
Towards an Introductory Formal Programming Course

Kung-Kiu Lau, Vicky J. Bush, and Pete J. Jinks

Department of Computer Science, University of Manchester

Manchester M13 9PL, England, United Kingdom

kkl,vjb,pjj@cs. man.ac.uk

1 Introduction

It is now well established that programming can be re-

garded as a science rather than an art. The formal

basis for programming given by Hoare [7], and the sub-

sequent application of this formalisation to program de-

velopment, most notably by Dijkstra [2, 3] and Gries [5],

have left little doubt that this is indeed so.

Therefore it is disappointing (and surprising) that

most introductory programming courses still adopt the

‘traditional’ intuitive approach. The (formal) syntax of

the chosen programming language, often Pascal or C,

is explained in great detail, but the semantics of the

language is only explained informally; and little (if any-

thing) is taught about how to develop a program to

do a specified task, apart from ‘hand-waving’ princi-

ples such as ‘divide-and-conquer’, ‘structured program-

ming’, ‘top-down step-wise refinement’, and so on. Con-

sequently, beginners learn the hacker’s way of program-

ming, w’hich has no formal basis and hence cannot even

begi.1 to deal with crucial issues such as program cor-

rect ness.

There may be many reasons for this unfortunate

fact. 1 The ‘old’ view of programming as an intuitive

activity seems hard to change, let alone replace. It is

seen to be adequate, in the sense that real programs and

software systems can be produced using the intuitive

approach. However, acceptance of bugs aa the norm

and the high costs of maintenance point to its unac-

ceptability.

New programming paradigms, particularly functional

programming, have diverted the attention on program

correctness to simple declarative semantics. These

declarative paradigms, though attractive because of

their simple and clean semantics, are still supported

by the traditional von Neumann computer architecture

(for example, see [10]), They are therefore implemented

] See [4] for ~ interesting debate.

Permission to copy without fee all or pnrt of this material is
granted provided that the copies are not mede or distributed for
direct commercial odventefie, the ACM copyright notice and the

title of the publication end ite date eppeer, end notice is given
thet copying is by permission of the Association for Computing
Mechinery. To copy otherwise, or to republish, requires a fee
errd/or epecific permission,

SIGSCE 94- 3/94, Phoenix, Arizon@SA

@ 1994 ACM 0-S9791 +4S-W34rDOtX3..$3.so

in the imperative paradigm within which the Hoare-

Dijkstra-Gries method has evolved. Most students will

meet the imperative paradigm early in their professional

career, so the issue cannot be avoided.

Unfortunately, there are no widely available introduc-

tory programming courses (with good software support)

specifically designed to support the effective teaching of

the science of programming. Like our colleagues at the

City College, City University of New York [9], we are

convinced that the Hoare-Dijkstra-Gries method should

be the basis for all introductory programming courses.

We have therefore set about designing a course and a

programming environment suitable for teaching begin-

ners the key concepts of formal programming. That

is, programming in a formal manner, with a view to

enabling them to reason formally about programs and

program development.

This course aims to teach students to think about

programs in a formal way and to be able to reason

about their correctness with respect to a formal spec-

ification. It also takes on board the reality that many

students learning programming for the first time cannot

necessarily see the rationale behind such an approach

until they have gained more experience. They often

do not have the mathematical maturity necessary for

difficult proofs. To try and overcome these difficulties,

an integral part of the course is a supportive program-

ming environment which hopefully will take much of the

drudgery out of their work and allow them to concen-

trate on the main concepts. It should also make it pos-

sible to tackle larger problems than would be possible

without machine support for the proofs. This is impor-

tant for students who may have already written some

substantial programs in an intuitive way and would not

be motivated by ‘toy’ programs. It is often the case

with such students that it is enjoyment of this activity

which has attracted them to a computing course in the

first place. They do not want their experience to be

devalued.

In this paper, we outline the course material and

sketch the role of the software support environment for

teaching this material. The aim of the paper is to get

timely feedback from colleagues with similar or related

views and/or experience.

