Check for
Updates

Analytical Version Control Management in a Hypertext System

Antonina Dattolo
Dipartimento di Informatica
University of Salerno
84081 Baronissi, Italy
emalil antos@udsab.dia.unisa.it

Abstract

In this paper it is shown how structural and cognitive ver-
sioning issues can be efficiently managed in a Petri nets
based hypertextual model. The advantages of this formal-
ism [st:89] are enhanced by a modular and structured mod-
eling; modularity allows to focus the attention only on some
modules, while giving the abstraction of the others. Each
module owns metaknowledge that is useful in defining new
layers and contexts.

The central point of the data model is the formulation
and resolution of three recurrence equations, effective in de-
scribing both the versioning and the derivation history; these
equations permit to express in precise terms both the struc-
tural evolution (changes operated on specific nodes of the
net) and the behavioral one (changes concerning browsing).

1 Introduction

Abstraction mechanisms in an hypertextual environment first
have been investigated by Garg [ga:88] and their properties
are described in several papers, most of them concerning
information retrieval techniques [ag:93]. Abstraction mech-
anisms characterize the dynamic point of view of an hyper-
text and its most relevant features; one can recognize two
types of dynamicity: the first having behavioral nature and
thus linked to browsing and search (queries, dynamic link-
ing, filtering, and so on), and the other of structural type,
related to the opportunity that the user plays the role of
author intervening personally on the system.

This paper is mainly concerned with this second type of
dynamicity, and structural and cognitive issues related to
the abstraction mechanism of versioning are.scrutinized.

The versioning is considered as one of the relevant issues
in modeling and building of hypertextual systems, and its
importance has been emphasized by Halasz [ha:88, ha:91)
as regards its relationships with software engineering {go:87]
and design of databases (ka:90]. Versioning is introduced to
preserve former states and save them from destruction; for-
mer states may be saved for later reuse of material, but also
to preserve the historical perspective of work done [ha:92].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commetcial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

CIKM '94- 11/94 Gaitherburg MD USA
© 1994 ACM 0-89791-674-3/94/0011..$3.50

Antonio Gisolfi
Dipartimento di Informatica
University of Salerno
84081 Baronissi, Italy
email gisolfi@udsab.dia.unisa.it

In particular, in distributed and collaborative hypertext sys-
tems, version control mechanisms are no longer an optional
and become absolutely necessary to maintain the consis-
tency of the database [ma:93] and provide effective solutions
to multiuser concurrency contro} [wi:93].

Of course, version support will only be accepted by the
users if the effort spent on version managementis out-weighed
by the benefits. Conklin [c0:87] emphasizes that, when chan-
ges are carried out, assigning names to the new nodes or la-
beling links requires too additional effort to the user. In or-
der to maximize benefits, the versioning must be carried out
automatically, according to a session-based schema, instead
of the user-decided approach that is required to let the user
free to adopt the choices he prefers [ha:92, ha:93, ma:93]. Of
course, if session-based versioning is adopted, the user, who
can focus his attention on his normal activity while changes
take place, must know the versioning strategies used by the
system in order to collect the information he needs.

Only few hypertextual systems provide versioning of the
structure {ak:88, go:87, ha:92, ha:93, 0s:92, ut:89] and a little
more allow node versioning. For example, Trellis [st:89] does
not permit modifying nodes or links and only versioning of
node is allowed, managed by means of a logical function that
associates structure and contents; the map defined by this
function can remain unmeodified for the common parts of the
versions and be different as regards the modified contents.
Thus Trellis does not have a specific structure to store the
versions, and it is supposed that the latter do not modify the
structuring net. However, Petri nets offer power{ul tools for
the analysis and representation and permit their description
in precise terms. This paper aims at showing how Petri nets
can be used in dynamic terms so that one can automatically
reconstruct, by means of layers, any intermediate state of
the net. Section 2 outlines some of the basic concepts con-
cerning Petri nets such as the incidence matrix. Section 3
illustrates the data model, showing how the characteristics
of modularity allow to manage every operation concerning
the hypertext as an operation on a single module, and in
such way the incidence matrices can explicate their full ex-
pressive power. The next section represents the core of the
paper: first, the elementary operations that can be carried
out are described, then it is shown how these operations can
be managed in terms of variations of the incidence matrix
and of the state equation. Moreover, the recurrence equa-
tions involved by the versioning are formulated and solved.
This section includes the definitions of layer and context.
Section 5 is devoted to node versioning: interface issues are
discussed and it is shown how a browser can be visualized.
In particular, the interpretation of the node versioning in

132

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191246.191269&domain=pdf&date_stamp=1994-11-29

terms of net versioning, i.e. recurrence equations, is investi-
gated. A suitable example is discussed. Finally, the results
of this paper are compared with other ones and some open
problems are briefly illustrated.

2 Petri nets, incidence matrix and state equation

This section presents the basic concepts concerning Petri
nets, incidence matrix and state equation. These topics are
discussed in depth in [mu:89, pe:81].

