
Reprogramable hardware for educational purposes

Michael Gschwind

mike t%dsivie. tuwien. ac. at

Institut fiir Technische Informatik

Technische University.t Wlen

Treitlstraile 3-182-2

A-104O Wien

AUSTRIA

Abstract

This paper presents a novel idea in teaching computer ar-
chitecture by using programmable hardware. Current teach-

ing models for computer architecture today are either mostly
theory-only or implementation oriented. Theory-based archi-

tecture courses lack the feedback to show students the effects
of their decisions. Implementation-oriented instruction em-
phasises the implementation aspects, that is, very low-level
implementation strategies, over CPU architecture and forces
the usage of very limited CPU designs to reduce complexity.
High cost and long manufacturing times are other problems
associated with this approach.

We propose to use field programmable gate arrays (FP-
GAs) to allow fast implementation of chip designs. This
allows for a fast debug cycle, as designs can be altered and
downloaded in a matter of hours. As FPGAs are pretested,
only logic functionality has to be validated, reducing the time
to get a workable implementation of a chip considerably.

1 Introduction

Current computer science instruction emphasises computer
architecture theory over implementation. Reasons for this
are manifold: Students often lack the engineering back-
ground for hardware implementation, as in many countries,
computer science curricula were developed from a mathe-

matical background. Implementation of architectures on a
transistor basis is arduous, offers little excitement and is

error-prone. Thus manufactured chips also require extensive
testing effort and multiple iterations to produce working sil-
icon.

Before the advent of VLSI, building architectures was com-
paratively easier to do in a classroom environment: comput-
ers could be assembled from discrete logic using wire wrap

Permission to copy without fee all or part of this material is
grnnted provided thnt the copie8 ere not made or distributed for
direct commeroiel edventeoe, the ACM copyright notice smd the
title of the publication and its data appaar, and notice is givan
that copying i8 by permission of the Association for Computing
Machinery, To copy c.therwise, or to republish, requires a fee
arrd/or epecific permission.
SIGSCE 94- !3/94, Phoenix+ ArfzortrxUSA

@ 1994 ACM 049791 —64&W4trx03..$3.5a

ping or printed boards. Anybody possessing Ibasic electronic

skills could theoretically memble his own architecture. Also,
for these circuits, testing was less involved than it is today

for VLSI ICS.

One approach that has been tried is high level compila-

tion, that is the specification of the computer architecture

in a high level language and automatic compilation to sili-

con [GGE9 1]. However, few toolsl exist. Moreover, circuit

density is suboptimal and often these tools oflfer only limited

parameterisation capabilities to already well-defined blocks.

ThE severely limits the architectural space that can be ex-

plored with such an approach.

Low level implementation is feasible only for small, limited

architectures. These courses generally limit themselves to

teaching how well-defined architectures can be implemented.

Anything going beyond that requires a massive effort on the

order of several master’s theses.

The results are that computer architecture is often re-

garded as a very unreal discipline that offers little excitement

and few ‘real’ results. We feel that one way to spark interest

in future generations of computer architects is to put the ex-

citement back into computer architectures. This can be done

by allowing students to design their own CPIJS and actually

use them. The concept to facilitate such an undertaking is

using programmable hardware. Students can design their
chips and program hardware to implement them.

2 FPGAs

User-programmable Logic Devices (PLDs) are a technology

which has developed rapidly over the past decade. The orig-

inal con~ept was developed about twenty years ago, with

PROMS and EPROMs being the first members of this family.

Further development brought the implementation of TTL-

logic using PLAs and PALs and, finally, field programmable

gate arrays.

There are several types of field programmable gate arrays.

The main differences are the type of logic cells which are of-

fered (from complex look-up tables to a sea of NAliD gates)

and how these cells can be programmed (from one-time pro-

grammable over EPROM-based to RAM-bssed). For edu-

cational purposes, readily re-programmable circuits are re-

quired, as designs need to be readily changeable. For this

10ne such high-level synthesis tool was Genesil. It was re-
tracted from the market in 1992 by Mentor Graphics.

183

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191033.191102&domain=pdf&date_stamp=1994-03-12

e -n...t.

AC 0..4 -*.
SEKUND.
ADRESS. -=b,w.

-AcN
DEKOOER.

+t..-lo. r+EF+OO:_.
GNU, * -.stit... LLfi.

STATUS * s-on 0.7.
E Sit. %%.k

caN&

4QR

(
MO..oels. (<~

;:;AR. t “_~~ ~.,, ,. + U-VO.

16 & .“.-* . U-vo.

-U-IOR04 U-vo.

cu. -U-VO.

