
Analytical Version control Mana~ement in a Hypertext System

Antonina Dattolo Antonio Gisolfi

Dipartimento di Informatica Dipartimento di Informatica

University of Salerno University of Salerno

84081 Baronissi, Italy 84081 Baronissi, Italy

email ant osQudsab .dia.unisa.it email gisolfi@udsab .dia.unisa.it

Abstract

In this paper it is shown how structural and cognitive ver-

sioning issues can be efficiently managed in a Petri nets

based hypertextual model. The advantages of this formal-

ism [st:89] are enhanced by a modular and structured mod-

eline: modularit~~ allows to focus the attention onlv on some
“! .

modules, while ~iving the abstraction of the others. Each

module owns metaknowledge that is useful in defining new

layers and contexts.

The central point of the data model is the formulation

and resolution of three recurrence equations, effective in de-

scribing both the versioning and the derivation history; these

equations permit to express in precise terms both the struc-

tural evolution (changes operated on specific nodes of the

net) and the behavioral one (changes concerning browsing).

1 Introduction

Abstraction mechanisms in an hypertextual environment first

have been investigated by Garg [ga:88] and their properties

are described in several papers, most of them concerning

information retrieval techniques [ag:93]. Abstraction mech-

anisms characterize the dynamic point of view of an hyper-

text and its most relevant features; one can recognize two

types of dynamicity: the first having behavioral nature and

thus linked to browsing and search (queries, dynamic link-

ing, filtering, and so on), and the other of structural type,

related to the opportunity that the user plays the role of

author intervening personally on the system.

This paper is mainly concerned with this second type of

dynamicity, and structural and cognitive issues related to

the abstraction mechanism of versioning are. scrutinized.

The versioning is considered as one of the relevant issues

in modeling and building of hypertextual systems, and its

importance has been emphasized by Halasz [ha:88, ha:9 I]

as regards its relationships with software engineering [go:87]

and design of databases [ka:90]. Versioning is introduced to
preserve former states and save them from destruction; for-

mer states may be saved for later reuse of material, but also
to preserve the historical perspective of work done [ha:9’2].

Permission to copy without fee all or pari of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CIKM ’94- 11/94 Gaitherburg MD USA
@ 1994 ACM 0-89791 -674-3/94/001 1..$3.50

In particular, in distributed and collaborative hypertext sys-

tems, version control mechanisms are no longer an optional

and become absolutely necessary to maintain the consis-

tency of the databsse [ma:93] and provide effective solutions

to multiuser concurrency control [wi:93].

Of course, version support will only be accepted by the

users if the effort spent on version management is out-weighed

by the benefits. Conklin [co:87] emphasizes that, when chan-

ges are carried out, assigning names to the new nodes or la-

beling links requires too additional effort to the user. In or-

der to maximize benefits, the versioning must be carried out

automatically, according to a session-based schema, instead .

of the user-decided approach that is required to let the user

free to adopt the choices he prefers ~a:92, ha93, ma:93]. Of

course, if session-based versioning is adopted, the user, who

can focus his attention on his normal activity while changes

take place, must know the versioning strategies used by the

system in order to collect he information he needs.

Only few hypertextual systems provide versioning of the

structure [ak:88, go:87, ha:92, ha:93, 0S:92, ut:89] and a little

more allow node versioning. For example, Trellis [st:89] does

not permit modifying nodes or links and only versioning of

node is allowed, managed by means of a logical function that

associates structure and contents; the map defined by this

function can remain unmodified for the common parts of the

versions and be different as regards the modified contents.

Thus Trellis does not have a specific structure to store the

versions, and it is supposed that the latter do not modify the

structuring net. However, Petri nets offer powerful tools for

the analysis and representation and permi+ their description

in precise terms. This paper aims at showing how Petri nets

can be used in dynamic terms so that one can automatically

reconstruct, by means of layers, any intermediate state of

the net. Section 2 outlines some of the basic concepts con-

cerning Petri nets such as the incidence matrix. Section 3

illustrates the data model, showing how the characteristics

of modularity allow to manage every operation concerning

the hypertext as an operation on a single module, and in
such way the incidence matrices can explicate their full ex-

pressive power. The next section represents the core of the

paper: first, the elementary operations that can be carried

out are described, then it is shown how these operations can

be managed in terms of variations of the incidence matrix

and of the state equation. hforeover, the recurrence eciu,z-
tions involved by the versioning are formulated and solved.