2.1 Petri Net Definition

A Petn1 net is a particular kind of directed graph, together
with an initial state called the initial marking, M. The un-
derlying graph N of a Petri net is a directed, weighted, bi-
partite graph. A marked Petri net is a 5-tuple (N, M) = {P,
T, L, W, M} where:

P = {p1,p2,.ceeer ,Pm} 1s a finite set of places,

T = {t1,12, 0rue. ,in} 1s a finite set of transitions,
LC(P+«TYU(T + P) is a set of arcs,
WiL—-~->{123,... } is a weight function,
M:Pw—>{0,1,2,... } is the initial marking.

M is an m-vector, if m is the total number of places. The
p-th component of M, denoted by M(p), is the number of
tokens in place p. A Petri net is said to be ordinary if all of
its arc weights are 1’s.

2.2 Incidence Matrix

The incidence matrix is a tool for the analysis of Petri nets
that can be used only for restricted classes [mu:89] when one
is facing problems concerning the possibility of solving the
state equation. In the specific case, it is used, along with
the state equation, as a tool more descriptive than analytical
and thus it suits most cases well. For a marked Petri net
(N, M) with n transitions and m places, the incidence matrix
A = [a;;]is an n * m matrix of integers and its typical entry
is given by

a,,

— T
Ayy =0y =~

g
to its output place jand a; = w(7, i) is the weigth of the arc
to transition f from its input place 7. It is easy to see that
a;;,a;, and a,; represent the number of tokens removed,
added, and changed, respectively, in place j when transition
i fires once. Transition i is enabled at a marking M iff

where a! = w(i,) is the weight of the arc from transition ¢

a;, < M) =1,2.,m.

As we assume that the net does not include self-loops, one
has that either a, = az or a, = a; namely aj}’ and a7
cannot be both different from zero.

2.3 State equation

In writing matrix equations, we write a marking A as an
m x 1 column vector. The j-th entry of M denotes the num-
ber of tokens in the place jimmediately after the k-th firing
in some firing sequence. The k-th firing or control vector uy
is an n * I column vector of n-1 0’s and one nonzero entry, a
1in the i-th position indicating that transition § fires at the
k-th fiiing. Deacause the i-th row of the incidence matrix
A denotes the change of the marking as the result of firing

transition i, we can write the following state equation for a
Petri net, for k=1,2,...

M= My + AT u (1

Suppose that a destination marking emA{q4 is reachable
from Afp through a firing sequence uj,ug,...., ug. Writing
the state equation 1 for k = 1,2,...,d and summing them,
we obtain .

d
Ma=Mo+ AT w)
k=1

3 The data model

This section illustrates the hypertextual data model, based
on Petri nets. This choice has taken in account the behav-
ioral properties of these nets which, as is shown in [st:89,
$1:90], are more general than directed graphs, since the lat-
ter can be described as subclass of Petri nets ([pe:81], p.41).
The design principle that has driven our work is widely ac-
cepted, and basically states that a system should be com-
posed of a set of independent modules, where each module in
the system hides the internal details of its processing activ-
ities and modules communicate through well-defined inter-
faces [fa:85]. The single module, a small Petri net, is defined
fortress and is a finite structured set of information, which
can be viewed as the cognitive unit, the smallest autonomous
piece of information, like the Garzotto’s entity {ga:93), that
can be analyzed independently; for each unit suitable stan-
dards are defined and consequently it can be considered as
a black box capable of producing and receiving informa-
tion. The flow of information between the units takes place
by means of a simple structure called draw-bridge (db, for
short) that can be activated if a "toll” is paid, namely a
fixed number of tokens that represents the user’s know-how.
In order that the browsing be effective, it is crucial that
each fortress is capable of generating tokens so that dbs are
kept ables to firing. A fortress is a structure that allows the
user’s browsing. It is a Petri net, where it is vital that the
logical roles are clearly specified, as expressed by its basic
units (i.e. place, transitions and tokens) that are inherited,
with slight changes, from the Trellis model {st:89]. Such
aspects are enclosed in the definition of a logical hypertext
I, = {Ry,Rm}, where Ry is a set of associative rules whose
goal is to manage the knowledge and the way it should be
visualized (see below the map, locus functions, and so on)
and Ry, is a set of rules for managing the marking (see, for
example, the history function).

¢ The place is an elementary unit of information useful
for both explicit (visible) on and implicit (control) in-
formation. The content of a place is visualized when it
contains at least one token, by means of the map func-
tion (similar to the logical function Cj(p) described in
[st:89]) used in the following to define layers. A locus
function is also associated with each place to denote
the logical position on the screen of the contents of
the place (similar to the function Wi(p) described in
[st:89]).

¢ The transition gets associated with an anchor on the
screen (similar to the button Bj(t) discussed in {st:89])
and thus with the possible path.

o In turn, the history of the navigation in the fortress,
via the set of control vectors, gets associated with the

133

token by means of the history function (the effective-
ness of this choice is discussed also in {de:93]).

