
Complex Associations:

Abstractions in Object-Oriented Modeling *

Bent Bruun Kristensen

Aalborg University
Institute for Electronic Systems

F’redrik Bajers Vej 7, DK-9220 Aalborg 0, Denmark
e-mail: bbkristensen@iesd.auc.dk

Abstract

Objects model phenomena and a phenomenon is
usually a component. Information characterizing a
component is encapsulated and accessible only by
its methods. The relations between components
are modeled explicitly by means of associations or
references. A relation is also a phenomenon and
objects can model this type of phenomena too.
Components are usually related conceptually in di-
verse and subtle ways: Some relations are implic-
itly given and some are local to other more basic
relations. Such kinds of relations are important for
understanding the organization and cooperation of
objects and may be supported in object-oriented
analysis, design, and programming: An implicit
association describes a relation between an object
and objects local to this enclosing object, and a
complex association describes an explicit relation
between local objects in different enclosing objects.
Such associations are described by classes and the
objects have the usual properties including meth-
ods and attributes.

*This research was supported in part by the Danish Nat-
ural Science Research Council, No. 11-0542-1, while the
author was on leave at Department of Computer Science,
Monash University, Australia.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
OOPSLA 94- lo/94 Portland, Or on USA
Q 1994 ACM O-89791 -688-3194 0010..$3.50 “g

1 Introduction

One of the strengths of object-oriented modeling
- the isolation and encapsulation of information as
objects - is also one of its major problems. In-
formation that characterizes an object is hidden
inside the object and is usually accessible only by
methods. In this context relations between objects
are explicitly modeled during design by “associa-
tions” and references between objects. However,
other types of phenomena exist, such as activities
and relations, which have a rich and natural con-
ceptual identity of their own outside of any indi-
vidual component. These are in conflict with the
encapsulation in objects.

In this paper we argue that we need to pay much
more attention to implicit relations between ob-
jects, and to information that exists between and
external to objects. The attention must be re-
flected in the methodologies and the description
mechanisms for object-oriented analysis, design
and programming. As a step in that direction we
introduce language mechanisms to support object-
oriented modeling of implicit and complex associa-
tions:

l Implicit associations are described by means
of enclosing classes. Objects of such classes
have the usual properties such as methods, at-
tributes, etc.

l Complex associations are described by means
of association classes. These associations may

272

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191081.191120&domain=pdf&date_stamp=1994-10-01

also be enclosing classes. Association objects
have the usual properties of objects.

b) Structured Model: Complex Asscciations

Figure 1: Illustration of Problem and Solution

To give a flavor of the approach Figure la is a
schematic illustration of the usual flat model with
classes/objects and a lot of associations, whereas
figure lb illustrates a nested, structured model
with complex associations.

In section 2 we discuss the use of implicit and
complex associations as they apply to the the mod-
eling process. We focus on the analysis phase where
we are trying to understand and describe some part
of the world. We present a typical model from the
literature, which is hard to understand, and then il-
lustrate alternative models by introducing implicit
and complex associations. In section 3 we propose
a set of related programming language mechanisms
to support the processes and models illustrated in
the previous section. In section 4 we discuss re-

lated work. In section 5 we review an experimental
project focused on the design, implementation and
application of the ideas in this paper, and summa-
rize the experience from the project. In section 6
we summarize the proposals and results of the pa-
per. A summary of the language mechanisms, ad-
ditional shorthand notations, as well as various spe-
cialized forms of the mechanisms are given in the
appendix.

describing these by means of classes and associa-
tions between them. Using existing methods and
notation we usually describe all the classes and the
corresponding associations between them in one,
flat model, despite the fact that these are typically
at different levels of detail. Consequently the de-
scription often appears confusing and disorganized.
The problem is that this kind of description does
not reflect the way that we think about and under-
stand such complex systems.

“Automated Teller Machine”. As an exam-
ple consider the “Automated Teller Machine Ex-
ample”: The purpose is to design the software to
support a computerized banking network including
both human cashiers and automatic teller machines
(ATM’s) to be shared by a consortium of banks.
The object diagram presented in [Rumbaugh et al.
911 regarding this example includes classes mod-
eling Consortium, Bank, Account, Customer, Computer's,

Cashier, ATM, Transaction's among others. Examples
of the associations between these are Consists-Of,
Has, Entered-On: a Consortium Consists-Of some

Bank's, a Customer Has an Account, a Transaction iS

Entered-On an ATM. The diagram is given in figure 2.

Owns

I

Central-

P Computer

Communicates

2 Modeling Complex Structures Figure 2: ATM-System from [Rumbaugh et al. 911

In the process of modeling some part of the world
in an object-oriented fashion the focus is on identi-
fying concepts and their mutual relations and then

We claim that the classes are related in more
complex structures than such existing object-
oriented analysis and design methodologies sup-

273

port. Part of the reason is the lack of appropri-
ate language mechanisms for expressing (and thus
guiding in the description of) these complex struc-
tures and relations. Our approach to supporting
the structuring of the modeling process in a better
way is to offer more powerful description mecha-
nisms.