This section includes the definitions of Iayer and context.

Section 5 is devoted to node versioning: interface issues are

discussed and it is shown how a browser can be visualized.

In particular, the interpretation of the node versioning in

132

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191246.191269&domain=pdf&date_stamp=1994-11-29


terms of net versioning, i.e. recurrence equations, is investi-

gated. A suitable example is discussed. Finally, the resullts

of this paper are compared with other ones and some open

problems are briefly illustrated.

2 Petri nets, incidence matrix and state equation

This section presents the basic concepts concerning Petri

nets, incidence matrix and state equation. These topics are

discussed in depth in [mu:89, pe:81].

2.1 Petri Net Definition

A Petri net is a particular kind of directed graph, together

with an initial state called the initial marking, hf. The unl-

derl~ing graph N of a Petri net is a directed, weighted, bi-

partite graph. A marked Petri net is a 5-tuple (N, M) = {P,

T, L, W, hi} where:

P= {pi, pa, .. . .. ..pm} is a finite set of places,
T= {tl, to, .. . .. . . tn } is a finite set of tran9iticm9,

L ~ (P* T)U(T* P) is a set of arcs,

W: L-–- >{1,2,3 , . . . ...} is a weight function,

Af:P–-–>{o,l,2 , . . . ...} is the initial rraarkmg.

M is an m-vector, if m is the total number of places. The

p-th component of Al, denoted by M(p), is the number of

tokens in place p. A Petri net is said to be ordinary if all of

its arc weights are 1 ‘s.

2.2 Incidence Matrix

The incidence matrix is a tool for the anafysis of Petri nets

that can be used only for restricted classes [mu:89] when one

is facing problems concerning the possibility of solving the

state equation. In the specific case, it is used, along with

the state equation, as a tool more descriptive than analytical

and thus it suits most cases well. For a marked Petri net

(N, M) with n transitions and m places, the incidence matrix
A = [Oi, ] is an n * m matrix of integers and its typical entr:~

is given by
+-

alj = atj - a,,

where a+ =
:3

w(i, j) is the weight of the arc from transition t

to its output place j and a,; = w(j, i) is the weigth of the arc

to transition i from its input place J. It is easy to see that

a,;, at:, and a,~ represent the number of tokens removed,

added, and changed, respectively, in place j when transition

i fires once. Transition i is enabled at a marking hi iff

a; < M(j)j = 1,2 . . . ..rn

As we assume that the net does not include self-loops, one

has that either a,j = crt$ or a,j = a,; namely a~ and a;

cannot be both difTerent from zero.

2.3 State equation

In writing matrix equations, we write a marking flfk as all

m * 1 column vector. The j-th entry of ?Kfk denotes the num -

ber of tokens in the place j immediately after the Ic-th firing

in some firing sequence. The k-t}]firing or contrcd vector Uk

is an n * 1 column vector of n-l O’s and one nonzero entry, 21

1 in the i-thposition indicating that transition i fires at the
k-thfiling. Beacause the i-th row of the incidence matrix

A denotes the change of the markkg as the result of firing

transition i, we can write the following state equation for a

Petri net, for k = 1,2,...:

I!{k = fifk-1 + AT . tik (I)

Suppose that a destination marking emkfd is reachable

from flfo through a firing sequence UI , U2, . . . . . ud. Writing

the state equation 1 for k = i , 2, .. . . d and summing them,

we obtain
d

Md = hfo + AT ~ ‘Uk (2)
k=l

3 The data model

This section illustrates the hypertextual data model, based

on Petri nets. This choice has taken in account the behav-

ioral properties of these nets which, as is shown in [st:89,

st:90], are more general than directed graphs, since the lat-

ter can be described as subclass of Petri nets ([pe:81], p.41).

The design principle that has driven our work is widely ac-

cepted, and basicafly states that a system should be com-

posed of a set of independent modules, where each module in

the system hides the internal details of its processing activ-

ities and modules communicate through well-defined inter-

faces [fa:85]. The single module, a small Petri net, is defined

fortress and is a finite structured set of information, which

can be viewed as the cognitive unit, the smallest autonomous

piece of information, like the Garzotto’s entity [ga:93], that

can be analyzed independently; for each unit suitable stan-

dards are defined and consequently it can be considered as

a black box capable of producing and receiving informa-

tion. The flow of information between the units takes place

by means of a simple structure called draw-bridge (db, for

short) that can be activated if a “toll” is paid, namely a

fixed number of tokens that represents the user’s know-how.