From the global point of view, an hypertext is a couple
I ={Ip,Is}, where I represents the logical hypertext and
Is the structural one, respectively. The distinction of [in
the couple I and s allows for the separation of struc-
ture from content emphasised in [st:89, ga:93], favouring
the reusing of the same structure {or part of it) into dif-
ferent fields, offering the possibility of several presentations
(for example, written in several languages). Thus, from the
structural point of view an hypertext can be considered as
a couple Is = {F, DB} where:

F={Fy,Fg,.., F;, F-In, F-Out } is a finite set of fortres-
ses (f > 0), where a specific role is played by F-In and F-
Qut.

DB = {dB;,dBs, ...,dB;} is a finite set of db, and d > f
(this condition stems {from the requirement that no deadends
are allowed). The following schema outlines the structure of
the single fortress (Fig.1).

Internal Structure

'

Fig.1 - The structure of a generic fortress

Each Fy = {(N, M), 51, s-out} where (N, M) is a col-
ored marked Petri net; ST = { I-in,s —iny,.., s-inp} is a
subset of P and is a set of control places, called sentries-
in (s — in,, for short), each containing either an index or
a browser or a map of all reachable nodes starting {rom
it. In particular, the I-in sentry gives the abstraction for
the fortress (similarly to the place GSP in [de:93]). Only
this sentry, when marked, allows reaching any place of the
fortress; however, each of the other s-iny has the structural
property of permitting to get out from the fortress and thus
the control place s-out is certainly reachable. It is worth
noting that the modular architecture allows to manage the
navigation just by maintaining the control of the hypertext
via the management of a limited number of nodes inside
each fortress. The s-out place (s-out € P) is a special con-
trol place devoted to managing the exit {from.the fortress: in
fact every exit from the fortress, which can take place only
via a db, induces, as is shown in fig.1, that a token, con-
taining the history of the browsing in the fortress, reaches
the s-out place and updates, via the transition ¢, the global
browsing schema contained in the F-Out place. Two differ-
ent roles are played by the sentries/fortresses IN and by the
OUT ones: in fact, the first have to store detailed informa-
tion about the contents of the net and in particular of the
fortress, whereas the latter manage the markings and keep
track of the user’s browsing. Tor example, let’s suppose we
want to organize this paper (indicated by dg94) according to
the fortress schema. One possible structure is shown in fig
2. As you can see, the I-in represents the abstraction of the
fortress content; in a similar way, each ¢-in represents the
abstration of its subtree. Certain sentries (Petri Net Defini-
tion, Incidence Matrix, State equation) if their contents can

be used in other contexts. Some places (see in fig.2, Related
Work) are linked to information relating to other fortresses
(in our example, the node, Related Work, is connected to
some papers (ga93, ma93, etc.) contained in the section
references.

)
Abstract dgd4

Fig.2 - An example of fortress organization

As regards browsing, if the user in the example were
to follow the sequence of transitions 1-2-dbl, then the to-
ken, sent towards the s — out when it crosses dbl, would
contain the (time-sorted) set of control vectors; such infor-
mation would reach the F-Out with the aim of controlling
the derivation history of user browsing. It follows that the
link to ga93, in fig.2, leads to the crossing of db and, there-
fore, the access of the other cognitive unit. We can also
note that this is not the only way to organize a fortress: it
change according to the structural philosophy pursued by
the author.

It can be easily shown that the structural hypertext is
fully described by the sety Ay, As,...., An, A7, Ao of indi-
dence matrices (related to the fortresses Fy, Fo,..., Fn,F.In,
F.Out, respectively), and by the associated marking vectors.
On the other hand, the user’s browsing requires the logical
map function, and the equation (2); this equation, that in-
cludes the matrix 4 and the vectors A and u, fully describes
the static structure of the net and its behavioral dynamics
as expressed by the variation of the markings. We aim at
investigating the properties of structural dynamics, thus for-
mulate a more general equation of recurrence that expresses
the structural dynamics of the net, showing in the mean-
time the correspondence that links each change carried out
on a specific fortress to a set of changes on A, M and u.
It is worth emphasizing that the fortresses are inherently
modular; thus every operation will be carried out working
on a specific fortress, as described by its incidence matrix,
denoted by A and the marking vector, denoted by M.

4 Versioning of structure

In this section it is shown how the versioning of the structure
can be managed by the system in active terms by applying
the layer definition, considered as net operators devoted to
its transformation both in logical and physical terms. After
introducing the basic operations and the specific notation
for vectors and matrices in the paragraphs 4.1 and 4.2, the
paragraphs 4.3 and 4.4 discuss the formulation and the res-
olution of three recurrence equations corresponding to A4,
M and u. Then, in Section 4.5, the concepts of layer and
context are illustrated.

