
SOFTWARE ENGINEERING NOTES 19, 4 (OCT. 1994), 64-67.

Part V: Annotated Bibliography of RESOLVE Research

Stephen H. Edwards

This brief annotated bibliography describes a select subset of the RESOLVE literature,
focusing on the most accessible references for the interested reader who would like to
learn more about RESOLVE.  A more complete bibliography of RESOLVE papers is
available by anonymous FTP from host ftp.cis.ohio-state.edu in the file
pub/rsrg/RESOLVE-refs.txt.

Most of the papers in this list that are not published in journals or major conference
proceedings can be ordered from the National Technical Information Service (NTIS) or
from University Microfilms (UMI), as noted, or are available electronically.  PostScript
versions of all Ohio State University technical reports listed (mostly pre-prints of papers
to appear and recent Ph.D. dissertations) are available by anonymous FTP from
ftp.cis.ohio-state.edu in the directory pub/tech-report.  Documents available at
this location are marked in the bibliography with “[OSU-FTP]”.  Similarly, many of the
papers appearing in the various Workshops on Software Reuse (WISRs) are available by
anonymous FTP.  These files can be found at the WISR archive maintained at the
University of Maine, host gandalf.umcs.maine.edu, in the directory pub/WISR.
Documents available at this location are marked with “[WISR-FTP]”.

More information on RESOLVE, including access to these and other documents and a
demonstration component archive, is available through World-Wide Web.  The URL is:

http://www.cis.ohio-state.edu/hypertext/rsrg/RSRG.html

References

[Edwards 90] Edwards, S., An Approach for Constructing Reusable Software
Components in Ada, IDA paper P-2378, Institute for Defense
Analyses, Alexandria, VA, Sept. 1990.  Available from NTIS
(phone: 703-487-4650), access number AD-A233 662.

This report discusses reusable software in Ada.  It concentrates on many of the technical
problems involved in designing software components, and introduces what amounts to an
early version of the RESOLVE/Ada discipline [Hollingsworth 92b].  It also contains a
significant number of Ada code examples.



2

[Edwards 93a] Edwards, S.H., “Inheritance: One Mechanism, Many Conflicting
Uses”, Proc. 6th Ann. Workshop on Software Reuse , L. Latour, ed.,
Nov. 1993. [WISR-FTP].

This position paper argues that most object-oriented languages inappropriately define
inheritance as a (single) programming mechanism, although it is used for many diverse
conceptual purposes.  Conflicts between different uses of inheritance lead to many of the
problems associated with  it.  Separating out the various uses for inheritance by using
distinct language mechanisms is one approach to eliminating these conflicts and the
difficulties they bring.

[Edwards 93b] Edwards, S.H., “Common Interface Models for Reusable
Software”,  Intl. J. of Software Eng. and Knowledge Eng. 3 , 2
(June 1993), 193-206.

This article presents an informal, natural language description of the notion of an
abstraction over several families of components, here called a “common interface model”
(CIM).  CIMs can be used to capture common patterns that recur across many modules,
for  both programmatic and human uses. This notion is similar to the more formal notion
of theories in OBJ, but there are some critical differences.

[Edwards 94] Edwards, S.H., A Formal Model of Software Subsystems. Ph.D.
diss., Dept. of Comp. and Inf. Sci., Ohio State Univ., Columbus,
Dec. 1994, to appear.

This dissertation presents a mathematically formal, language-independent model of
software components that captures many intuitive notions about reusable software parts
that practitioners have observed through experience. This model is compared with the
language-specific models embodied in OBJ, RESOLVE, Eiffel, and Standard ML, as well
as the 3C model.  The RESOLVE formal semantics is now based on this model.

[Ernst 91] Ernst, G.W., Hookway, R.J., Menegay, J.A., and Ogden, W.F.,
“Modular Verification of Ada Generics”, Comp. Lang. 16, 3/4
(1991), 259-280.

This paper describes the foundation that is necessary to verify that a generic component is
correct, once and for all, without knowing how it is instantiated.  It concentrates on the
expressiveness issues that make this a tough technical problem.



3

[Ernst 94] Ernst, G.W., Hookway, R.J., and Ogden, W.F., “Modular
Verification of Data Abstractions with Shared Realizations”, IEEE
Trans. on Software Eng. 20, 4 (Apr. 1994), 288-307.