In order that the browsing be effective, it is crucial that

each fortress is capable of generating tokens so that dbs are

kept ables to firing. A fortress is a structure that allows the

user’s browsing. It is a Petri net, where it is vital that the

logical roles are clearly specified, as expressed by its basic

units (i.e. place, transitions and tokens) that are inherited,

with slight changes, from the Trellis model [st:89]. Such

aspects are enclosed in the definition of a logical hypertext

IL = { Rk, R,~ ] , where f?k is a set of associative rules whose

goal is to manage the knowledge and the way it should be

visualized (see below the map, locus functions, and so on)

and Ilm is a set of rules for managing the marking (see, for

example, the hi.etorg function).

● The place is an elementary unit of information useful

for both explicit (visible) on and implicit (control) in-

formation. The content of a place is visualized when it

contains at least one token, by means of the mop \rmc -

tion (similar to the logical function Cr(JJ) de~bed in

[st:89]) used in the following to define layers. A Jocus

junction is also associated with each place to denote

the logical position on the screen of the contents of

the place (similar to the function lV1(P) described in

[st:89]).

● The transition gets associated with an anchor on the

screen (similar to the button l?l(t)discussed in [st:89])

and thus with the possible path.

● In turn, the history of the navigation in the fortress,

via the set of control vectors, gets associated with the

133



token by means of the )/istory junction (the elective-

ness of this choice is discussed also in [de:93]).

From the global point of view, an hypertext is a couple

1 = {IL, 15}, where lL represents the logical hypertext and

15 the structural one, respectively. The distinction of 1 in

the couple IL and Is allows for the separation of struc-

ture from content emphasised in [st:89, ga:93], favouring

the reusing of the same structure (or part of it) into dif-

ferent fields, offering the possibility of several presentations

(for example, written in several languages). Thus, from the

structural point of view an hypertext can be considered as

a couple IS = {F, DB} where:

F = {Fl , Fz, . . . . Fj, F-In, F-Out} is a finite set of fortres-

ses (j ~ O), where a specific role is played by F-in and F-

Out.

DB = {dB1, dB2, . . ..dBd} is a finite set of db, and d > f

(this condition stems from the requirement that no dcadends

are allowed). The following schema outlines the structure of

the single fortress (Fig.1).

[R?

l-ill

‘:.”%..’!...2? “?

Fig.1 - The structure of a generic fortress

Each I’, = {(N, M), .S1, s-out} where (Ar, Af) is a col-

ored marked Petri net; S1 = { I-injs - kJ , . . . . S-2Tlr} is a

subset of P and is a set of control places, called sentries-

in ( s — ins, for short), each containing either an index or

a bro~vser or a map of all reachable nodes starting from

it. In particular, the l-in sentry gives the abstraction for

the fortress (similarly to the place GSP in [c.fe:93]). Only

this sentry, when marked, allows reaching any place of the

fortress; however, each of the other s-in, has the structural

property of permitting to get out from the fortress and thlls

the control place s-out is certainly reachable. It is worth

noting that the modular architecture allows to manage the

navigation just by maintaining the control of the hypertext

via the management of a limited number of nodes inside

each fortress. The s-out place (s-out G P) is a special con-

trol place devotecl to managing the exit from. the fortress: in

fact every exit from the fortress, Ivhich can take place only

via a db, induces, as is shown in fig.1, that a token, CO II-

taining i.lle history of the brolvsing in the fortress, reaches

the S-OU( place and updates, via the transition t,tl)e global

browsing schema contained in tile F. Out place. T\vo difi_cr-

ent roles are played by the sentries/fortresses IN and by the
our ones: in fact, tke first have to store detailed informat-

ion about the contents of the net and in particular of the

fortress, \vllereas the latter manage the markings xnd keep

track of tlte user’s bro~vsing. For example, let’s suppose \ve

!vant 1.0 organize this paper (indicated by dg94) according to

the fortress schema. One possible structure is sho,vn in fig

2. As you can see, the l-in represents the abstraction of the

fortress content; in a similar way, each s-:n represents the

abstraction of its subtree. Certain sentries (Petri hTct Definit-

ion, Incidence Alatrix, State equation) if their contents can

be used in other contexts. Some places (see in fig.2, Related
Work) are linked to information relating to other fortresses

(in our example, the node, Related Work, is connected to

some papers (ga93, ma93, etc. ) contained in the section

references.