134

4.1 Basic operations

The changes undergone by a net can be viewed as the result
of some basic operations, such as add or delete a place, a
transition, arc, or token. In order to get a precise mathe-
matical definition, it is important to examine how each ele-
mentary operation modifies the net by changing the values
of the matrix A and the vectors M and u. It is shown below
how the single elements can be modified, in correspondence
with each elementary operation. Let us briefly illustrate the
elementary cases which give rise to other cases.

1. Adding/Deleting a place.

1.1 Adding/Deleting a column in the matrix A corre-
sponding to the new/old place.

1.2 Addirg/Delcting an element to the vector M corre-
sponding to the new/old place.

1.3 Invariance on u.

2. Adding/Deleting a transition.

2.1 Adding/Deleting a row in the matrix A corresponding
to the new/old transition.

2.2 Invariance on M.

2.3 Adding/Deleting an element to the vector u corre-
sponding to the new/old transition.

8. Adding/Deleting a set of arcs related to a place.

3.1 Updating a column in the matrix A corresponding to
the place.

3.2 Invariance on M.

3.3 Invariance on u.

4. Adding/Deleting a set of arcs related to a iransition.

4.1 Updating a row in the matrix A corresponding to the
transition.

4.2 Invariance on M.

4.3 Invariance on u,

5. Adding/Deleting tokens in a set of places.

5.1 Invariance on A.

5.2 Updating the element in the vector M corresponding
to the set of places.

5.3 Invariance on u. We are looking for a general rela-

tionship that describes the changes of the triple (A4, M, u)
that suminarizes, together with the map function, univocally
the hypertext. This means that ”snapshots” of the net are
to be taken allowing to choose the particular version to be
operated upon [ha:88]. Of course, in order to carry out the
changes while keeping track of them it is necessary that a set
of relevant data is specified. For the sake of simplicity, such
data can be represented by a vector, a = (ay, az, a3, ay, as),
where each component is referred to the preceding five op-
erations. We assume that all changes operate on a net rep-
resented by the n * m matrix A.

a; is an index j whose meaning is: if j=m+1 a place is
added in the net, if 1 <j7 < m the j-th place is deleted, if
j=0 no operation is carried out. .

ag is an index : whose meaning is: if 1=n+1 a transition
is added in the net,if I < i < n the i-th transition is deleted,
if =0 no operation is carried out.

ag is a bi-dimensional vector where the first component,
az.s,isanindex 5, 1 <j <{m+ 1), and the second , a3 2,
is a column vector containing the changes of the arcs corre-
sponding to the j-th place.

ay is a bi-dimensional vector where the first component,
ay yyisanindex 4, 1 £ i < (n+ 1), and the second, gy 2, is

a row vector containing the changes of the arcs correspond-
ing to the i-th transition.

as is a row vector of length m and contains the changes
of tokens corresponding to the places.

4.2 Notation

In order to formulate adequately a general equation describ-
ing the hypertextual net, we have to define pperators capable
of expanding/compressing/modifying the triple (4, M, u).
In particular, the matrix ¢ defined below is an operator used
either to expand or compress rows and columns of the inci-
dence matrix, while the matrix ¢ modifies the contents by
means of direct addition. The above-defined vector a is the
input vector {for both operators.

Definition of ¢ (Expansion matrix).

The matrix ¢, is an operator capable of expanding or
compressing the matrix A, i.e. adding and deleting places
and transitions in the net. This operator is defined as fol-

lows:
(L 0] if i=n+1

L
Eni=4i| 00 ifkisn
0 Inj
Ip if i=0

Fig.8 - The expansion matriz

where I, denotes the identity matrix of dimensions j * ;.
The operator ¢, if applied to the right hand side of the inci-
dence matrix, enables, in the case of 1 < ¢ < n, the elimina-
tion of the i-th column of the matrix (that is to say the i-th
place in the net) or the addition of a new placeif i = n 4 1.
Dually, the argumentation is valid for the transitions; in
this second case, the transpose operator is applied to the
left hand side of the equation in a similar way to the above.

Definition of ¢ (Sum matrix).

The matrix 6, 1,,m is a matrix whose dimensions are
n * m and whose elements are zeroexcept on the j.th 1 < 7 <m
column, represented by the n-vector p (Fig.4).

1---j-1jj+l---m
Gmj=0---0 R 0 --- Q)

Fig.4 - The sum matnz

4.3 Formalizing the recurrence equation.

Let (Ag_z, Mg_j, ux_y) be the triple that describes a generic
fortress which has undergone k-1 structural changes; sup-
pose now that the k-th change should carried out and that
the dimensions of the matrix, before the change, are n * m.
Thus the vectors My _; and ug_; have dimensions 1 *m
and n * I, respectively. Then let us consider how the primi-
tive operations can lead to the new triple (A, Mg, ug). We
show how the changes on the triple (Ag_y, My _;, up_4) de-
pend upon the values of a. For the sake of simplicity each
row or column will be added at the rear of the others. Thus,
the general equations can be formalized as follows:

1. Adding/Deleting a place.
1.1 Ak = Ak_1 *€m,a,

1.2 Mg = Mi_1 + €m,q,

1.3 U = Uk-1

135

2. Adding/Deleting a transition.
2.1 Ak = 63;,0: c Ak
2.2 My = My,

T
2.3 Uk = €5 g, * Uk—1

8. Adding/Deleting a set of arcs related to a place.
3.1 Ak = Ak—l “+ On a3 1,83 1,43 2

3.2 My = Me_a

3.3 Uk = up_

4. Adding/Deleting a set of arcs related to a transition.
4.1 Ax = Ar-1 +0’§,°4.l,04 1,042
4.2 My = M, _4

4.3 up = up_1

5. Adding/Deleting tokens in a place.
5.1 Ax = Ax_1
52My=Mk—-1+as

5.3 ur = Uk

These 15 equations can be reduced to just three, one for
each element of the triple (A, My, ug). The notation can
be suitably modified 1n order to render the equations more
readable. In fact, one can define:

€m,a, = T to denote changes related to the places,
EZM = 77 to denote changes related to the transitions,
as = pn to denote changes related to the markings,

On a3 y,as.1.a32 + ol a4 1,a4.1,a4.3 = O to denote the in-
formation concerning the arcs given by places and transi-
tions. As a consequence of the way o has beed defined, both
operands cannot be simultaneously different from zero.

Of course, each variable has an index related to the spe-
cific intermediate state. The matrix A and the vectors Af
and u represent the known quantities, i.e. the initial condi-
tions for the resolution of the equations. Thus:

Ag =TE‘-A;¢_1 -7k + ook (3)
Ag=A

Me=Mi_1 - 75 + ok (4)
Mo=M

Up = TE CUk -1 (5)
U = U

It is worth emphasizing that these equations include alt
the basic operations, as shown in Section 4.1. We note that,
in case the operation regards a place, the operator v that
describes the variations on transition is the identity operator
and thus does not give any contribution to the matrix A,.
The operator 7x behaves in a similar way.

4.4 Solving the recurrence equations

The equations 3 describe the generic step concerning the
evolution of A. The initial stop condition coincides with the
original matrix. This equation can be solved by carrying out
the appropriate changes:

= rE(rZ_,...(rf~A=-7rl)7r2 402).)Tkat Foko TR+ Oy

In such way one gets the generic matrix 4, as expressed
in terms of the original matrix. This facts is similar to what
happensin ANCESTOR [ga:88], where the relationships be-
tween versions concerning the same fragment are investi-
gated. As the matrix product is associative, one gets:

T T T _T

T Th_1--T3 -T1 AT T TRy - TRt
T T T

Tk “Tho1-- T2 " 01 T2...Thk_1 - T+
T T T

Tk * They---T3 - 02 T3..Tk—1 * Tk + Lot

Tg " Ok=1 - Tk + ok,

and, if sg = A, because the product of transpose matri-
ces equals the transpose product in reverse order of these
matrices, the final equation is:

A=) w7 o ([w)tex @

1=0 j=t+41 J=141

This equation expresses in a compact way a set of pos-
sible changes in the initial net: more precisely, it consists
of the sum of o-type matrices (except that representing the
fortress in its initial state), that give their contribution to
the changes on the arcs. The latter take suitably in ac-
count the changes concerning the transitions and the places
by means of the left and right product, respectively. The
recursion step is given by the so called k-th change. More
precisely, it is worth noting the in the equation 6 the ma-
trices of type 7,7 and o do not contribute in a mutually
exclusive way; thus the k-th step consists either of a single
operation selected among the elementary ones (paragraphs
4.1, operations labelled with 1, 2, 3, 4, 5 with the only pro-
vision that within the same recursive step only one of the
operations 3 and 4 can take place) or of the union of two,
three or four different operations. Moreover, we note that
reconstructing a configuration is connected to multiplying
e-type matrices with o-type matrices; such product involves
sparse matrices and consequently can be easily carried out.
Finally, the equations 4 and 5 can be solved in a similar way,
and the result is as follows, if o = M and uo = u :

k=1 k
Mk=2“-'(H 7)) + pk)

=141
k—1
we=([[)7" wo (®)
1=0

4.5 Layers and Contexts.

The changes that can be carried out for the single {ortress
can be expressed by the equations 6, 7, 8 except the changes
of contents of the specific nodes. In fact, it is important that
{or each node the value of the map function is taken in ac-
count, which is to be considered as one of the basic changes.
Thus it is worth introducing the concept of layer as the set of
elementary data that are required to descrive the evolution
of the net through its intermediate states. In particular, the
generic k-th layer expresses the changes related to a generic
recursion step and is specified by:

- the dimensions of the matrix Ax_; : n * m;

- the vector g

- the possible change undergone by the map function on
the involved nodes;

136

- the set of possible layers to which the k-th one can be
applied.