This paper gives a method for modularly specifying and verifying data abstractions where
multiple abstract objects share a common implementation-level data structure.  Such
implementations allow for very efficient use of memory or other resources, but
complicate modular verification.  The paper also discusses the model that serves as the
basis for RESOLVE’s formal semantics.

[Harms 90] Harms, D.E.,  The Influence of Software Reuse on Programming
Language Design. Ph.D. diss., Dept. of Comp. and Inf. Sci., Ohio
State Univ., Columbus, Aug. 1990.  Available from UMI (phone:
800-521-0600).

This work investigates programming language features that encourage and discourage the
design of reusable software components.  It includes an evaluation of several modern
programming languages in this regard, concluding that none has the features necessary to
encourage and facilitate the design and implementation of such components. It then
describes the (original) RESOLVE programming language and discusses some rationale
for core features of the language, including the treatment of math and programming types
and constructs that support modular reasoning about behavior.

[Harms 91] Harms, D.E., and Weide, B.W., “Copying and Swapping:
Influences on the Design of Reusable Software Components”,
IEEE Trans. on Software Eng. 17, 5 (May 1991), 424-435.

This paper discusses many of the fundamental RESOLVE ideas, including the method of
modeling program types by mathematical types; the difficulties with assignment as the
built-in data movement operator; and the benefits of basing designs on swapping,
especially for generic ADTs.

[Heym 94a] Heym, W.D., Long, T.J., Ogden, W.F., and Weide, B.W.,
Mathematical Foundations and Notation of RESOLVE.  OSU-
CISRC-8/94-TR45, Dept. of Comp. and Inf. Sci., Ohio State Univ.,
Columbus, Aug. 1994. [OSU-FTP].

This paper discusses the logical foundations and teminology of RESOLVE, the built-in
RESOLVE notation for writing mathematics, and the RESOLVE mechanisms that
support description of mathematics that has no built-in notation.  It is intended to serve
primarily as a reference document.



4

[Heym 94b] Heym, W.D., Computer Program Verification: Improvements for
Human Reasoning. Ph.D. diss., Dept. of Comp. and Inf. Sci., Ohio
State Univ., Columbus, Dec. 1994, to appear.

This dissertation formalizes, in a direct, natural way, the informal pattern of reasoning
generally used with programs written in modular, imperative languages such as
RESOLVE.  The formal semantics provides a solid basis against which to check the
soundness and (relative) completeness of a formal proof system (in this case, the
“indexed method”; see [Krone 88] for another method).

[Hollingsworth 92a] Hollingsworth, J.E., and Weide, B.W., “Engineering ‘Unbounded’
Reusable Ada Generics”, Proc 10th Ann. Natl. Conf. on Ada Tech.,
ANCOST, Inc., Feb. 1992, 82-97.

This paper introduces one of the RESOLVE abstractions that replaces pointers and shows
how to use it.  It also explains several implementation options for the abstraction and
their relative advantages, and provides some Ada code examples.

[Hollingsworth 92b] Hollingsworth, J.E., Software Component Design-for- Reuse: A
Language-Independent Discipline Applied to Ada. Ph.D. diss.,
OSU-CISRC-1/93-TR01, Dept. of Comp. and Inf. Sci., Ohio State
Univ., Columbus, Aug. 1992. [OSU-FTP].

This work describes the “RESOLVE/Ada discipline”: How to write Ada components
using RESOLVE specification and design principles, so they are modularly certifiable.  It
is self-contained in that it includes a terse discussion of the specification approach and
language, including all of the constructs used in the examples.  It is also the authoritative
description of the principles that RESOLVE/Ada programmers (authors of concepts and
realizations, and authors of client programs) are expected to follow.  Numerous examples
are given, including two of the RESOLVE encapsulations of pointers.

[Krone 88] Krone, J., The Role of Verification in Software Reusability. Ph.D.
diss., Dept. of Comp. and Inf. Sci., Ohio State Univ., Columbus,
Aug. 1988.  Available from UMI (phone: 800-521-0600).