(~ Absrr8ct dg%$

F-out :

T

L

!

““”ah ‘“’’”
Fi~.2 - An example o~fortress organization

As regards browsing, if the user in the example were

to follow the sequence of transitions l-2-dbl, then the to-

ken, sent towards the s – out when it crosses dbl, would

contain the (time-sorted) set of control vectors; such infor-

mation would reach the F-Out with the aim of controlling

the derivation history of user browsing. It follows that the

link to ga93, in fig.2, leads to the crossing of rlb and, there-

fore, the access of the other cognitive unit. We can also

note that this is not the only way to organize a fortress: it

change according to the structural philosophy pursued by

the author.

It can be easily shown that the structural hypertext is

fully described by the seb Al , A2., . . . . . An, AI, A. of inci-

dence matrices (related to the fortresses FJ, F2, . . . . Fn, F-In,

F-Out, respectively), and by the associated marking vectors.

On the other hand, the user’s browsing requires the logical

map function, and the equation (?); this equation, that in-

cludes the matrix A and the vectors M and u, fully describes

the static structure of the net and its behavioral dynamics

as expressed by the variation of the markings. We aim at

investigating the properties of structural dynamics, thus for-

mulate a more general equation of recurrence that expresses

the structural dynamics of the net, showing in the mean-

time the correspondence that links each change carried out

on a specific fortress to a set of changes on A, M and u.

It is worth emphasizing that the fortresses are inherently

modular; thus every operation will be carried out ~vor!iing

on a specific fortress, as described by its incidence m~trix,

denoted by A and the marking vector, denoted by 11.

4 Versioning of structure

In this section it is sllo~vn how the vcrsioning of the structure

can be managed by the system in active terms by applying
the lzyer definition, considered as net operators devoted to

its trmsformation both in logical and physical terms. After

introducing the basic operations and the specific notation

for vectors and matrices in the paragraphs 4.1 and 4.2, the

paragraphs 4.3 and 4.4 discuss the formulation and the res-

olution of three recurrence equations corresponding to A,

flf and u. Then, in Section 4.5, the concepts of iayer and

contezt are illustrated.

134



4.1 Basic operations a row vector containing the changes of the arcs correspond-

ing to the i-th transition.
The changes undergone by a net can be viewed as the result

of some basic operations, such as add or delete a place, a

transition, arc, or token. In order to get a precise m~Lthe-

maticaf definition, it is important to examine how each ele-

mentary operation modifies the net by changing the values

of the matrix A and the vectors M and u. It is shown below

how the single elements can be modified, in correspondence

with each elementary operation. Let us briefly illustrate the

elementary cases which give rise to other cases.

1. Adding/Deleting a place.

1.1 Adding/Deleting a column in the matrix A corre-

sponding to the new/old place.

1.2 Adding/Deleting an element to the vector M corre-

sponding to the new/old place.

1.3 Invariance on u.

2. Adding/Deleting a transition.

2.1 Adding/Deleting a row in the matrix A corresponding

to the new/old transition.
2.2 Invariance on Jf.

2.3 Adding/Deleting an element to the vector u corre-

sponding to the new/old transition.

3. Adding/Deleting a set of arcs related to a place.

3.1 Updating a column in the matrix A corresponding to

the place.
3.2 Invariance on ~f.

3.3 Invariance on u.

4. Adding/Deleting a set oj arcs related to a transition.

4.1 Updating a row in the matrix A corresponding tc) the

transition.
4,2 Invariance on Jf.

4.3 Invariance on u.

5. Adding/Deleting tokens in a set of places.

5.1 Invariance on A.

5.2 Updating the element in the vector M corresponding

to the set of places.