As a consequence of the definition, the layers get hierar-
chically organized: the root is at layer 0 and contains the
fortress in its initial state. Building the hierarchy is neces-
sary to determine priorities. Every path from the root leads
to new states of the fortress, advancing by difference. Con-
sequently, for each fortress, a derivation treeis obtained. It
is worth emphasizing that, although a layer (obeying the
equations 6, 7, 8 could include, in general, changes involv-
ing several elementary operations (and this can happen, as
a consequence of an user’s query, in user-decided), the layer
originated by an automatic versioning, i.e. in session-based,
contains just one change on the net: this is necessary for
reconstructing the derivation step-by-step. The sequence of
two or more layers represents a particular structure called
contezt. A context can be visualized, starting from a certain
state that is represented as an edge in the derivation tree,
as a sub- edge of the latter. Our interpretations of layer and
context originate {from the definitions given by PIE [go:87].
Such definitions are considered a good starting point [ha:88],
but now they are completely specified in a formal way. In
fact, the rule of composition of layers into contexts is ana-
Iytic. In the following section we shall show how a context
can be considered, under particular conditions, as an object
that applies, consecutively and without intermediate steps,
all the layers it consists of: this basically happens when the
set of changes are logically difficult to separate.

5 Versioning of node

The aim of this section is to give an example which shows
how versioning works in a situation of node versioning. On
this, we will focus our attention and we will stress how 1t
can be considered as a particular case of versioning of the
structure. From the structural point of view, the changes
concerning the specific node are speficied by the equations
6, 7, 8 and by the derivation tree. The latter can be used to
visualize a browser that allows the user to examine the sec-
quence of changes undergone by the net. On the other hand,
the user sometimes needs to examine the local evolution of
the net: to this aim the versions related to a node are linked
to the node itself and this goal is achieved by mecans of a
structure allowing only local navigation thanks to a small
colored Petri net. More precisely, in the example of fig.2,
we can imagine modifying the contents of the place, Data
model, from now on shown as p. Let v be p’s version, then a
small net can be added, as shown in Fig. 5, where the bold
line implies that traversal is possible only for a gray token
(fig. 5).

Fig.5 - Node with only one version

The sitnation becomes more complex if the modifications
on the node are numerous and if we want to maintain their
history. In this case, there would exist several versions of the
node p vy, v, ..., vy which would be able to be structured
as shown in fig. 6, where p; is an index place whose contents
is a browscr on the versions. Thus every generic version is
“freezed” and considering another one as current adds the

previous version to the set of versions as the r+1- th and the
new version becomes current. We note that the net shown
in Fig.6 gives rise to an incidence matrix for each node with
version of the general form: in fact, if the number of versions
is v, then the matrix corresponding to the node p has size
(8v+ 1) *{v+ 2) where the addenda +1 and +2 are given
by the transition index t; and index places p and current
p1, respectively.

Fig.6 - Node with multiple versions

Thus, by adding a new version a new column and three
rows will be added to the matrix and the positions of the
elements +1, -1 and 0 will be standard, as shown in Fig.7.

p pl V) s v,
tif-110-
taf 0-1 1~
ta 0 1-] e
tuyi10

Fig.7 - Incidence matriz corresponding to the net de-
picted in fig.6 !

For example, we show that adding a new version (v+1-
th) can be managed by a derivation tree and then expressed
by the equation 6 - the equations 7 and 8 are deducible from
the 7. Then suppose that the initial matrix is that depicted
in fig.7 and that a new version for the node p i1s gotten
in order to modify its contents. If the value of the map
function corresponding to p is fm(p) and the variable new-
content contains the change carried out, then the derivation
tree can be represented as follows:

%iﬁ.__léyer 0
/ 1aver 1 a context
RARNE __y\ v

7 “layer2

w

) Jayer))

Fig.8 - The derivation tree
where:

layerl = [(3v+ 1) * (v+2)]a' = (v+3,0,(0,0),(0,0),0)i
Sm(vog1) = fm(p); fm(p) = new — content|layer0)

layer2 = [(3v + 1) * (v + 3)|
a® = (0,3v42,(0,0), (3v+2,(0,-1,0....,0,1)), 0)|llayer1)

layer3 = [(31, + ’3) * (1, 4+ 3)'
«” = (0,3v+3,(0,0),3++3,(0,1,0,...,0, 1)), O)l|{layer?)

137

layerd = [(3v+ 3) * (v + 3)|
o = (0,30 +4,(0,0), Bv+4,(1,0,...,0, 1)), 0]}llayers)

The equation 6 becomes simple because 71, 72, 73, m4 are
identity matrices and o, is a zero matrix:

Ai=(nrn-m)T-Am+(n r)’ o+l oito

In particular, if we apply the substitutions specified in
subsection 4.3, the following values are obtained,

for :=2, 8, 4
T1 = €u42,v43
T = €3y41—1,3v41
T = O(vy3) a5.11%5 100 2

The previous example shows how it is possible to con-
struct layers, modify the contents of the nodes in the new
versioning, apply the recurrence equations, maintaining in
the derivation tree the derivation history.

