
NetCp - A Project Environment for an

Undergraduate Computer Networks Course

David Finkel Surendar Chandra

Department of Computer Science Department of Computer Science

Worcester Polytechnic Institute Duke University

Worcester, MA 01609 Durham, N(l 27708

dfinkelQcs.wpi.edu surendar@cs. duke.edu

1 Introduction

Worcester Polytechnic Institute is a technologically

oriented university, wit h a strong major in computer

science. Since the inception of its project-centered

WPI Plan in 1970 [WORC93], both the undergradu-

ate curriculum and many individual courses have been

based on large-scale projects. This paper describes

software to support a large-scale project in an under-

graduate Computer Networks course, and our experi-

ence using that software.

The idea of basing undergraduate systems courses

on large scale projects is well-established. Both the

MINIX operating system [TANE87] and the OSP

project environment [KIFE91], among others, provide

a framework for a project-based undergraduate oper-

ating systems course.

The undergraduate Computer Networks course is

taken primarily by third- and fourth-year students,

mostly computer science and electrical engineering

majors. The students have taken a minimum of four

previous courses in computer science, including a first

operating systems course, covering roughly Chapters

1-6 of [TANE87]. Typically, the students have had

courses in data structures, file structures, and a second

course in operating systems before taking the Com-

puter Networks. Thus the students are well-prepared

to handle large programming assignments.

Psw-nission tQ copy without fee sII or part of this material is
granted provided that the copiee are not made or distributed for
direct commercial adventege, the ACM copyright notioe end the
title of the publication and its dete eppeer, end notice is given
thet copying ie by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires e fee
4md/or specific permission.
SIGSCE 94- 3/’94, Phoenk ArizwUSA

@ 1094 ACM O-89791~..$3.w

2 Netcp

2.1 Introduction

The package we used for our course is called Netcp.

Netcp is modeled after the UNIXl command rsh.

Netcp copies a file, specified in the command line,

to a remote machine. The user first runs Netcp as

a server on the receiver machine using the command

line switch -S before data can be sent. Unlike rsh,

Netcp does not worry about user authentication.

Netcp uses the network model developed by the In-

ternational Standards Organization (1S0) called the

1S0 0S1 (Open Systems Interconnection) Reference

Model [TANE89]. The ISO model envisions 7 layers

of protocol:

1.

2.

3.

4.

5.

6.

Physical layer deals with sending raw bits over

a physical communication medium.

Data link layer takes this raw transmission fa-

cility and transforms it into a line that appears

free of transmission errors.

Network layer is concerned with controlling the

operation of a subnet and with routing packets.

Transport layer accepts data from Session

layer, splits it up into smaller units if need be,

and ensures that all pieces arrive correctly at the

other end.

Session layer allows users on different machines

to establish connections between them,

Presentation layer deals with syntax and se-

mantics of information transmitted.

1UNIX is a registered trademark of USL

174

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191029.191099&domain=pdf&date_stamp=1994-03-12

7. Application Layer contains a variety of user

level protocols, such as support for a network vir-

tual terminal.

We felt that by working with the data link layer,
we would expose the students to the crucial issues

involved in understanding computer networks. The

data link layer is concerned with converting a phys-

ical medium to a form useful for sending messages.

The lower layer deals with hardware intricacies and

higher layers provide user services to effectively use a

network.

Thus, Netcp uses only 3 layers: the physical layer,

the data link layer and a hybrid layer which encapsu-

lates all the functions of the higher level layers (net-

work, transport, session, present ation and application

layers).

The routines for the hybrid layer, the physical layer

along with some support routines for the data link

layer were provided in a library to the students. The

students’ assignment was to provide the remaining

functionality of the data link layer to develop a work-

ing Netcp.

Netcp provides built-in functionality to set error

rates individually on the server and client side, to

provide a high enough error rate to test the stu-

dents’ code’s ability to handle errors. NetCp also pro-

vides functions to print useful statistics about the data

transfer. Extensive support is provided for dumping

binary packets as hexadecimal numbers in any layer.

This functionality is very useful in debugging packet

loss and error correction routines.