Banking Example: Top Level. We assume
that figure 2 is a valid model, given some perspec-
tive on this problem. However, the model is not
comprehensible and does not correspond to our
usual way of thinking, namely: At the top level
we think of a relation like banking as an associa-
tion, say Banking, between some banking company
(the Consortium in the example) and some general
Customer. The Consortium and Customer are the do-
mains of the Banking association. This top level is
illustrated in figure 3.

Consortium
I

Figure 3: Banking: Customer-Consortium

Banking Example: Next Level. At the next
level (Figure 4) we think of the bank branches
of the Consortium and the ATM’s situated in var-
ious places: We see the concept Consortium orga-
nized as a number of components according to the
concepts Bank and ATM (and in the example also
Centralized-Computer). Similarly, the Customer con-
cept may be organized into components, especially
when we imagine households or companies as ex-
amples of different kinds of more complex cus-
tomers. We choose to organize Customer in Cash-Card
and Account. (No Person is included in the example.)
The Consortium is called an enclosing component.
Therefore, on the one hand, Consortium is itself a
component and will be modeled as such. On the

other hand, it consists of a number of components
local to it (similarly for Customer). ' The associa-
tions between the components of this next level can
exist only because of the association between the
enclosing components at the top level, and they
are local to the association on the top level. In
the example the Account is associated with Bank by
Holds and with ATM by Concerns. The Cash-Card is
associated with ATM by Authorized-By. Therefore as-
sociations such as Holds, Concerns and Authorized-By
are local to the association Banking. The domains
of these local associations are domains local to the
domains of Banking.

Figure 4: Banking: Customer-Consortium, Cont.

The enclosing Consortium has the components
Bank, ATM and Centralized-Computer lOCal t0 it.

Therefore our model has an implicit association
between the enclosing component and each of its
components. Regarding Consortium, we find that
Owns for Central-Computer, and Consist-Of's for Bank's
are explicitly given in [Rumbaugh et al. 911,
whereas the one for ATM’S is not. Similarly, in our
model we have implicit associations between each
ofthe associations Holds, Concerns and Authorized-By
being local to the association Banking. Between
enclosing components we have the explicit asso-
ciation between Consortium and Customer, namely
Banking and its local associations. Inside an en-
closing component we have explicit associations
between the local components, such as Accesses

' We use the term local to informally with the meaning

belonging to or existing in, in contrast to part of, with the
meaning some but not all of a thing.

274

for Account and Cash-Card, and Communicates-With for
Central-Computer and ATM, whereas an association
like Operates for Central-Computer and Bank is added
in our example.

Commuricates-

Jonsortium

Computer 1

Figure 5: Banking: Customer-Consortium, Cont.

Banking Example: Final level. We illus-
trate the next level (Figure 5) for the Consortium

only. Thinking of a branch, we find Cashier and
Cashier-Station. Also we realize that we have
a Cashier-Transaction and we may even have a
Bank-Computer. Therefore Bank is itself an enclos-
ing component with these kinds of components.
Similarly, ATM is an enclosing component with
Remote-Transaction's aS local COmpOIlentS.

With respect to associations, Authorized-By is
an association between the components Cash-Card

and Remote-Transaction (local to, and replacing
ATM in this association). Similarly, with re-
spect to Concerns between Account and ATM: These
are examples of associations which are extended
from the enclosing component to a local compo-
nent . The Holds association between Bank and
Account may be seen as a complex association, so
that the association Concerns between Account and
Cashier-Transaction's is local to Holds. The domain

Cashier-Transaction is local to the domain Bank but
the domain Account is unchanged. The associa-
tion Operates for Central-Computer and Bank is an-
other example of a complex association: The asso-
ciation Communicates-With between Central-Computer

and Bank-Computer is local to Operates. Bank-Computer
is a domain local to Bank, whereas the domain
Central-Computer is unchanged.

Customer

Bank

V
Cashier

L 4-b

Consortium

comm”nicjg$f%~~-with

Figure 6: Banking: An Alternative Model

Banking: Alternative Model. Finally, we dis-
cuss an alternative model (Figure 6). Previously
we chose to consider Customer as an enclosing com-
ponent with Account and Cash-Card as local com-
ponents. An alternative is to let Account and
Cash-Card be local components of Banking and also
to let Banking be an even more complex associ-
ation, not only including local associations, but
also local components. This seems natural in
the example, but may be even more natural if
Customer had been some company with various de-
partments, local to the company. Therefore Banking

is an association (with local components Account

275

and Cash-Card) between Consortium and some kind
of Customer, which is not specified any further. Sim-
&Uly, WE! may let Cashier-Transaction (respectively
Remote-Transaction) be the association itself - and
not a component - between Account and Cashier

and Cashier-Station (respectively between ATM and
Cash-Card and Account). In this last case we may
still consider Account and Cash-Card to be local com-
ponents of banking SO that Cashier-Transaction and
Remote-Transaction are associations between compo-
nents, which are local to either associations or com-
ponents.