5.3 Invariance on u. We are looking for a general lreia-

tionship that describes the changes of the triple (A, M, u)

that summarizes, together with the map junction, univocally

the hypertext. This means that “snapshots” of the net are

to be taken allo~ving to choose the particular version to be

operated upon [ha:88]. Of course, in order to carry out the

changes while keeping track of them it is necessary that ii set

of relevant data is specified. For the sake of simplicity, such

data can be represented by a vector, a = (al, az, a3, a4 , a5),

where each component is referred to the preceding five op-

erations. We assume that all changes operate on a net rep-

resented by the n * m matrix A.

al is an index j whose meaning is: if j=m+l a place is

added in the net, if 1 < j < m the j.thplace is deleted, if

.i=o no operation is car~ed out.
az is an index : whose meaning is: if t=n +- I a transition

is added in the net, if 1 s i < n the i-t}] transition is deleted,

if i=O no operation is carried out.

a3 is a hi-dimensional vector where the first component,

aj.i, is an index j, I <j. ~ (m + ~), and the second > as 2!
is a column vector contammg the changes of the arcs cclrre-

sponding to the j-thplace.

a4 is a hi-dimensional vector where the first component,

a4 ~, M an dex :, 1 < i < (n + 1), and the second, a4 z, is

a5 is a row vector of length m and contains the changes

of tokens corresponding to the places.

4.2 Notation

In order to formulate adequately a general equation describ-

ing the hypertextual net, we have to define pperators capable

of expanding/compressing/modifying the triple (A, Af, u).

In particular, the matrix c defined below is an operator used

either to expand or compress rows and columns of the inci-

dence matrix, while the matrix u modifies the contents by

means of direct addition. The above-defined vector a is the

input vector for both operators.

Definition of c (Expansion matrix).

The matrix (n,, is an operator capable of expanding or

compressing the matrix A, i.e. adding and deleting places

and transitions in the net. This operator is defined as fol-

lows:

( [k’4 if i=n+l

~[ 1Ii.1 ()
~Li= i .0.,...0

ifkkn...
0 In-i

In if i=O

Fig.3 - The expansion matrix

where 1, denotes the identity matrix of dimensions j * j.

The operator c, if applied to the right hand side of the inci-

dence matrix, enables, in the case of f ~ i $ n, the elimina-

tion of the i-th column of the matrix (that M to say the i-th

place in the net) or the addition of a new place if i = n + 1.

Dually, the argumentation is valid for the transitions; in

this second case, the transpose operator is applied to the

left hand side of the equation in a similar way to the above.

Definition of a (Sum matrix).

The matrix an ~,j ,m is a matrix whose dimensions are

n * m and whose elements are zero except on the j- th1 < j < ??)

column, represented by the n-vector p (Fig.4).

1 ---j-l jj+l ---m

%“mJ, ~=(Q---Q v Q -.-Q)

Ft,q.A - The sum matru

4.3 Formalizing the recurrence equation.

Let (Ak_l, Jfk_l, uk_l ) be the triple that describes a generic

fortress which h= undergone k-l structural changes; sup-

pose now that the k-thchange should carried out and that

the dimensions of the matrix, before the change, are n * m.

Thus the vectors Mk_f and uk_l have dimensions I * m

and n * 1, respectively. Then let us consider how the primi-

tive operations can lead to the new triple (A~, Mk, Uk ). We

show how the changes on the triple (Ak_l, M~_l , uk_j ) de-

pend upon the vrdrres of a. For the sake of simplicity each

row or column will be added at the rear of the others. Thus.

the general equations can be formalized as follows:

1. Addtng\Delettng a place.

I.1 Ak = A.+] . Cm, cal

1.2 flfk = lifk_l . (m, ol

1.3 uk = ‘ttk-l

135



2. Adding/Deleting a transition.

?.1 Ak = 6~a2 . Ak–1

2.2 Mk = Alk–1

2.3 ‘Uk = 6;,.2 Uk-1

3. Addzng/Deleting a set of arcs related to a place.

3.1 Ak =Ak-1 +Unaq I,IIS ,,asz

3.2 A!fk = lifk_l
3.3 Uk = Uk_l

~. Addtng/Deleting a set of arcs related to a tran.sztton.

4.1 Ak = Ak-] + u;.a..,>a. ,,Q,,,

4.2 kfk = Mk_l

4.3 ‘Uk = Uk-1

5. Addtng/Deletlng tokens in a place.

5.1 Zik = Ak_l

5.2 hfk = Jt4k – 1 + as

5.3 ‘ilk = U,k_~

These 15 equations can be reduced to just three, one for

each element of the triple (AL, hfk, u~). The notation can

be suitably modified m order to render the equations more

readable. In fact, one can define:

cm,al = ~ tO denote changes related to the places,
CT T to denote dlanges related to the transitions,

n,a~ = ~
as = p to denote c~ges related to the markings,

an a3,1,a3.l!03 2 + am C14 l!a4.1!g4,2 –
— rr to denote the in-

formation concerning the arcs given by places and transi-

tions. As a consequence of the way a has beed defined, both

operands cannot be simultaneously different from zero.