This work describes the verification rules that form the basis for RESOLVE’s original
syntax-driven verification procedure. In addition to basic rules for straight-line code and
procedure calls, the rules cover conceptual modules, realization modules, and module
instantiation.  An example of a proof of total correctness for a complete component that is
layered on top of another component is given.



5

[Krone 93] Krone, J., and Sitaraman, M., “On Modularity and Tightness of
Real-Time Verification”, Real-Time Newsletter 9, 1/2
(Spring/Summer 1993), 109-115.  Also in Proc. 10th IEEE
Workshop on Real-Time Operating Systems and Software, IEEE,
May 1993.

This paper discusses several problems arising from attempts to modularly verify tight
execution-time bounds, and the importance of this objective for software components
used in real-time applications.

[Muralidharan 90] Muralidharan, S., and Weide, B.W., “Should Data Abstraction Be
Violated to Enhance Software Reuse?”, Proc. 8th Ann. Natl. Conf.
on Ada Tech., ANCOST, Inc., Mar. 1990, 515-524.

This paper discusses some problems involved in using a hypothetical code inheritance
construct of Ada, showing why it does not effectively support reuse.  Some Ada code
examples are included, which reflect an early RESOLVE/Ada style.

[Parrish 91] Parrish, A., and Zweben, S.H. “Analysis and Refinement of
Software Test Data Adequacy Properties”, IEEE Trans. on
Software Eng. 17, 6 (June 1991), 565-581.

This paper discusses component-based software testing from the standpoint of test data
adequacy.

[Sitaraman 92a] Sitaraman, M., “A Class of Mechanisms to Facilitate Multiple
Implementations of a Specification”, Proc. 1992 Intl. Conf. on
Comp. Lang., IEEE, Apr. 1992, 182-191.

The paper motivates the need for, and ramifications of, language features supporting
multiple implementations of the same abstract specification. A class of mechanisms (not
supported in current languages) to independently name, reference, and parameterize
specifications and implementations are identified as essential to facilitate development
and use of multiple implementations.



6

[Sitaraman 92b] Sitaraman, M. “Performance-Parameterized Reusable Software
Components”, Intl. J. of Software Eng. and Knowledge Eng. 2, 4
(Oct. 1992), 567-587.

This article describes how components can be parameterized by the lower-level
abstractions they depend on, in order to provide greater performance flexibility and
escape the “combinatorial explosion” problem that arises when these alternatives are not
parameterized.  By parameterizing components so that any appropriate lower-level
constituent components can be simply “plugged in,” inexpensive and flexible
performance tuning is provided to a client without requiring any form of component
source code modification, recompilation, or reverification.

[Sitaraman 92c] Sitaraman, M.,  “A Uniform Treatment of Reusability of Software
Engineering Assets”, Proc. 5th Ann. Workshop on Software Reuse,
L. Latour, ed., Oct. 1992. [WISR-FTP].

The paper enhances the 3C model with “constraints”, which contain non-functional
specifications (e.g., performance constraints).  It explains the applicability of the 4C
model to all software lifecycle artifacts from requirements documents to code
components.

[Sitaraman 93] Sitaraman, M., Welch, L.R., and Harms, D.E., “On Specification
of Reusable Software Components”, Intl. J. of Software Eng. and
Knowledge Eng. 3, 2 (June 1993), 207-229.

This article provides an overview of RESOLVE from a specification  perspective,
comparing it to Z and Larch.  It explains why component specifications must be formal
yet understandable, as well as abstract and implementation-independent. Each
specification also must make it possible to demonstrate the correctness of  an
implementation of the specification and permit formal reasoning about its behavior in a
client program.

 [Sitaraman 94] Sitaraman, M., “On Tight Performance Specification of Object-
Oriented Software Components”, Proc. 1994 Intl. Conf. on
Software Reuse, IEEE, Nov. 1994, to appear.

This paper points out why specification of performance should appear not with an
abstract component’s functional specification or with a concrete component’s
implementation, but in an implementation-related module that lies “between” them.  One
of the reasons for this conclusion is an expressiveness problem: Performance
specifications may need to involve “intermediate” mathematical models to permit
expression of tight performance specifications while preserving information hiding.



7

[Weide 91] Weide, B.W., Ogden, W.F., and Zweben, S.H. “Reusable Software
Components”, in Advances in Computers, vol. 33, M.C. Yovits,
ed., Academic Press, 1991, 1-65.