3 Language Mechanisms

Our main point is that the complex structures
which appear in the previous section are not only
a practical way to illustrate a model, but are also
the way that we actually think about it: At the
top level we have some rather complex Banking as-
sociation and at a more detailed level this asso-
ciation is refined into several simpler associations
between several simpler components. By distin-
guishing between the top level and the next level
we have not just given alternative presentations of
the same model. We propose that the concept local
to is available through some supporting language
mechanism. Moreover, the concept is available for
both components and associations and at several
levels. ’

The description of a local component is mean-
ingful only in connection with the description of
the enclosing component, and the existence of a lo-
cal component is dependent on the existence of an
enclosing component. The description of a local
association is meaningful only in connection with
the description of an enclosing complex association,
and the existence of a local association is dependent
on the existence of an enclosing complex associa-
tion.

We need language mechanisms to describe im-
plicit and complex associations. For this purpose

’ We use the term local to distinguish between the local

objects and the part objects of some (whole) object: An
(enclosing) class/object may have local classes/objects.

we introduce slightly modified general classes and
objects with methods, attributes, etc.

The following is a schematic description of a gen-
eral class: Methods, M, and references, R, are in class
c and may be accessed by means of “dot’‘-notation,
such as aC . M and aC .R, where R is a name of a refer-
ence to some object of class c'. 3 The class c and a
graphical illustration of it are given in figure 7.

C: class

(. . . M: method(...)

. . . R: reference C

1

aC: object C

R M

Figure 7: Notation and Illustration of a Class

In the schematic examples we shall use C: (. . .I
(or a, b, r, and z) to denote methods, references,
etc. We use the generic term “attribute” for any of
these, and do not distinguish between them with
respect to visibility from outside an object.

Basic Associations. Given two domains in the
form of classes A and B, with attributes a and b,
respectively, a basic association R, with attribute r
(figure 8a), may be declared as follows:

R: --class CA,BI (. . . r: (. . .I . . . 1
A: class (. . . a:(.. .) . . .)

B: class (. . . b:(...) . . .)

An association class is indicated by the notation
--class. The body of R is similar to a usual class
descriptions and may include various other parts.

We shall include two extensions: A objects may
play a role named roleA for B objects in relation to
R, and R may be a one-to-many association, from
one A to many B’s:

R: --class CroleA: A, roleB: * B] (. . . r: (. . .> . . . 1

3 We use reference in the declaration of names of local
objects. Even though our objective is to introduce alterna-
tive abstraction mechanisms, we do not claim that primitive

references can be replaced completely.

276

Given an A object anA and a B object a~ the in-
stantiation of the association object between these
objects is denoted: --object R (anA, a~). The selec-
tion of this specific R object is denoted: RC~~A. a~).

Furthermore, R(-,-) denotes the set of association
objects instantiated from R.

The language mechanisms are illustrated by the
Banking example. The following description illus-
trates the Banking example at the top level (fig-
ure 9a):

Customer: class

(. . .

Account: class (. . . List: methodc...) . . . 1

Cash-Card: class (. . . TheAccount.List . . . >

Accesses: --class

[TheAccount: Account,

TheCash-Card: Cash-Card] (. . .)

. . . TheConsortium . . .)

Consortium: class (. . . TheCustomer . . . >

Banking: --class

[TheCustomers:* Customer, TheConsortium: Consortium]

(1 . . .

Banking and Accesses are basic associations (local to
Customer). An association object between a Customer
object, BBKing, and a Consortium object, USavings,

may be instantiated as follows:

--object Banking (BBKing, USavings)

Basic Associations: Access. The language
mechanisms introduced in this section support not
only a description of the static relational structure
developed in the previous section but also direct dy-

namic access to the objects in the complex struc-
ture. A summary of the notation is given in the
appendix.

Dot-notation is available for accessing attributes
of objects and association objects: The r attribute
for the association object between the objects anA

and aB is denoted as R(~IIA, aB) .r. The r attribute
for all objects in R(-.-1 is denoted R(-,-1.r. More
generally, R(-,-1 . {. . .} means the execution of the
action sequence “. . . ” for all the objects in R(-,-I.

c

z

+i

I7

C

2

b) Implicit Association

a) Basic Associations

c) Complex Association

Figure 8: Illustrations of Associations

The anA object is denoted by R(-,aB) and the a
attribute of anA is denoted by R(-,aB) .a. Inside the
object a~ the object anA is denoted R’roleA only:

B: class (. . . R’roleA . . .)

Similarly, R’ro1eA.a denotes the attribute a.

R(~~IA,-) denotes a set of associated B objects.
roleB (anA, -1. b is a multiple access of the b attribute
of a set of B objects. Similarly, R’roleB used inside
the anA object denotes a set of B objects.

The actual objects in the R-association object
are accessed by means of roleA and roleB, as for
example: 4

Rf-,-I .(. . . roleA . . . roleB . . . 3

A special notation is available from inside an asso-
ciated object such as ~EI for the access of r, namely
R’r, which denotes the r’s of the set of association
objects between anA and some B objects.

