen t
understanding in the differences of these languages as
well as general issues in the design of concurrent
programming languages . The last assignment is usuall y
solving a problem using different parallel programming
design techniques .

Because of the heavy dose of homework an d
programming assignments, it is unreasonable for th e
students to develop the entire program solutions .
Furthermore, many bolts and nuts of the solutions ar e
not related to concurrent programming . Ada package s
provide a convenient way to give the student a skeleto n
with which to start working with so that they ca n
concentrate on the essential elements . For example, in
the assignment of developing a concurrent quicksor t
procedure, packages are provided for the basic input an d
output operations, necessary type definitions as well as

62

the driver for testing the quicksort procedure. The only
Ada code the student needs to implement is the
concurrent quicksort procedure itself, which can b e
fitted into two pages, documentation included . Like
homework assignments, suggested solutions t o
programming assignments are distributed .

5 .

	

Conclusion s

This paper has briefly described a softwar e
oriented senior level course in concurrent programming
that provides both the depth in Ada for students t o
solve a wide range of applications, and the breadth i n
various important topics in concurrent programmin g
theory. The course is participation oriented in the
sense that students need to work through heav y
classwork exercises, homework assignments an d
programming assignments . For those interesting i n
offering a similar course, a collection of instructiona l
materials, including the course syllabus, twelve
instructional modules with notes, 19 homewor k
assignments with solutions, ten programmin g
assignments with solutions, examinations and solutions ,
and example program code, are available from th e
author . In the future, We plan to gradually extend th e
course to base on Ada-94, the new Ada standard .

Acknowledgement

This work is partially supported by the Defens e
Advanced Research Projects Agency via Phillip s
Laboratory (PL), Air Force Material Command, United
States Air Force under SFRC# F29601-93-K-0127 .

References

[1]

	

Ben-Ari, M, Principles of concurrent an d
distributed programming, Prentice-Hall, 1990 .

[2]

	

Barnes, J., Programming in Ada, Addison-
Wesley, 1991 .

[3]

	

Burns, A, Concurrent programming in Ada ,
Cambridge University Press, 1985 .

[4] Carriero, N. & Gelernter, D., How to write
parallel programs: a first course, MIT Press ,
1990.

[5]

	

Chandy, K. & Taylor, S., An introduction to
parallel programming, Jones and Bartlett, 1992 .

[6] Davies, G., Teaching concurrent programmin g
with Pascal-FC, SIGCSE Bulletin, 22 (2) ,
(1990), 38-41 .

SIGCSE

	

Vol . 26 No . 4 Dec . 199 4BULLETIN

Elrad, T. & Nohl, D., The analysis an d
comparison of scheduling controls in concurren t
languages through classification, Proceedings of
the 23rd Technical Symposium on Compute r
Science Education, (1992), 89-93.

Feldman, M., The portable dining philosophers ,
Proceedings of the 23rd Technical Symposium on
Computer Science Education, (1992), 276-280 .

[9] Gehani, N ., Ada concurrent programming,
Prentice-Hall, 1984 .

[10] Higginbotham, C. & Morelli, R., A system fo r
teaching concurrent programming, Proceedings of
the 22nd Technical Symposium on Compute r
Science Education, (1991), 309-316 .

[11] Jipping, M., el at., Concurrent distribute d
Pascal : a hand-ons introduction to parallelism ,
Proceedings of the 21st Technical Symposium o n
Computer Science Education, (1990), 94-99 .

[12] Leach, R., An advanced operating system s
project using concurrency, Proceedings of th e
21st Technical Symposium on Computer Scienc e
Education, (1990), 39-44.

[13] McDonald, C., Teaching concurrency with Joyce
and Linda, Proceedings of the 23rd Technica l
Symposium on Computer Science Education ,
(1992), 46-52 .

[14] Mims, T. & Hoppe, A., Utilizing a transpute r
laboratory and Occam in an undergraduat e
operating systems course, Proceedings of th e
22nd Technical Symposium on Computer Scienc e
Education, (1991), 317-323 .

[15] Olszewki, J ., CSP Laboratory, Proceedings of th e
24th Technical Symposium on Computer Scienc e
Education, (1993), 91-95 .

[16] Sanders, D. & Hartman, J ., Getting Started with
parallel programming, Proceedings of the 21st
Technical Symposium on Computer Scienc e
Education, (1990), 86-88 .

[17] Shumate, K., Understanding concurrency in Ada ,
McGraw-Hill, 1988 .

[18] Silver, J ., Concurrent programming in an uppe r
level operating system course, Proceedings of the
20th Technical Symposium on Computer Science
Education, (1989), 217-221 .

[7]

[8]