Of course, each variable has an index related to the spe-

cific intermediate state. The matrix A and the vectors M

and u represent the known quantities, i.e. the initial condi-

tions for the resolution of the equations. Thus:

Ak=T:. #ik_~. Tk+Dk (3)

Ao=A

hfk = hfk-1 . Tk -i- Uk (4)

Mo = A4

Uk= r:. Uk-1 (5)

‘rlO=u

It is worth emph~izing that these equations include all

the basic operations, as shown in Section 4,1. We note that,

in case the operation regards a place, the operator r; that

describes the variations on transition is the identity operator

and thus does not give any contribution to the matrix Ak.

The operator ~k behaves in a similar way.

4.4 Solving the recurrence equations

The equations 3 describe the generic step concerning the

evolution of A. The initial stop condition coincides with the

original matrix. This equation can be solved by carrying out

the appropriate changes:

Ak=T:. Ak_~. Tk+Uk =

= . . . . . ...=

. r~(r~_,... (r~Az~l)~z+a z)rk_l+k_l+ +Ok-l~k+~k

In such way one gets the generic matrix .4k as expressed

in terms of the original matrix. This facts is similar to what

happens in ANCESTOR [ga:88], where the relationships be-

tween versions concerning the same fragment are investi.

gated. As the matrix product is associative, one gets:

T; T:_l..,T2T TIT A ml ~~...7fk_, . Tk+

TkT i_ I.. T2T ul ~2...irk_~ rr~+

r: “ ‘?-1...T3T UZ “ ~z...~l–l “ ~k + . . . . . ...+

‘kT ‘ uk-1 ~k + ok.

and, if so = A, because the product of transpose matri-

ces equals the transpose product in reverse orcler of these

matrices, the final equation is:

‘–l k k

,=0 ,=, +1 J=t+l

This equation expresses in a compact way a set of pos-

sible changes in the initial net: more precisely, it consists

of the sum of a-type matrices (except that representing the

fortress in its initial state), that give their contribution to

the changes on the arcs. The latter take suitably in ac-
count the changes concerning the transitions and the places

by means of the left and right product, respectively. The

recursion step is given by the so called k-th change. More

precisely, it is worth noting the in the equation 6 the ma-

trices of type r, x and u do not contribute in a mutually

exclusive way; thus the k-th step consists either of a single

operation selected among the elementary ones (paragraphs

4.1, operations labelled with 1, 2, 3, 4, 5 with the only pro-

vision that within the same recursive step only one of the

operations 3 and 4 can take place) or of the union of two,

three or four different ope~ations. Moreover, we note that

reconstructing a configuration is connected to multiplying

c-type matrices with a-type matrices; such product involves

sparse matrices and consequently can be easily carried out.

Finally, the equations 4 and 5 can be solved in a similar \vay,

and the result is as follows, if IJO = M and U. = u :

Mk

4.5 Layers and

,=0 3=,+1

k-1

Jzo

Contexts.

(8)

The changes that can be carried out for the single fortress

can be expressed by the equations 6, 7, 8 except the changes

of contents of the specific nodes. In fact, it is important that

for each node the value of the map function is taken in ac-

count, which is to be considered as one of the basic changes.

Thus it is worth introducing the concept of layer as the set of

elementary data that are recluired to descrive the evolution

of the net through its intermediate states. In particular, the

generic k-thlayer expresses the changes related to a generic

recursion step and is specified by:

the dimensions of the matrix Ak_l : n * m;

the vector a;

- the possible change undergone by the mclp function on

the involved nodes;

136



lhe set of possible layers to which tile k-tlI one can bc

applied,

As a consequence of tlte definition, the layers get hierar-

chically organized: the root is at layer O and contains the

fortress in its initial state, Building the hierarchy is neces-

sary to determine priorities. Every path from the root leads

to new states of the fortress, advancing by difference. ~Con-

sequently, for each fortress, a cferivatian tree is obtained. It
is worth emphasizing that, although a layer (obeying the

equations 6, 7, 8 could include, in general, changes involv-

ing several elementary operations (and this can happen, as

a consequence of an user’s query, in user- decidecl), the l,ayer

originated by an automatic versioning, i.e. in session-based,

contains just one change on the net: this is necessary for

rfXO1l SLr UCtillg the derivation step-by-step. The sequence of

t~vo or more layers represents a particular structure called

contczt. A context can be visualized, starting fronl L cc:rtain

state that is represented as an edge in the dcri~, atiorr tree.
M a sub- edge of the latter, C)ur interpretations of lJyer and

context originate from the definitions given by PIE [goI:87].