The description of the Banking association illus-
trates examples of access of objects and meth-
ods: From Customer the Consortium is accessed by

* The meaning of someC.{. . .M.. .R.. .} is: somec is

an object or association object (or some set of these).
“ . ..M... . . . R ” is some action sequence with denotations

of some methods and references, respectively M and R.

The action sequence is executed with the substitutions
“ . . . someC.M...someC.R...“. If someC is a set of objects, the

action sequence is executed for each object or association

object in the set.

277

TheConsortium and from Consortium the Customers’s

are accessed by TheCustomer. From Cash-Card the
method List of the associated Account’s is accessed
by TheAccount. List.

b) Banking Illustration

Figure 9: Illustration of Example

Local Classes and Objects. An enclosing class
is a usual class except that local classes may be de-
clared (syntactically) inside the enclosing class. An
enclosing object may also have attributes. Objects
of a local class are local to an enclosing object. A
local object is dependent on the existence of the
enclosing object.

The enclosing object c has the attribute C: (. . .I.
The local class z is nested inside enclosing class
c, so that the objects of z (for example an object
referenced by aZ) are local to the enclosing c object,
for example aC (figure 8b):

C: class

(. . . c:(...) . . .

Z: class (. . . z:(. ..I . . . 1

aZ: reference Z

. . . 1
aC: object C

The class z (together with class C) also introduces
an implicit association between objects of c, such
as aC, and its z objects.

An aC.Z object is instantiated by --object aC.Z.
The set of aC.z objects local to aC are denoted 5 by
aC.Z(-1.

5 We use the dot notation (for example ~c.z) to simplify

the description, and we leave it open whether or not Z objects

should be accessible from inside C objects only.

In the Banking example the class Customer has the
local classes Account and Cash-Card (figure 9a). The
List method of the Account’s of a Customer, for ex-
ample BBKing, is accessed by BBKing . Account (-) . List.

Enclosing classes may be nested, i.e., they may
have local objects at several levels. The Consortium
has the local class Bank, which has the local
classes Cashier-Transaction and Cashier-Station (fig-
ure 10a):

Consortium: class

(. . .

Bank: class

(. . .

Cashier-Transaction: class (. . .)

Cashier-Station: class (...I

. . . 1
. . . 1

Complex Associations. An association class
may also be an enclosing class with local associ-
ation classes.

Class A has a nested class x and a local object anX.

Similarly for B, Y and aY. Furthermore, R is an asso-
ciation between A and B. Nested in R we describe a
complex association, z, between x and Y (figure 8~):

R: --class [roleA: A, roleB: Bl

(. . . I:(...) . . .

Z: --class [roleX: A.X. roleY: B.YI

(. . . z:(...) . . .)

. . .)

A: class (. . . X: class(...) . . . anX: object X . . . 1

B: class (. . . Y: class(...) . . . aY: object Y . . .)

Given A and B objects and an association object
of R between these, we can instantiate an associa-
tion object of z between the anx and aY objects from
inside R by:

--object Z (roleA.anX. roleB.aY)

The Banking association has a local association
Holds. The domains of Banking are Customer and
Consortium. The domains of Holds are Bank (local
to Consortium) and Account (local to Customer) (fig-

ure 9b):

Banking : --class [. . . 1

(. . .

278

Holds: --class

[TheBank: Consortium.Bank,

TheAccount:* Customer.Accountl

(. . . Expiration-Date: method(...) . . .)

. . . 1

Complex Associations: Access. In the asso-
ciation z the objects of x and Y may have the roles
rolex and roley, respectively. For x and Y objects
the association z is available in exactly the same
way as R is available for A and B objects. Inside x
(respectively Y) the corresponding objects may be
denoted by Z’roleY (respectively Z’rolex). Inside R
the operations for z and the notations rolex, roleY,
etc., are directly accessible.

The set of associations between a Bank and an
Account object is denoted by Holds and a method
Expiration-Date for Holds is accessed for all elements

in this set by Holds.Expiration-Date. TO access the
List method for all the Account objects (local to
a Customer object) from inside a given Bank object
(local to a Consortium object) we use the notation:

TheAccount.{ . . . List . . . 1

The Holds association has a local association
Concerns (figure 10a). This association is asymmet-
ric because it is between the Account (as Holds is
too) and the Cashier-Transaction local to Bank:

Banking: --class [. . .]

(. . .

Holds: --class [. . . 1

(. . .

Concerns: --class

[TheCashier-Transaction:

Consortium.Bank.Cashier-Transaction] (...I

. . . >

. . . 1

The association Entered-On is local to the class
Bank. The domains of Entered-On are the classes
Cashier-Transaction and Cashier-Station, also both
local classes Bank (figure 10a):

Consortium: class

(. . .

Bank: class

(. . .

Entered-On: --class

. .