121

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191029.191079&domain=pdf&date_stamp=1994-03-12

2 Course Components

The course has two main components: the course ma-

terial and the software support environment,

Course Material

We believe that one course cannot teach the entire

Hoare-Dijkstra-Gries method. The learning process
takes time and practice. Also, software support for the

whole method will take a long time to develop (as illus-

trated by [6]). So we have aimed for just the key basic

concepts of the method. For teaching practical pro-

gramming using this method, we have designed a sim-

ple Pascal-like language with some functional language

features in order to achieve a simple semantics. We call

this language L (for ‘learners’). We have also designed

a specification language for expressing pre- and post-

conditions. We call this language S. In practice, these

two languages will appear to students to be parts of a

single design and implement at ion language SL.

Software Support Environment

For teaching the course material successfully, it is es-

sential to have a good software support environment

in which the students can (i) use on-line tutors or tu-

torials to learn the course material at their own pace;

(ii) develop programs with the aid of necessary software

tools such as structure editors. We have begun to im-

plement such an environment with a WIMP interface.

So far, the environment consists of a compiler for SL,

an assertion checker, a tutor for L, and windows for

constructing and running SL programs. We intend to

add a structure editor, to simplify the problem of cre-

ating syntactically correct specifications and program

code. We also intend to include an on-line help system

and tutorials to consolidate the students’ understand-

ing of all parts of the course material. We expect that

other facilities may be considered in the light of future

experience, such as runtime animation and debugging.

In Section 3, we describe the course material in more

detail, and in Section 4 we will illustrate developing pro-

grams in SL using the software support environment.

3 Outline of Course Material

In the course material, it is of crucial importance that

basic concepts are properly identified and defined. In

this section we list some of the key concepts which we

think are necessary for teaching formal programming,

in the order in which they might logically arise. We

shall also give examples in SL. Rather than describe the

syntax and semantics of SL in detail, we will present a

flavour of the language by explaining the salient fea-

tures used in the examples. Those interested in the full

language details should consult the authors.

Computation: The fundamental concept of a com-

putation can be defined as a process on a computational

device with an instruction set, which starts with given

initial inpui ‘values’ for some specified objects and then

performs a series of operations. The resulting ‘values’

of some specified objects may be regarded as the ouiput

of the computation.

Computational model: The equally fundamental

concept of a computational model can be defined as an

abstract computational device with a specified instruc-

tion set capable of operating on specified objects. Thus

we can define a computational model as a pair (0, 1)

where 0 is the set of objects in the model and II is its

instruction set.

Program: This leads immediately to the concept of a

program. For a given computational model, a program

defines a computation in this model.

Syntax and semantics of a formal language: The

concept of a formal language can be motivated by con-

sidering how to write complicated programs for a given

computation model. To write such programs we need

to make up a formal language, by defining a syntax and

a semantics – a set of mappings which map every per-

mitted syntactic construct to its meaning, or semantic

denotation.

We can then introduce the Backus-Naur Form (BNF)

and, as an illustration, use it to define the syntax of a

simple formal language (e.g. that of arithmetic expres-

sions).

Next, the principle of denotational semantics can be

explained using the same language as an example.

Abstractions: To write more general programs which

allow for more general computations which depend on

arbitrary values (that is, functions with arguments), we

need to have a means of constructing abstractions. To

this end, we introduce A-expressions.

Programming language: Abstractions lead natu-

rally to programming languages. In order to apply an

abstract ion repeatedly to different concrete arguments,

we need to be able to create, name and remember an

abstract ion. A formal language which allows the user

to define (create, name and remember) and apply ab-

stractions is called a programming language.

For example, the following could be a program in-

corporating the definition and an application of an ab-

straction, ‘product’.

def-prog exanrplel :=lambda(a, b)=(c)

clef-fun product: =lambda(x, y) .x*y

modify c: =product (a, b)

endprogram

Here, def_prog is a keyword denoting a program.

example~ is a program identifier defined to be a func-

tion that maps the input variables a and b to the out-

put variable c. lambda(a, b) = (c) defines this function,

where lambda is a keyword that denotes a Xexpression.

The reserved symbol : = means ‘becomes defined to be’.

def -fun is a keyword denoting a function definition,

and modify is a keyword that denotes the assignment

command. endprogram is a bracket keyword.

122

Specifying computations: In a programming

language, computations are always explicitly defined.

However, often we cannot define a computation explic-

itly because we only know its result, but not the com-

putation itself. For example, if we want to compute the

square root of an integer x, but do not know an algo-

rithm for computing square roots, then we cannot write

the necessary program. Therefore, we need to int reduce

the concept of implicitly specifying computations, that

is, only in terms of what we know about their results.