SLich definitions are considered a good starting point [ha:88],

but. now tliey are completely specified in a formal way. In

fact, the rule of composition of layers into contexls is ana-

lytic. In the following section we shall show ho,v a colitcxt

can be considered, under particular conditions, as an object

that applies, consecutively and without intermediate s~eps,

all the layers it consists of: this basically happens \vliclt the

set of changes are logically difficult to separate.

5 Versioning of node

Tlic aim of tl~is section is to give an example \vliich slIo\vs

lIotv vcrsioning works in a situation of node vcrsioning, On

this, we Jvil] focus our attention and we wili stress iLcJ!v it

can be considered as a particular c<ase of versioning or the

structure. From the structural point of vicfv, the changes

concerning the specific node are speficierf by tl~e equations

6, 7, 8 and by the derivation tree. The latter can be LISCCIto

~risualize a broivser that allows the user to examilic the se-

quence of cl~anges undergone by the net. On the other haucl,

the user sometimes needs to examine the local evolution of

the net: to this aim the versions related to a node arc linked

to the node itself and this goal is achieved by rncans of a
structure allowing only local navigation thanks to a small

colored Petri net. hiore precisely, in the example of fig.?,
~ve crrn imagine modifying the contents of tl~e place, ‘Data

rnorlcl, from no~v on sl}o~vn as p. Let v be p’s version, then a

small net can be added, as sliolvn in Fig. 5, ~vhere tllc bolcl

line implies that traversal is possible only for a gray token

(fiK. 5).

l“lf] .5 - ,Y(j[lc ILSIIII 0711y one ucvszon

‘1’]le Slllla!loll bccrImcs more complex if t]tc nlOdifl C~LIOl\S

011 the Ilodc are l]umerous and if lve }vant to nlaintail] tllcir

Itistory. In this case, there \Yould exist several versions cf llle

node! ], 1), , l!~, . . . . . VL, ~vliiclt would bc able to bc st. ruclitrcfl

as slIoIvn l]) fig, 6, where p] is an index place ~vIlose conl, cnt,s
is a l>l-o,vscr on t,hc versions, TIIUS every gcncl-ic Ycrsion is

“ frcczc(l” an(l considering another one as currr:[l! :LCILIS the

previous version to the set of versions as the r+l - tl~ and the

nctv version becomes current. We note that the net sho$vn

in Fig.6 gives rise to an incidence matrix for each node with

version of the general form: in fact, if the number of versions

is U, then the matrix corresponding to the node p has size

(31J + 1) * (v+ 2) where the addenda +1 and +2 are given

by

pl ,

the transition index tIand index places p

respectively.

m

+b~

,.

%

L&

k,

and current

Fi~. 6- Nocle with multiple versions

Thus, by adding a new version a new column mrl three

ro$vs will be adclcd to the matrix and the positions of tl(e

elements +1, -1 and O will be standard, as sho~vn in 17ig,7.

P P, VI ~~~~~~v,

tl ~-l 1 0 ““’’” ~~o
t,) 0.1 1 ~~~--...()
tr, () 1-I ()
t,] 1 0 -1..................()

,,! :.
t ‘“’,“ lo -] ()................ ;/
t ((-J] 0 ...........-.~
t;f[ 1.() 0 :.-............ -1],

Fig. 7 - Zncirlence rnat~”x corresponding to the net cle-

piclerl in ji9.6

For example, we show that adding a new version (u+ I-

th) can be managed by a derivation tree and then expressed

by the equation 6- the equations 7 and 8 are deducible from

the 7. Then suppose that the initial matrix is that depicted

in tig.7 and that a new version for the node p is gotten

in order to modify its contents. If the value of the map

function corresponding to p is ~~(p) and the variable new.

content contains the change carried out, then the derivation

tree can be represented as follows:

,,......,,

‘layer O
,/: \ ~~

/’. ““l:Y<l ..ykfi, I.
/’