This book chapter provides an overview of the software engineering approach used in
RESOLVE. It describes the general model of software structure and the related 3C
model, several basic concept design principles, and some simple examples; and briefly
compares the RESOLVE approach to component engineering with those used frequently
in Ada, C++, and Eiffel.

[Weide 92] Weide, B.W., and Hollingsworth, J.E., “Scalability of Reuse
Technology to Large Systems Requires Local Certifiability”, Proc.
5th Ann. Workshop on Software Reuse, L. Latour, ed., Oct. 1992.
[WISR-FTP].

This position paper explains why software components must be certified once upon entry
into a component library, and not once per use, if the most important benefits of reuse are
to be achieved; that it, it argues for the importance of local certifiability to reuse.

[Weide 93] Weide, B.W., Heym, W.D., and Ogden, W.F., “Procedure Calls
and Local Certifiability of Component Correctness”, Proc. 6th
Ann. Workshop on Software Reuse, L. Latour, ed., Nov. 1993.
[WISR-FTP].

This position paper discusses how common practices involving procedure calls (e.g., in
Ada and C++) thwart modular reasoning about component behavior.  It also discusses
previous approaches to dealing with these problems at a formal level, and argues that
call-by-swapping as a parameter-passing mechanism eliminates the difficulties.

[Weide 94a] Weide, B.W., and Hollingsworth, J.E., On Local Certifiability of
Software Components. OSU-CISRC-1/94-TR04, Dept. of Comp.
and Inf. Sci., Ohio State Univ., Columbus, Jan. 1994. [OSU-FTP].

This report discusses probably the most fundamental objective of the RESOLVE
approach: to be able to reason about the behavior of component-built programs in a
“modular” fashion.  It is easy reading for someone not familiar with RESOLVE, and it is
a good place to start if you are interested in the RESOLVE approach to verification.



8

[Weide 94b] Weide, B.W., Edwards, S.H., Harms, D.E., and Lamb, D.A.,
“Design and Specification of Iterators Using the Swapping
Paradigm”, IEEE Trans. on Software Eng. 20, 8 (Aug. 1994), 631-
643.

This paper describes the specification of iterators from a RESOLVE perspective, i.e.,
based on the principles described in [Harms 91] and [Hollingsworth 92b].  By providing
and discussing an evolutionary series of iterator designs, the paper shows how formally-
specified iterators can be designed to admit more efficient implementations and support
modular reasoning.  It gives examples of some clearly non-trivial implications of the
RESOLVE style, and examples of more complex specifications than are found in the
introductory papers.

[Weide 94c] Weide, B.W., Ogden, W.F., and Sitaraman, M., “Recasting
Algorithms to Encourage Reuse”, IEEE Software 11, 5 (Sept.
1994).

This paper describes a technique for extending object-oriented component design by
recasting algorithms as objects (called “machines”), thereby improving both functional
and performance flexibility.  It is written for an audience unfamiliar with RESOLVE, but
the examples are non-trivial: a novel sorting component and a component to find
minimum spanning forests in graphs.

[Zweben 92] Zweben, S.H., Heym, W.D., and Kimmich, J., “Systematic Testing
of Data Abstractions Based on Software Specifications”, J. of
Software Testing, Verification and Reliability 1, 4 (1992), 39-55.

This paper shows how to adapt conventional white-box strategies to test components
specified in a RESOLVE-like manner.  The strategy then becomes specification-based,
rather than code-based. Theoretical and empirical evaluations of this approach are
discussed.

[Zweben 94] Zweben, S.H., Edwards, S.H., Weide, B.W., and Hollingsworth,
J.E., The Effects of Layering and Encapsulation on Software
Development Cost and Quality, OSU-CISRC-4/94-TR21, Dept. of
Comp. and Inf. Sci., Ohio State Univ., Columbus, Apr. 1994.
[OSU-FTP].  Submitted for publication; currently in revision.

This report discusses three controlled experiments designed to gather empirical evidence
supporting the practice of layering newly written code on top of earlier encapsulated
components, rather than simply adding code to old modules.  The results of the
experiments support the contention that layering significantly reduces the effort required
to build new components.