As an example, a ‘square root’ function could be spec-

ified by:

spec-fun sqrt :=

{pre x>O}

{post x=(y*y)}

Here, spec-fun is a keyword

ification. The pre-condition

lambda(x) = y

denoting a function spec-

{pre x>O} and the post-

condition {post x=(y*y)} are- propert&s that we de-

fine for the input and output of sqrt. Such properties

are in general best expressed as logical conditions.

Program Development: The concept of program

development now follows naturally. For a computation

that is only specified implicitly, we need to develop a

program that when executed will produce the specified

computation. In general, constructing a program for

a specified computation is the usually nontrivial task

of finding a computation that produces the result that

we have in mind. In other words, if the program’s in-

put meets the pre-condition of the specified computa-

tion, then the program’s output must satisfy the post-

con&, tion.

4 A Programming Example

In this section we sketch a glimpse of how a student

might use the software support environment to learn to

program in SL using the Hoare-Dijkstra-Gries method.

The example chosen is the problem of how to write a

program which calculates the factorial of a given num-

ber. For simplicity, we will assume that all values are

of type integer.

The specification for this problem is:

spec-fun fac:=lambda(i)=(f)

{pre 1>=0}

{post ((i=O) and (f=l))

or ((i>O) and (f=i*fac(i-1)))}

This is the usual recursive definition of factorial written

in the syntax of S.

spec–fun fac:=lambda(i)=(f)

defines fac to be a function that maps i to f.

{pre i>=O}

is a pre-condition requiring i to be nonnegative, and

{post ((i=O) and (f=l))

or ((i>O) and (f=i*fac(i-1)))}

is a post-condition that defines f ac (O) to be 1, and

recursively defines fat(i) (i.e. f) to be i*f ac(i-1).

To write a program to compute f ac (n), the student

can use the support environment to construct a ‘shell’ of

the program with the pre- and post-conditions inserted

(during program development . . . is used to denote as

yet unknown code, although it is not part of L’s syntax):

def_prog example2: =lambda(n)=(a)

{pre n>=O}
.,.

endprogram

{post a=fac(n)}

The next step is for the student to think about the

design of the program. In larger examples, there maby

be some splitting up of the program into parts. The

goals of each sub-part would have to be understood and

expressed by way of an assertion in the specification

language. As code is written to achieve the sub-goal,

this would then be proved by the assertion checker.

In this case, the program is small and does not need

splitting up. The main loop construct in L is the while

command, and since fac is defined recursively, it may

be obvious that a while command can be used to com~-

pute f ac (n). In fact, we will use it to calculate succes-

sive factorials, terminating when we arrive at f ac (n]l.

However, in SL, the user must supply a loop invariant

for a while loop, which defines the meaning of the loop.

In this case, the recursive definition of f ac (i) itself

provides this invariant, since for any i, i.e. for any it-

eration of the loop, we must have f ac(i)=i*fac(i-1 II.

Thus the student might add the shell of the loop to the

program as follows (we use >> here to highlight newl:y

added/changed code, it is not part of L’s syntax):

def _prog example2: =lambda(n)=(a)

{pre n>=O}

>> de f-var i

>> modify i:= . . .

>> while l.. .ndo

>> {invariant a = i* fac(i-1)}

>> . . .

>> modify 1:= . . .

>> . . .

>> enduhlle

endprogram

{post a=fac(n)}

Now the student must try and construct the body of

the loop to have the semantics defined by the loop in-

variant. Clearly, the program must compute f ac (0) =1,

fac(l)=l*fac(0)=l, fac(2)=2*fac(l)=2*l=2, etc.

until f ac (n) has been computed. Now (from the spec-

ification) we know the loop need not be executed for

123

n=() and n=i (since fac(o)=fac(l)=i). So we can deal

with these two base cases aa follows:

def_prog example2:=lambda(n)=(a)

{pre n >= O}

de f-var i

>> modify a:=l

>> modify 1:=1

>> uhi.le i < n do

{invariant a= i*fac(i-1)}
. . .

>> modify i:=i+l
. . .

enduhile

endprogrrm

{post a=fac(n)}

Now we must compute fat(i) fori>2 using the uhile

loop. Again, clearly the loop invariant says that

each loop is meant to compute fat(i) by computing

i*fac(i-1), starting Lfrom i=z. Therefore, the body

of the loop needs to simply multiply i and fac(i-1).