6 Related Work

First of all, it is worth sketching the data model. As said be-
fore, it originates from [st:89] but, although the basic struc-
ture are identical (Petri nets) it differs in several aspects.
First, the knowledge is organized in structured and modu-
lar units, the fortresses (the relevance of this aspect stressed
also in {ga:93, sh:93]). Second, our approach 1s character-
ized by the peculiar management of the meta-knowledge
contained, for example, in the control place s-out and the
history function [de:93] describing the behavioral evolution
of the net. Finally, the paper emphasizes the role of dy-
namic structures and the version control mechanisms, such
as the recurrence equations and the derivation tree. In par-
ticular, the concepts of layer and context, similar to those
present in [go:87] and in [ha:91], are different as regards the
rules for organizinig layers and obtaining contexts. In fact,
the contexts can be viewed as a sequence of layers, but the
word "sequence” implies that the net be transformed by the
equations 6, 7, 8. A context arises by the simple composi-
tion of layers: thusit shows its double nature, i.e. the aspect
present in PIE {go:87] where it is considered as a composition
of layers and that illustrated in [0s:92] as a sum of layers.
In our approach both proposal coexist but with some dif-
ferences: in fact, it differs from the first proposal because
the derivation tree allows to avoid possible inconsistent (as
noted also in [0s:92]) combinations of layers. Our approach
is different also as regards the second proposal: in fact, a
context can be explicited as a sum of its parts (the layers)
and thus it allows to reconstruct any intermediate state ob-
taining the whole derivation history. This last fcature is
important: few systems [de:87] permit to build step-by-step
the system evolution by means of the derivation tiee. It
is similar, to a certain extent, to the "revision tree” [ti:85]
because both operate by difference. However, while the rewv:-
swon tree is simply explicited only for revisions involving one
hypertextual object, the derivation tree contains the history
of the whole hypertext by means of the fortresses the tree
consists of. Moreover, differently by [0s:92] and in a way
similar to [ha:91), the versioning can be applied to each part
of the net (places, transitions and arcs). Also, it is worth
emphasizing that our approach stresses, as in {ha:92] and
[ma:93], the importance of the automatic management of the
versioning Finally, we want to emphasise that the manage-
ment philosophy of versioning mechanisms is not necessarily

tied to Petri nets, but the latter prove an eflective instru-
ment of organization and control; they represent a wider
class in comparison with directed graphs, generally used in
hypertext models.

7 Concluding remarks and outlook

Basically this paper has dealt with an analytical approach
to the version control management. In fact, the single layer,
viewed as a set of changes that can be carried out on the
generic fortress, leads to apply these changes considered as
algebraic operators. The structure described in this pa-
per allows dynamic behavior, i.e. the management of the
user’s derivation history, within a context, via the set of
control vectors deriving from the sentries-out and thus the
state equation 2. Moreover, dynamic management is allowed
thanks to the equations 6, 7, 8 and the derivation tree that
is capable of managing partial changes both concerning the
contents (by means of the map function) and the structure
of the net.

The modularity allows to decentralize the controls via
the single fortresses, and moreover the exponential com-
plexity involved in connected graphs decreases. In partic-
ular, studying the equation 6, 7, 8 leads to formulate two
remarks: first, we note that the equations 7 and 8 can be
gotten by solving the equation 6; secondly the 6 is formulate
in a simple way and requires, thanks to the definitions given
for e-type and o-type matrices, limited space for its storage
and short times for its solution, because we are dealing with
sparse matrices. As a consequence, the derivation history
can be entirely described. Our approach is just a starting
point, we think that guidelines for further work are two-fold:
the first is related to the data model and authoring prob-
lems, the second leads to investigate versioning issues in a
collaborative and distributed environment. As regards the
first point, the net underlying the hypertext should be fully
scrutinized. In fact, the author and the user are greatly in-
terested in compacting the information present in the net in
order to improve the facilities for changes and navigation,
respectively. We think that using suitable metrics [b0:92]
that adequately express the relevant features of the graph
underlying the hypertext, and allow to tackle problems such
as the reachability of a node or its centrality. The second
point aims at defining a collaborative and distributed envi-
ronment {da:94], where the version control mechanisms be-
come necessary and are part of the set of basic requirements
to be specified [ha:93, wi:93].

References
[ag:93] M. Agosti. Hypertext and Information Re-
trieval. Information Processing € Management,
Special Issue: Hypertext and Information Re-
trieval, 29(3):283-285, May-June, 1993.

[ak:88] R. M. Akscyn, D. L. McCracken, E. A. Yolder.
KMS: A Distribuited Hypermedia System for
Managing Knowledge in Organitation. Commu-
nications of the ACAM!, 31(7):820-835, July 1988.
[bo:92] R. A. Botafogo, E. Rivlin, B. Shneiderman.