[TheCashier-Transaction: Cashier-Transaction,

TheCashier-Station: Cashier-Station] (...I

. . >

1

a)Ba&ing Illustration

Customer

I I

I

Consortium
I

b) Illustration of Alternative Perspective

Figure 10: Illustration of Example

The Alternative Model. An enclosing associ-
ation class may also have local usual classes.

In this model of the Banking example the classes
Account and Cash-Card are still the domains of the as-
sociation Accesses but now all these are local to the
Banking aSSOC&iOn. Cashier-Transaction is aternary
association also local to Banking with the domains
Account, Cashier, and Cashier-Station (figure lob):

Customer: class (...I

Consortium: class

(. . .

Bank: class

(. . .

Cashier-Station: class

(. . . Station-Id: methodc...) . . . 1

Cashier: class

(. . . Cashier-Id: methodc...) . . .)

. . . 1
. . . 1

Banking: --class

[TheCustomers:* Customer, TheConsortium: Consortium]

(. . .

Account: class (. . . Balance: methodc...) . . .)

Cash-Card: class (...I

279

Accesses: --class

[TheAccount: Account,

TheCash-Card: Cash-Card] (...)

Cashier-Transaction: --class

[Concerns-Account: Account,

Entered-By: Consortium.Bank.Cashier,

Concerns: Consortium.Bank.Cashier-Station]

(. . . Authorization-Number: methodc...) . . .)

. . . 1

In the Banking class a Cashier-Transaction object

may be instantiated by --object

Cashier-Transaction(... 1 with Account, Cashier, and
Cashier-Station objects as arguments. The set of
Cashier-Transaction's local to a Banking object, as
well as various methods of the associated objects,
may accessed by

Cashier-Transaction.

c . . . Concerns-Account.Balance

. . . Entered-By.Cashier-Id

. . . Concerns.Station-Id . . . 1

For a set of Cashier-Transaction's

the method Authorization-Number is accessed by
Cashier-Transaction.Authorization-Number.

4 Related Mechanisms

Object-oriented modeling originates from the (sim-
ulation) models in SIMULA 67 [Dahl et al. 841.
In this modeling the inheritance mechanism, as an
example, supports the specialization of concepts.
Language mechanisms may be designed in general
to support the abstraction processes in terms of
concepts and phenomena [Kristensen & Osterbye
941.

Abstraction mechanisms may support the logical
and physical view of a system. The logical mecha-
nisms tend to be the most important ones because
they express the meaning of the description, The
physical mechanisms however are indispensable be-
cause they organize the description in manageable
pieces and for different purposes. The two pur-
poses have been mixed in most languages through-
out the history of programming languages. It has

been a problem that the distinction of these pur-
poses has not been clarified and that the properties
of the mechanisms have not been presented clearly
according to this distinction. The mechanisms of
this paper are clearly logical. In the following we
compare our proposal with related logical as well
as physical mechanisms.

Association Classes. Implicit and complex re-
lations are not supported by the following related
mechanisms:

Relations [Rumbaugh 871 and the corresponding
associations in OMT [Rumbaugh et al. 911 are
object-external abstractions and are useful for de-
signing and partioning systems of interrelated ob-
jects. Associations may be instantiated and may
have attributes, but the instances are not objects,
in contrast to our work.

Contracts [Helm et al. 901 are specifications of
behavioral dependencies amongst cooperating ob-
jects. Contracts are object-external abstractions
and include invariants to be maintained by the co-
operating objects. The focus is on inter-object de-
pendencies to make this explicit by means of sup-
porting language mechanisms. The result is that
the actions - i.e., the reactions of an object to
changes - are removed from the object and de-
scribed explicitly in the contracts: The objects are
turned into reactive objects, whereas the reaction-
patterns for an object in its various relations with
other objects are described in the corresponding
contracts. The intention of the contract mecha-
nism is not modeling of real world phenomena and
their inter-dependencies. Instead the intention is to
have a mathematical, centralized description, that
supports provable properties. The description is
mathematically rigorous. Unlike our approach the
instantiations of contracts are not objects and can
not have attributes, methods etc.

Enclosing Classes. The important difference
between enclosing classes and the following related
mechanisms is that the abstraction processes, ex-
emplification, specialization, and aggregation are
only supported by enclosing classes. The support of

280

exemplification, interpreted as instantiation of an
object from an enclosing class, implies that the en-
closing object exists as an object at run-time, and
as such, supports the ezecution organization. In
contrast to this, most of the following mechanisms
only support the program organization, for example
by means of modules, which are only present during
the development of the program and at compilation
time.

Patterns (corresponding to classes) in Beta
[Madsen et al. 931 may be nested for several pur-
poses, one of which is block structure [Madsen 871.
Nested patterns are semantically similar to enclos-
ing and local classes with respect to the existence
at run-time. However, no associations (basic, im-
plicit, or complex) are available.

The concepts subsystems and contracts [Wirfs-
Brock et al. 901, which build on the concepts
responsibilities and collaborations, are powerful
mechanisms for understanding and expressing the
relationships between classes and groups of classes.
The mechanisms have no semantic influence but
give additional information concerning the organi-
zation and cooperation of objects.