2.2 System Requirements

Netcp uses UNIX facilities such as sockets and

shared memory for internal communications and syn-

chronization. Netcp was used in a cluster of Dec 5000,

Dec 3100, Dec 2100 running Ultrix 4.3 and on Sun

Spare IPC running SunOS 4.1.1. In addition, Netcp

has been ported to Silicon Graphics workstations and

HPUX machines.

3 Project Ideas

Netcp, as given to the students, provides a stub

routine that implements a rudimentary data link layer

to get packets from either the physical or the hybrid

layer and send it across to the hybrid or physical layer,

respectively. Any of the following functionalities can

be added as a student assignment.

● Error free channel Transmission errors are a

fact of life. The data link layer must take a er-

ror prone physical layer and presents a error free

channel to the higher layers. Netcp supports a

command line option to increase the error rate

artificially introduced by the physical layer. With

increased error rates, the packets can be com-

pletely dropped by the physical layer.

Students can develop routines to do simple error

checking using standard CRC polynomials such

as CRC-12, CRC-16 or CRC-CCITT. A success-

ful packet should be acknowledged. However, this

option requires substantial bit manipulation op-

erations and hence a good understanding of C

language is required.

● Timeout Control Once a error packet is iden-

tified, remedial action needs to be taken. Errors

can be detected by the receiver as a CRC mis-

match or the sender as a timeout. In either case,

a retransmission has to be effected in some way.

Students can develop the timer routines for time-

out. A simple flow control mechanism can be de-
veloped that operates on a hand shake mode of

operation (a packet is sent, and until a acknowl-

edgment is received, the sender keeps sending the

packet).

● Data Framing In order to provide service to the

network layer, the data link layer must use the

service provided to it by the physical layer. The

physical layer can be constrained to accept packet

of a size (say 64 bytes) which is smaller than the

hybrid layer frame size (say 128 bytes).

Students can use either character stuffing or bit

stuffing to fit their frames into this 64 byte bound-

ary.

. F1OW Control Simple hand shake protocols sup-

port very low throughput, especially on a noisy

line. In [TANE89], six protocols are presented,

which are in increasing order of complexity and

provide better throughput. These involve using

a sliding windows protocol, piggybacking of ac-

knowledgments, using negative acknowledgments,

and using a selective repeat or go back n strategy

for packet pipelining.

. Protocol Performance At the end of a success-

ful run, Netcp displays statistics about the run,

such as the time taken in user space, system space

etc. Using some of these measures, the students

can compare the performance of the various flow

175

control protocols. We think that this helps stu-

dents in appreciating the importance of perfor-

mance models.

4 Conclusion

4.1 The Projects in our course

The NetCp package was used in our course to sup-

port a sequence of two assignments, covering approx-

imate el y the first half of the course. The overall goal

of the two assignments was to develop an increasingly

sophisticated working model of the data link layer.

In both assignments, the overall goal was to transfer

files between machines using the NetCp package.

The first assignment concentrated on the is-

sues of framing, check sums, and a simple time-

out /retransmission protocol. The students were pro-

vided with code from NetCp to handle the com-

mand to transfer a file, to simulate the upper lay-

ers of the protocol (the hybrid layer) and to simu-

late the physical layer, as well as functions FromHy-

bridLayer, ToHybridLayer, FromPhysicalLayer, and

ToPhysicalLayer to receive or send data to the other

layers.

The hybrid layer provide a stream of bytes to the

student’s data link layer. The student’s program

needed to manage the framing and checksums, and

then start a timer when a packet was sent to the

physical layer. On receiving a packet from the phys-

ical layer, the student’s program needed to verify the

checksum, take appropriate e action if the frame was

an acknowledgment, send an acknowledgment if nec-

essary, and then pass the data to the hybrid layer.

The student’s program also had to retransmit packets

if a timer expired without an acknowledgment. The

students used a send-and-wait protocol, so that after

a packet was transmitted, no additional data pack-

ets were transmitted until an acknowledgment was re-

ceived or the timer expired. The physical layer was

configured both to lose packets and to introduce er-

rors in packets.

Assignment 1 ran entirely on a single machine, and

no data was actually transmitted across the network.

Instead, the simulated physical layer merely passed

the data (after appropriately introducing delays and

errors) from one copy of the student’s data link layer

to another copy.