Figure 1: Block diagram of the the FPGA/AT-bus in-

terface

5
reason, we chose Xilinx Corp. >s FPGAs [Xi192]. These are

SRAM based and can be re-programmed at any time by ss-

serting the RESET signal and latching the new configuration
information. Xtinx’s FPGAs use logic cells which basically
contain three lookup tables and two fiip flops each.

3 Our Platform

To make FPGA technology a ‘user-friendly’ programmable

hardware platform, we decided to design a PC board and

associated software that would simplify programming of and

interaction with the hardware[Hub92].

The PC board consists of two prograrnable FPGA chips,

a Xilinx XC4005 and a Xilinx XC3020, and glue logic to fa-

cilitate communication with the PC’s CPU over the AT bus.

The glue logic implements several 1/0 space mapped status

registers (see table 1). These registers allow user soft ware

to reset the FPGAs, program them with a new configura-

tion and communicate with the programmed hardware (see

figure 1).

4 How to Program Hardware

To program the FPGA hardware, the circuit design is en-
tered on a schematic level, using View Logic. Several macro

libraries exist, offering TTL components and other macro

cells. After design entry, the design can be simulated, using

the ViewLogic Simulator, and, once the design has been ver-

ified, a parameter file is generated for the FPGA. This file is

transferred to the host for the FPGA board, from where it is

down loaded to the FPGA board. A MS Windows interface

offers a user-friendly method of controlling the hardware.

In future we hope to add an additional layer on top of the

ViewLogic schematic entry, which allows using VHDL source

to specify the design (see figure 2).

I VHDL Source Code k
1 I

1
+

4

I Schematic Entry
k

I 1

I
+

(

I Skm.dation t-

I Generation of Pararnete~e I
I !

4
Hardware Execution

Figure 2: Programming hardware

Usage for Education

Our approach with prograrnable hardware allows designs to

be entered on a schematic level, using tools such as Vlew-

Logic. With the appropriate libraries, difTerent implementat-

ion approaches can be taught, such as TTL logic or using

larger macro libraries. Once the design has been entered, it

can be simulated on a workstation, or a parameter file for

downloading on the hardware can be generated.

The advantage of this approach is that no r~wiring is r~

quid if the circuit is changed. A simple compile run as is

customary in software design suffices to modify the hardware.

This facilitates experimentation with different approaches

and reduces the reluctance to mrkiify the design, as little

additional work is necessary. Also, it increases the num-

ber of exercises that can be done in a given time period, as

startup time normally necessary for teaching the use of tools

and overhead for re-wiring, or generating printed boards is

optimised away.

Because changing the circuit is as easy as a software edit-

compikrun cycle, debugging is very easy. Suspected bugs

can be fixed immediately and the testing can be continued.

Also, instrumentation for debugging is easy: for example, if

a particular bus is suspected to carry a faulty signal, it is

extremely easy to add a latch to store the value carried by

the bus. The hoat computer can then be used to read the

latch and once the problem has been corrected, the hardware

added for debugging purposes can just as easily be removed.

An additional benefit of FPGA-based architecture instruc-

tion is that if the logic design works, the hardware is guaran-

teed to work. Thus, potentially cumbersome electrical prob-

lems are removed, allowing to concentrate on computer ar-

chitecture, not on debugging its implementation.

6 Experiences

Tests with our prototype have largely been satisfactory. Our

tests included the implementation of a full microprocessor,

184

I Port I Flmction I Description

300H I CReset I Writing to this address will reset the FPGA.

302H CConfig Used to download the configuration file.
304H CStatus Status Register, used during configuration

and for handshaking by user applications

306H CIO Bidirectional register for transferring

16 bit data between FPGA application and CPU.

Table 1: Communication registers of the FPGA board are mapped into the CPU’s 1/0 space.

the PIC16C57 ([GJ92]), with debugging control, and of a

stack machine.

Currently, we use ViewLogic to enter designs at the

schematic/function block level. The ViewLogic environment

offers a wide array of cell libraries, including macros modeling

TTL parts and more advanced function blocks. Thus, stu-
dents can concentrate on architecture design, without hav-
ing to spend a large portion of their time designing low-level
function blocks. The ‘M’L emulation library allows student

familiar with conventional board design to work much more

efficiently, as their existing expertise in this design style can

be applied.

For teaching hardware description language and logic syn-

thesis classes, we intend to use VHDL compilers (we cur-

rently have both the Synopsys and Racal Redsc compilers

available at our site) interfacing to VlewLogic (see figure 2).

7 Case Study: The Design of a

Stack-Based Microprocessor

To maximiz e the understanding of the interaction of all levels

of computer design (hardware, compilers, OS), we emphasise

integration of system design consideration in student designs.