The module diagram [Booth 911 is part of the
physical design of a system and describes the allo-
cation of classes and objects in software modules
as a concrete implementation of the logical design.
Subsystems are introduced to represent clusters of
logically related modules. The class category is an
abstraction mechanism which supports the under-
standing of the logical architecture of a system. It
has no effect on the execution of a system but sup-
ports program organization.

Nested classes (and the friend mechanism) of
C++ [Stroustrup 911 are only related to compile-
time visibility of attributes.

The cluster [Meyer 921 (not part of Eiffel but of
Lace only) is used for arranging classes into groups.
Clusters do not require specific language support,
as this can be provided by the operating system
facilities. Clusters support program organization.

The subject [Coad & Yourdon 911 is an organiza-
tional structure for programs intended to guide the
reader through the description of a large complex

model.
In OMT [Rumbaugh et al. 911 the module is a

logical construct for grouping classes and associ-
ations. A sheet is the mechanism for breaking a
large model down into a series of pages and a mod-
ule consists of several sheets. Both of these mecha-
nisms support program organization. Modules are
also part of system design, which involves breaking
a system into subsystems. Subsystems are neither
objects nor functions, but packages of interrelated
classes etc. In addition, subsystems may be orga-
nized in layers and partitions. Subsystems are part
of the architecture of a system and all this is con-
cerned with the physical organization of the model.

Restrictions. To simplify our description we
have restricted ourselves from describing various
other aspects of both enclosing and associations
classes. However, the missing aspects are mostly
orthogonal.

Regarding associations, we have introduced the
following limitations:

l Order and multiplicity of associations: Only
mechanisms for binary associations are defined
and only in the form of one-to-one and one-
to-many.

l Active Associations: Only passive associations
are discussed. Transverse activities [Kris-
tensen 93a], [Kristensen 93b] have an action
part specifying a partial life cycle of the asso-
ciated objects. The cooperation of objects is
then described in an alternative way to object-
centric method invocations.

l The abstraction processes, exemplification,
specialization, and aggregation for enclosing
and association classes: Specialization, in-
terpreted as forming more special association
classes from a more general association class,
may include the specialization of the domains
and the addition of more domains. Aggrega-
tion, interpreted as forming a whole associa-
tion object from part association objects, may
include the use of the attributes, methods and

281

the domains of the part object for aggregation
of the similar elements of the whole object.

Regarding enclosing objects the following as-
pects are not covered:

l Visibility rules for enclosing classes and the
access of global attributes.

l The distinction between local object and part
object.

l The movability of objects between enclosing
objects and the possibility of multiple enclos-
ing objects.

5 Experimental Project

An experiment in programming language support
of enclosing classes and association classes is de-
scribed in [Andersen et al. 931. The objective was
to gain more experience with the design of abstrac-
tion mechanisms of this kind, to consider efficient
implementation techniques, and to be able to use
the language mechanisms and the implementation
for a reasonably realistic test case. The experience
from the test case is that the combination of enclos-
ing and association classes is straightforward to use
and appears to give well-organized descriptions.

The design allows an object to move from one
enclosing object to another. The model is based
on static binding of names and the movability of
objects introduces multiple binding of names. The
concrete language mechanisms were constructed
as additions to the Beta language: Environment
classes may be listed in an optional clause for a
class. Associations are supported by predefined
classes and methods. The experience from the
implementation is that movable components intro-
duce a complex lookup mechanism for method ac-
tivations 6 and that the predefined classes for as-

6 In static languages the binding of a method is usually
done at run-time, dependent on which object is currently
denoted. In dynamic languages methods may be added and
deleted at run-time, and there is a need for dynamic lookup
of the method. The lookup required in the case of multiple
binding varies between different, but fixed superclass hier-

sociations require comprehensive underlying struc-
tures to implement the advanced functionality of
their methods.

6 Summary

The underlying thesis advocated in this paper is
that in existing object-oriented methodologies and
description mechanisms classes and objects appear
as isolated elements with very simple associations
between them. However, there are other kinds of
phenomena such as implicit associations between
components and information existing between such
components. This is important for the modeling
of organization and cooperation of classes and ob-
jects. We have proposed language mechanisms in
the form of nested associations and classes to sup-
port such descriptions. The main results may be
summarized as follows:

Complex associations support the modeling of
the organization and cooperation of objects
in object-oriented analysis, design and imple-
mentation.

The local relation is a powerful, implicit as-
sociation of an enclosing object with its local
objects (and also for an association with its
local associations).

A complex association can have local associ-
ations for which the domains are local to the
domains of the enclosing association.

Associations are classes and the instances of
associations are objects with attributes and
methods.

Complex associations support well-organized
descriptions of the static structure as well as
simple, efficient dynamic access of this struc-
ture.

archies because the object itself - or some of its enclosing
objects - may have moved.

282

Acknowledgments. We thank Erik F. Ander-
sen, Peter Gilling, Poul Holdt-Simonsen, Lars Mil-
land for inspiring discussions and new insight ob-
tained in relation to the experimental project. We
also thank David Garlan for help with revising the
paper.