The second assignment required the students to

introduce considerably more complexity into their

model data link layer programs. The primary compli-

cat ion was to int reduce a sliding window protocol, so

that several packets might be sent before an acknowl-

edgment was received. This made the management

of timers much more complicated. In addition, the

students’ programs used piggybacking for acknowledg-

ments in the second assignment. Under this scheme,

when possible, acknowledgments are not sent as sepa-

rate packets, but are included in data packets.

4.2 Student reaction to the project as-

signments

In past years, one of us has taught a senior-level

operating systems course in which the students had

a single project that they implemented in stages

throughout the term. Student reaction to that project

has been strongly favorable, especially from alumni.

In fact, the experience with that operating systems

course encouraged us to design this computer networks

course around a large-scale project.

The project in this computer networks course re-

ceived generally favorable comments from the students

in the end-of-term course evaluations. However, a sub-

stantial number of students were critical about the

project. One criticism was that the amount of cod-

ing required was too large. The lesson seemed to be

that in previous courses, many students were able to

complete programming assignments with a minimum

of planning – the assignments were small enough to

writ e from scratch. These assignments, however, were

significant 1y larger, and we observed that the success-

ful students started early (of course!) and had a clear

design for their program before they began to code.

Perhaps the presentation of the assignments needs to

be modified to encourage or require the students to go

through a more formal design process for their assign-

ments.

The other major criticism revolved around some

students’ difficulty in writing program for which parts

had already been written by someone else. Again, in

previous courses students had typically written the en-

tire programs by themselves, so this course provided

some new experiences for them. We feel that learn-

ing to program in an environment in which parts of

a program have been written by someone else is an

import ant skill for our students, many of whom an-

ticipate careers in software engineering. This obser-

vations suggests that we should make some changes

in the presentation of the assignments to prepare stu-

dents for this challenge.

176

4.3 Availability y of the software

The NetCp package is available by anonymous

ftp from wpi.wpi.edu (130.215.24.1) in the directory

NetCp. After setting the transfer mode to binary,

get the file netcp.tar.Z After retrieving the file, it

must be uncompressed and un-t arred. The package in-

cludes a file giving instructions on how to compile and

use NetCp. Comments from instructors using NetCp

would be very much appreciated by the authors.

Destination Machine

-(3
File b

!o?.wmatim H.L

@ Copk?sdaiasad to

dfsbmzbonflle.

smi5 Sbmmcs packet

Mad

I I
same as , I variable

S2nt ;

,

ToHL ~/- FKUIIHL

81idin9 window
Protocol

Winclcnw si,*-8

Pic$cry bc,ck.d

.Cknowlodk!uultm

[uam Protocol 6]

us= aithcr

Select iva Rm~at or

GO back ‘n,

FmmPL ToPL

h I

Dat8

Ack

Nak

12S bytes ; 1128 bytes
1

I w
P.L

Add arms
Delay according to bm

speed. %zdfmms over

netwk

MI

Host Machine

fc=,er
D H.L

8 sendsda!.Jh7nSmKe ● a
file.

Pnnfs out sfaftsbcs

s p7ckzf

1
I

same as, , variable

References

[KIFE91] M. Kifer and S.A, Smolka, OSP: An En-

vironment for Operating System Projects, Addison-

Wesley Publishing Company, Reading, Mass., 1991.

[TANE87] A.S. Tanenbaum, Operatzng Systems De-

sign and Implementation, Prentice-Hall, Inc., En-

glewood Cliffs, New Jersey, 1987.

[TANE89] A.S. Tanenbaum, computer Networks,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1989.

[WORC93] Worcester Polytechnic Institute, Under-

graduate Catalog, 1993-94, Worcester, Mass.

5.4 ,

m

ToHL D.L FromHL

S1 idizw Window

Protocol

Window siza-8

PiWY back-d

aokllouladg-ts

[u#a Protocol 6 J

we eithas

#.1.ct i.e Rweat or

GO back ‘n,

FromPL ToPL

b
,
I

12S bytes ; I 12S bytes

I sped SendJramfs or-w

network

SaoKe
, fib

Figure 1: Overview of netcp.

177