Students are free to choose their own processor architecture

and irnplementation strategy, generating considerable enthu-

siasm for the implementation of their processor. In the r~

mainder of this section, we shall discuss the design and im-

plementation of a stack processor, as designed by one of our

students (~au93]).

The student who did this project had already completed

a compiler design class ([Bro92]), where he implemented a

compiler for a stack machine. Thu machine specification was

then wed as the base design specification for the computer

architecture project (see figure 3).

The original design had variable length instruction for-

mats, ranging from 8 to 24 bits, with a unified instruction

and data memory space. At the project supervisor’s sugges-

tion, for simplicity, this was altered to use separate 24 bit

instruction and 16 bit data memories. This way all immedi-

ate constants could be encoded in single length instructions.

The design was going to be non-pipelined, with a finite state

machine (FSM) controlling the data path. The finite state

machine was modelled using a microprogram-like mnemonic
representation (ace figure 4). Through the use of C macros,

this representation was compiled to blt vectors, represent-

ing the ValUeS of the data path control signals in e~h state
([Gsc93]).

The design of the data path was straight-forward, using

Xilinx-supplied macros, the TTL emulation library and our

own, generic bit-slice ALU. The FSM was implemented using

the Xilinx memgen tool. This allows automatic generation of

ROM- and RAM-like structures.

Integration of the design was seamless. The design wss

simulated using ViewSirn. The simulation was largely suc-

cessful, but exhibited occasional unexpected behavior, like

erroneous incrementing of the PC - this waa tracked down

to hasards in the automatically generated ROM. The stu-
dent had stabilised the control signals by latching the current
state, allowing hazards to propagate to all functional units in
the data path. By latching the control signals of the current
state instead, these hasards were masked out. After this fi-
nal verification, the original compiler was adapted to reflect
the changes made to the architecture at the beginning phase
of the project. Thus, a fully functional microprocessor envi-

ronment was available, including a compiler and a hardware
prototype, implemented on one Xilinx XC4005 FPGA.

8 First Impressions

After implementing several chips using our current FPGA

board, we are now considering designing a new board with

enhanced functionality.

We were able to identify several points to be improved on

in this new generation:

●

●

●

9

Using several interconnected FPGAs will allow to im-

plement larger, more complex designs:

Logic density is low for some typea of specialised, very

technology-dependent blocks, such as ALUs. A possi-

ble solution to this problem is the inclusion of a dedi-

cated ALU chip on the board (for example, a member

of AMD’s bit-slice ALU series), which can be integrated

into FPGA based designs. Thus the logic density of

data paths would no longer pose a problem. A model of

th~ unit would be created for the design entry system

(ViewLogic in our case), such that the complete design

can be entered and simulated in ViewLogic.

We have noticed a lack of random access memory.

Traces cannot be gathered in ‘real time’, as no Suffi-

ciently large memory is available for storing the traces.

Future Development

Currently, the board’s application domain is limited as this

board is still in a prototype phase:

185

1

:.
1 ::, ; , :111 K 1 11111 .

1111 b I 1111 Ill II I

11111I11111111111
1111 I 1 I I I I

r 1 Ii

111111 I I II I Illw

-...
—, . *

—. . I I“d
11111 lTemx

J

1

Figure3: Block level diagram ofstack machine

LABEL(ADD)

COH(top-to-dmemadd I dmernadd-le I dmern-rd i dbua-to-alu.a)

COH(top-direct-dovrt i top-clk.en)

COH(top-to-dmemadd 1 dmemadd-le I dmem-rd i dbue-to-alu.b)

COH(top_to-dmemadd I dmemadd-le I dmem-vr I alu-e-to.dbua I alu-cntrl.add i pc-inc I fetch)

Figure4: FSMcode for adding the top two stack elements

b

●

●

Applications may only require a moderate number of

gates (max. 5000 gates for the XC4005).

The currently used glue logic implements only part of

the AT bus standard: the board is a passive device,

which cannot generate interrupts. All communication

with the PC and its devices has to be done through

polling by the master CPU. This includes main mem-

ory access, which cannot be initiated by the board, but

rather has to be routed through the CPU by using a

polling strategy.

The AT bus is too slow to allow high speed conurmnica-

tion with the maater CPU, main memory and attached

devices.

10 Future Directions

Possible (and planned) future enhancements are using mul-

tiple FPGAs which would be programmed by software that

partitions complex circuits to fit into several FPGAs. Local

(static) memory should provide sufficient bandwidth for the

FPGA cluster operating at higher speed. AlEw, we are plan-

ning to use a high speed bus to connect this cluster to the

master CPU, main memory and the attached devicez. One

such emerging technology is the VL local bus.