References

[Andersen et al. 931 E.F.Andersen, P.Gilling,
P.Holdt-Simonsen, L.Milland: Coherent
and Well-Organized Object-Oriented Pro-
gramming. Thesis (in Danish), Aalborg Uni-
versity, 1993.

[Booth 911 G.Booch: Object Oriented Design with
Applications. Benjamin/Cummings 1991.

[Coad & Yourdon 911 P.Coad,
E.Yourdon: Object-Oriented Analysis. 2/E,
Prentice-Hall, 1991.

[Dahl et al. 841 O.J.Dahl, B.Myhrhaug,
K.Nygaard: SIMULA 67 Common Base Lan-
guage. Norwegian Computing Center, edition
February 1984.

[Helm et al. 901 R.Helm, I.M.Holland,
D.Gangopadhyay: Contracts: Specifying Be-
havioral Compositions in Object-oriented
Systems. Proceedings of the European Con-
ference on Object-Oriented Programming
/ Object-Oriented Systems, Languages and
Applications Conference, 1990.

[Kristensen 93a] B.B.Kristensen: Transverse
Classes & Objects in Object-Oriented Anal-
ysis, Design, and Implementation. Journal of
Object-Oriented Programming, 1993.

[Kristensen & Osterbye 941 B.B.Kristensen,
K.Bsterbye: Conceptual Modeling and Pro-
gramming Languages. To appear in Sigplan
Notices, 1994.

[Madsen 871 O.L.Madsen: Block Structure and
Object Oriented Languages. In: B.D.Shriver,
P.Wegner: Research Directions in Object
Oriented Programming. MIT Press, 1987.

[Madsen et al. 931 O.L.Madsen,
B.Moller-Pedersen, K.Nygaard: Object Ori-
ented Programming in the Beta Program-
ming Language. Addison Wesley 1993.

[Meyer 921 B.Meyer: Eiffel, The Language. Pren-
tice Hall, 1992.

[Rumbaugh 871 J.Rumbaugh: Relations as Se-
mantic Constructs in

an Object-Oriented Language. Proceedings
of the Object-Oriented Systems, Languages
and Applications Conference, 1987.

[Rumbaugh et al. 911 J.Rumbaugh, M.Blaha,
W .Premerlani, F.Eddy,
W.Lorensen: Object-Oriented Modeling and
Design. Prentice-Hall 1991.

[Stroustrup 911 B.Stroustrup: The C++ Program-
ming Language. 2/E, Addison-Wesley 1991.

[Wirfs-Brock et al. 901 R.Wirfs-Brock,
B.Wilkerson, L.Wiener: Designing Object-
Oriented Software. Prentice Hall, 1990.

[Kristensen 93b] B.B.Kristensen: Transverse Ac-
tivities: Abstractions in Object-Oriented
Programming. Proceedings of International
Symposium on Object Technologies for Ad-
vanced Software (ISOTAS’93)) 1993.

283

Language Mechanism Summary

Basic Associations (figure 8a)

Summary: Associations are classes which de-

scribe relations between classes, the domain

classes. Associations may be instantiated as
objects with attributes and methods. The ob-

jects may be denoted and accessed by special

operations

FL: --class [roleA: A, roleB:* Bl (. . . r:(. . .> . . .)

A: class (. . . a:(. ..I . . .)

B: class (. . . b:(. . .) . . .)

anA: object A

aB: object B

Mechanism / Notation 1 Meaning & Remark

I R-Obiect Instantiation:
--object R(anA,aB) An object of R for anA and aB

The R objects associated with anA

R(This,-) R(iA,-) from inside anA

1 A-Object Denotation:
R(-,aB).roleA
R(-,-) .roleA
R(-,This).roleA
roleA

R(anA,-).roleB
R(-,-) .roleB
R(This,-).roleB
roleB

The anA object associated with aB

1 ii, ;B?.?t&?;mi;;d; aB

The aB objects associated with anA

If no role names are specified it is possible to use
the class names A and B as default role names.

A denotation of an attribute (a, b, and r of A,
B, and R, respectively) has the form of an object
denotation (single object or a set of objects), a dot,
and the attribute name. An example of such a
denotation is R(anA, aB) .r.

Visibility restrictions may apply so that not all
kinds of attributes may be accessible. Furthermore,
the attributes of an object may not be visible be-
cause the object can be denoted from outside (for
example A by R(-.-I .roleA).

,: : .__...
r R(anA,aB’) .; h

,’ :
_/ ., p.

:’
;, R’roleB(anA) ..;“‘..,,, :: R’roleA(aB)

R~~A,iW ‘1:: R(-,-) ;
_:’ _:’

‘_ : ._‘.. __..
. ..__ :’ ,__:_____________...................~~~~~ ._..’