Structural Analysis of Hypertext Identifving
Iierarchies and Useful Metrics. ACAM Trans-
aclions on Information Systems, 10(2):142-180,
April 1992,

138

[co:87]

[da:94]

[de:87]

[de:93]

[{a:85]

[ga:88]

[ga:93]

[gi:94]

[g0:87]

[ha:92]

[ha:93]}

[ha:88]

[ha:91]

[ka:90]

J. Conklin. Hypertext: An introdution andsur-
vey. IEEE Computer, 20(9):17-11, September
1987.

A. Dattolo, V. Loia. Hypermedia Design Issues
in an Actor-based Framework. Technical Report
USDIA-94-2, Marzo 1994.

N. Delisle, M. Schwartz. Contexts - A Partioning
Concept for Hypertext. ACM Transactions on
Office Information Systems, 5(2):168-186, April
1987.

Y. Deng, S. K. Chang, C. A. de Figueired,
A. Perkusich. Integrating Software Engineering
Methods and Petri Nets for the Specification and
Prototyping of Complex Information Systems.
Application and Theory of Petri Nets 1993, Lec-
ture Notes in Computer Science (691), Proc.
14th International Conference Chicago - Illinois,
USA, pp. 206-223, Marco Ajmone Marsan (Ed.),
Springer- Verlag, June 1993.

R. Fairley. Software Engineering Concepts.
MacGraw-Hill, New York, NJ, 1985.

P. K. Garg. Abstraction mechanisms in Hyper-
text. Communications of the ACM, 31(7):862-
870, July 1988.

F. Garzotto, P. Paolini, B. Schawbe. HDM - A
Model Based Approach to Hypertext Applica-
tion Design. ACM Transactions on Information
Systems, 11(1): 1-26, January 1993.

A. Gisolfi, V. Loia. Designing Complex Systems
within Distributed Architectures. to appear in
International Journal od Applied Artificial Intel.
ligence 8(3), 1994.

I. Goldstein, D. Bobrow. A layered approach to
software design. Interactive Programming Enuvi-
ronments, Barstow D., Shrobe H., Sandewall
Eds., McGraw-Hill, NewYork, pp 387-413, 1987.

A. Haake. CoVer: A Contextual Version Server
for Hypertext Applications. FCHT92, Procccd-
ings of the ACM Conference on hypertcat, Mi-
lano (Italy), November, pp. 43-52, 1992,

A. Haake, J. Haake. Take Cover: Exploiting Ver-
sion Support in Coopertative Systems. Confer-
ence Proceedings INTERCHI93, April 24-29, pp.
406-413, 1993.

F. G. Halasz. Reflections on Notecards: Seven
issues for the next generation of hypermedia sys-
tems. Communications of the ACM, 31(7):836-
852, July 1988.

F. G. Halasz ”Seven issues”: revisited. Slides
from keynote talk at Hypertert91, December
1991.

R. H. Katz. Toward a Unified Framework
for Version Modeling in Engineering Databases
ACM Computing Surveys, 22(4):375-408, Dec-
cember 1990.

[ma:93)

[mu:89]

{0s:92)

[pe:81]

[sh:93]

[st:89]

[st:90]

[t1:85]

fut 89]

[w193]

139

C. Maioli, S. Sola, F. Vitali. Versioning issues in
a Collaborative Distributed Hypertext System.
Technical Report UBLCS-93-6. Aprile 1993.

T. Murata. Petri Nets: Properties, Analysis and
Applications. Proc. of the IEEE, 77(4):541-580,
April 1989.

K. Osterbye. Structural and Cognitive Prob-
lems in Providing Version Conttol for Hypertext.
ECHT92, Proceedings of the ACM Conference
on hypertezt, Milano (Italy), November, pp. 33-
42, 1992.

J. L. Peterson. Petri Net Theory and the Model-
ing of Systems. Prentice-Hall, Englewood Clifls,
N. J., 1981.

D. E. Shackelford, J. B. Smith, F. D. Smith.
The architecture and Implementatation of a Dis-
tributed Hypermedia Storage System. AC.\ Hy-
pertext93 Proceedings, Seattle, Washington USA,
November 1-13, pp. 14-24, 1993.

P. D. Stotts, R. Furuta. Petri-Net-Based Iy-
pertext: Document Structure with Browsing Se-
mantics. A CM Transactions on Information Sys-
tems, 7(1):3-29, January 1989.

P. D. Stotts, R. Furuta. Iierarchy, composition,
scripting languages, and translators for a struc-
tured hypertext. ECHT90, Proceedings of the
ACM Conference on Hypertezt 90, Cambridge,
pp. 180-193, 1990.

W. F. Tichy. Rcs - a system {or version control.
Software-Erperience and Practice, 1985.

K Utting, N Yankeolovich. Context and
Oricntation in Hypermedia Networks. ACM
Transactions on Information Systems, 7(1). 58-84,
January 1989. .

K U. Wiil, J J. Leggett. Concurrency Control 1n
Collaborative Hypertext Systems ACM
Hypertext93 Proceedings, Seattle, Washington
USA, November 14-18, pp. 14-24, 1993,