So the user can complete the body ofthe while loopas

follows:

def _prog example2: =lambda(n)=(a)

{pre n >= O}

de f_var i

modify a:=i

modify 1:=1

while i < n do

{invariant a = i*fac(i-1)}

ruodify i:=i~l

>> modify a:=a*i

endwhile

endprogrzuu

{post a=fac(n)}

Up to now, the user has been reasoning in SL in-

formally, while constructing the above program. Now

she or he can ‘run’ this program to verify the correct-

ness of her or his reasoning and hence the correctness

of this program. The assertion checker in the support

environment will first check that the loop body satis-

fies the loop invariant. If this check is successful, then

the assertion checker will check that the invariant will

hold ifthepre-condition is satisfied. Thenit will check

that the whole program satisfies the post-condition. In

this case, this is straightforward. After the loop fin-

ishes, we have a=n*fac(n-1), which clearly proves the

post-condition.

Obviously, in general, program design is a creative

process which cannot be taught directly. l?inding suit-

able loop invariants will not be easy for beginners, but

at least in formal programming, students have to under-

stand (and define) precisely the semantics of each loop,

which will guide them in designing the loop construct.

Loop termination is another issue that is potentially dif-

ficult for beginners. Again, having a loop invariant will

discipline their thinking about the loop construct, and

‘force’ them to take care that the loop terminates. How-

ever, the students can get support from the program-

ming environment to overcome all these difficulties.

Finally, one aim of the programming environment is

to enable the handling of larger examples than the fac-

torial example shown here. Larger programs have a cor-

responding increase in the size and complexity of their

proof obligations. In order to circumvent the work as-

sociated with this, it is envisaged that a library of al-

ready proven, relevant abstract data types and func-

tions would be made available to the students. Then,

just aa in a more realistic industrial setting, they could

build more interesting and useful programs, without

having to start from scratch.

5 Conclusion

We have outlined the course material and the software

support environment for teaching formal programming

(based on the Hoare-Dijkstra-Gries method) to begin-

ners. In the past, at the authors’ institution, begin-

ners have been taught to understand, not write, formal

specifications in VDM. The design process was infor-

mal. Teaching the construction of specifications and

formal derivation of proofs was deferred until the fol-

lowing year. This proposal is a way of making a formal

approach accessible right from the start. It is recog-
nised that it will be effective only if the programming

environment provides enough support to guide students

through the process in a way which supports correctness

proving and reduces the amount of drudgery involved.

We have already started work on building this envi-

ronment and are hoping to gain feedback from others

working in the area as to their experiences of the ef-

fectiveness and/or pitfalls of the approach, before we

complete our implementation.

Of necessity, on the whole, our approach tack-

les ‘programming-in-the-small’, but this lays a firm

foundation for more realistic software production

(’programming-in-the-large’). To quote David Gries [5]:

“One cannot learn to write large programs ef-

fectively until one haa learned to write small

ones effectively.”

References

[1] H. Abelson, G.J. Sussman, and J. Sussman. Struc-

ture and Interpretation of Computer Programs.

MIT Press, 1985.

[2] E.W. Dijkstra. A Discipline of Programming.

Prentice-Hall, 1976.

124

[3] E.W. Dijkstra and W.H.J. Feijen. A Method of

Programming. Addison-Wesley, 1988.

[4] E.W. Dijkstra et al. A debate on teaching com-

puting science. Comrn. ACM, 32(12):1397-1414,

1989.

[5] D. Gries. The Science of Programming. Springer-

Verlag, 1981.

[6] M. Heisel. Formalizing and implementing Gries’

program development method in dynamic logic.

The Science of Programming, 18:107-137, 1992.

[7] C.A.R. Hoare. An axiomatic basis for computer

programming. Comm. ACM, 12(10):576-583, Ott

1969.

[8] C-B. Jones. Systematic Software Development Us-

ing VDM, Prentice Hall, 2nd edition, 1990.

[9] D.D. McCracken. Programming languages in

the computer science curriculum. In Proc. 23rd

SIGCSE Technical Symposium, pages 1-4. ACM

Press, 1992. ACM SIGCSE Bulletin, vol 24, no 1,

March 1992.

[10] S, Peyton-Jones and D. Lester. Implementing

Functional Languages. Prentice Hall, 1992.

[11] J.M. Spivey. The Z Notation: A Reference ManuaJ.

Prentice Hall, 2nd edition, 1992.

125