A cMerent approach for a high speed connection to the

CPU is using the SIMM memory interface. This leads to a

computing paradigm which is especially well suited for sys-

tolic array applications, but suffers from the same drawback

as our current board: it only can be used as a passive device

accessed through polling.

11 Related Work and Conclu-

sion

Intel Corp. used 14 Xilinx-based Quickturn RPMs2 to

fully simulate its current topof-the-line PentiumTM micro-

processor as part of the PentiumTM pr~zilicon validation

process([KNZB93]). The simulated Pentiumm microproc=

sor achieved an emulation speed of 300 kHz and booted all

major operating systems for Intel’s x86 processor family.

Athanas et al. use a reconfigurable coprocessor based on

FPGAs to speed up C code. Their approach is to identify

C functions which can efficiently be implemented in FPGAs

and have the coprocessor execute these functions. They re-

port speedups of factors up to 26, but the type of functions
that can be implemented is very limited [AS91]. van den

Bout et al. use cascaded FPGAs to increase the gate capacity

and static RAMS to increase memory capacity of their Any-

board. They have implemented a circuit partitioned to dis-

tribute circuits over several FPGAs [vdBMT+ 92]. Mathisen

et aL use an FPGA board to provide a reconfigurable 1/0

interface[MU92].

With this work we have demonstrated that FPGAs al-

—.
s Ed Q~&t~ RPM contains approximately 501cgates -g

Xilinx FPGAs.

186

low hardware design to have a debug cycle comparable in

speed to that of software, while still employing real hardwum

instead of software simulation for testing. This allows the

design of real-life architectures which can be tested in real

time and keeps the cost of exploring difTerent design options

low.

Our experience shows that it is feasible to have every com-

puter science student design, implement and test a CPU us-

ing standard libraries targeted to FPGAs. Targeting at sil-
icon would require more extensive testing, development of
test vectors, test methods etc. - tasks which take several
moths in their own right. While valid concerns, these tasks
add little to the understanding of computer architecture.3
With guaranteed-to-work, pretested FPGAs, every student
can design his own CPU in little over one month, witness-
ing the full cycle of architecture definition, logic design and
verification and to actuidly see the processor wortig.

12 Acknowledgement

Credits are due to Alexander .Jaud and Ernst Huber for

building and testing the board. Christian Mautner designed

the stack-based microprocessor presented as case study.

References

[AS91]

[Bro92]

[GGE91]

[GJ92]

[Gsc93]

[Hub92]

[KNZB93]

Peter M.

adaptive

compiler

tion. In

Athanaa and Harvey Silverman. An

hardware machine architecture and

for dynamic processor reconfigura-

Intemational Conference on Com-

puter Design, 1991.

Mantked Brockhaus. ~bersetzerbau. Vor-

ksungsskriptum, TU Wien, 1992.

H. Griinbacher, M. Gschwind, and W. Eder.

The design of a RISC controller based on a

load/store architecture. In Proc. of the Second

EusvChip Workshop on VLSI Design Tmin-

ing, Sep. 1991.

H. Grfinbacher and A. Jaud. JAPROC - an 8

bit microcontroller and its test environment.

In Pmt. of the Second Intemationcd Work-

8hop on Field- Progmmmable Logic and Appli-

cutiow, Aug. 1992.

Mkhael K. Gschwind. Automatic generation

of finite state machines for data path control.

Technical report, TU Wlenj 1993.

E. Huber. Eine Einsteckkarte fir den IBM-

PC/AT zur Progmmmierung von Xilirw FP-
GAs. Diplomarbeit, Institut fiir Technische

Informatik, Technische Universitiit Wien, Vi-

enna, Austria, Sep. 1992.

Wern-Yan Koe, Hsrish Nayak, Nazar Zaidi,

and Azarn Barkatullah. Pr~silicon validation

of Pentium CPU. In Hot Chips V . Sympo-

sium Record. TC on Microprocessors and Mi-

crocomputers of the IEEE Computer Society,

August 1993.

[Mau93] Christian Mautner. Entwurf mnd Implemen-

tation eines Stack-bssierten Mikroprozessors.

Course report, TU Wlen, 1993.

[MU92] Jan Anders Mathisen and Lisbet Utne. A

multi-purpose I/O-board. In Proc. o~ the
Second International Workshop on Field-

Progmmmable Logic and Applications, Aug.

1992.

[vdBMT+92] Dave van den Bout, Joe Morris, Douglas

Thomae, Scot Labroz@ Scott Wingo, and

Dean Hallruan. AnyBoard: an FPGA-based,

reconfigurable system. IEEE Design&Test oj

Computers, Sept. 1992.

[Xi192] Xilinx. The XC4000 Databook, Xilinx Corp.,

1992.

3 Thm ~mbl=m are covered by VLSI design lectures.

187