~~.-._______..~

Figure 11: Illustration of Object Denotation

Shorthand Notation

R’is (anA,aB)
R’all

R’roleB(snA)
R’roleB
roleB(anA)
roleB
R
R’r

R’roleA(aB)
R’roleA
roleA
roleA
R
R’r

Meaning

R(anA,aB)<>None

R(-,-I

R(anA,-) .roleB

Local Classes and Objects (figure 8b)

Summary: In an enclosing class a local class is
a description of a collection of objects, in
which the existence of such local objects are
dependent on the existence of an enclosing

object. The enclosing object may have at-

tributes, methods, local objects, and associa-

tions to other objects. The local objects may
be associated with objects external to the en-
closing object. The local objects may also be

associated by means of local associations

C: class

(. . . c:(...> . . .

2: class (. . . z:(. ..> . . . 1

aZ: reference 2

. . . 1
aC: object C

The aC is an enclosing object, with local z ob-
jects, but it is also an object, so that aC. c, aC.2,

284

and aC.aZ may be accessed. We use the dot no-
tation (for example ac.2) to simplify the descrip-
tion and we leave it open whether or not z objects
should be accessible from inside c objects only.

aZ is an example of an explicit reference to a Z
object. The class c (together with class z) also
defines an implicit association between any c object
aC and the z objects local to aC.

An optional role name may be included in the
declaration of the z class, for example rolez in
(roleZ:Z): class(...).

From inside a c object the following mechanisms
are available (may also be available from outside c
by using the dot notation for c objects):

‘... #-Z(-) ..__.... .,’ ‘... #-Z(-) ..__.... .,’

a) Implicit Association a) Implicit Association

..__... ,’ ..__. ..

b) Complex Association b) Complex Association

Fit Figure 12: Illustration of Object Denotation

Complex Associations (figure SC)

Summary: An (enclosing) association class is a

relation between (enclosing) domain classes.

Enclosing association classes have local classes
and local association classes. The existence of
objects of the local associations are dependent
on the existence of an object of the enclosing
association. The domains of the local associ-

ations are either local classes to the enclosing

Mechanism / Notation Meaning & Remark

Z-Object Instantiation:
--object Z() of an object local to a C object

Z-Object Denotation:
Z(-) of the objects local to a C object
roleZ of the objects local to a C object

z-Attribute Denotation:
Z’Z of the Z objects of a C object

association class or local classes of the domain
classes of the enclosing association

R: --class [roleA: A, roleB: B]

(. . . I:(...) . . .

Z: --class [roleX: A.X. roleY: B.Y]

(. . . z:(...) . . .)

. . . 1

A: class (. . . X: class(...) . . . anX: object X . . .)

B: class (. . . Y: class(...) . . . aY: object Y . . . 1

R is an association class, with a local association
class z. A and B are classes, with local classes x and
Y, respectively. z is a relation between x and Y.

The class z is also an implicit association for an
R object and the z objects local to this.

From inside R, Z, x, and Y the following mech-
anisms are available (may also be available from
outside these classes by using the dot notation for
R, z, x, or Y objects):

[Mechanism / Notation [Meaning & Remark

1 Z-Obiect Instantiation: 1
--object Z(roleA.anX,roleB.aY) from inside R (or X or Y)

Z-Object Denotation:
Z(...) from inside X of A (Y of B)

X-Object Denotation:
ZC...) .roleX from inside Z of R
roleX from inside Y of B

Y-Object Denotation:
Z(...) . roleY from inside Z of R
roleY from inside X of A

z-Attribute Denotation:
Z’z inside X of A (Y of B)

The notation z(. . .> stands for all the possibili-
ties available for accessing association objects, sim-
ilar to the possibilities for basic associations.

Association

(figure 13a)
between Associations

Summary: Associations may exist between asso-

ciations, so that the domains may be associa-

tions at any level

Rl: --class [Al, Bl] (. . .)

R2: --class [A2, B2l (...I

s: --class [roleRl: Rl, roleR2: R21 (...I

In the instantiation of an association between
two existing objects of Rl and R2 we may use

285

references to association objects, by the notation The instantiation of an association between aB

--reference R:

anR: --reference R

anR := --object R (anA, aB)

and aB.aY is denoted --object z(aY> from inside B.

The denotation of all aY objects in the association
z from inside B has the form z(-> .roleY.

a) Association between

Associations

b) Asymmetrical Local Association

c) Association for Objects and Local Objects

Figure 13: Illustration of Associations

Asymmetrical Local Association (figure 13b)

Summary: Local associations may exist between
the domain of an association and local objects

in the other domain(s)

R: --class [roleA: A, roleB: Bl

(z: . . . --class CroleY: B.Yl (...I . . .)

A: class (...I

B: class (. . . Y: class(...) . . . aY: object Y . . .)

The instantiation of an association between anA

and aB.aY is denoted --object z (aB.aY) from inside
R. From inside A the object denotation of aB.aY has
the form Z(this) .roleY.

Association for Local Objects (figure 13~)

Summary: Explicit associations may exist be-
tween an object and some local objects of this
enclosing object

B: class

(. . . Y: class (...I . . . aY: object Y . . .

. . . Z: --class CroleY:* Yl (...I

. . . 1

286