“a:$:r,

\
layer 4

Fig. b’ - l’}te cfcriuatzon tree

/fly~T1 =[(3LJ+ 1)*( V+?)IKL’ = (v+3,0, (0, Q), (0, Q), fl)i

fn, (v”+l ) = f7n(P); fro(P) = new – content l/ayer O]

Iclyer? = [(3/)+ 1) * (LJ+3)I

a2 = (0,3t+2,( O, Q), (3u+?,( 0,-1, O,..., O,l)),Q)\l/Clyerl]

/aye7’3 = [(3,>+ ‘2) * (1, + 3)1

f{: = (0,3u+3, (O, Q),3t~+3, (O, l, O,..., 0,-1)), Q)lll(~T/er2]

137



/ayer4 = [(3LI + 3) * (a+ 3)1

a4 = (0,3v+4, (0, e3), (3v+4, (1,0, . . .. O1)))Q]lllayer3]3]

The equation 6 becomes simple because r-l, m, 7rs, mA are

identity matrices and al is a zero matrix:

In particular, if we apply the substitutions specified in

subsection 4.3, the following vaJues are obtained,

The previous example shows how it is possible to con-

struct layers, modify the contents of the nodes in the new

versioning, apply the recurrence equations, maintaining in

the derivation tree the derivation history.

6 Related Work

First of all, it is worth sketching the data model. As said be-

fore, it originates from [st:89] but, although the basic struc-

ture are identical (Petri nets) it differs in several aspects,

First, the knowledge is organized in structured and nlodu-

lar units, the fortresses (the relevance of this aspect stressed

also in [ga:93, 511:93]). Second, our approach M character-

ized by the peculiar management of the meta-kno~vledge

contained, for example, in the control place s-out and the

htstory function [de:93] describing the behavioral evolution

of the net. Finally, the paper emphasizes the role of dy-

namic structures and the version control mechanisms, such
as the recurrence equations and the derivation tree. In par-

ticular, the concepts of layer and context, similar to those

present in [go:87] and in @~a:9 I], are different as regards the

rules for organizing layers and obtaining contexts. In fact,

the contexts can be viewed as a sequence of layers, but the

word “sequence” implies that the net be transformed by the

equations 6, 7, 8. A context arises by the simple composi-

tion of layers: thus it shows its double nature, i.e. the aspect

present in PIE [go:87] where it is considered as a composition

of layers and that illustrated in [0s:92] as a sum of layers.

In our approach both proposal coexist but with some dif-

ferences: in fact, it differs from the first proposal because

the derivation tree allows to avoid possible inconsistent (as

noted also in [0s:92]) combinations of layers. Our approach

is different also as regards the second proposal: in fact, a

context can be explicated as a sum of its parts (the lzyers)

and thus it aJlows to reconstruct any intermediate state ob-

taining the whole derivation history, This last feature is

important: few systems [de:87] permit to build step-by-step

the system evolution by means of the derivation tlee. It

is similar, to a certain extent, to the “ revision tree” [ti:85]

because both operate by difference. However, while the reu~-
szon tree is simply explicated only for revisions involving one

hypertextual object, the deriurriion tree contains the history

of the whole hypertext by means of the fortresses the tree

consists of. Moreover, differently by [0s:92] and in a wzy

similar to [ha:9 1], the versioning can be applied to each part

of the net (places, transitions and arcs). Also, it is worth

emphasizing that our approach stresses, as in [ha:92] and

[nla:93], the importance of the automatic management of the

I,ersioning Finally, ~ve want to emphasise that the manage-

ment philosophy of versioning mechanisms is not necessarily

tied to Petri nets, but the latter prove an effective instru.

ment of organization and control; they represent a wider

class in comparison with directed graphs, generally used in

hypertext models.

7 Concluding remarks and outlook

Basically this paper has dealt with an analytical approach

to the version control management. In fact, the single layer,

viewed as a set of changes that can be carried out on the

generic fortress, leads to apply these changes considered as

algebraic operators. The structure described in this pa-
per allows dynamic behavior, i.e. the management of the

user’s derivation history, within a context, via the set of

control vectors deriving from the sentries-out and thus the

state equation 2. Moreover, dynamic management is allowed

thanks to the equations 6, 7, 8 and the derivakon tree that

is capable of managing partial changes both concerning the

contents (by means of the map function) and the structure

of the net.

The modularity allows to decentralize the controls via

the single fortresses, and moreover the exponential com-

plexity involved in connected graphs decreases. In partic-

ular, studying the equation 6, 7, 8 leads to formulate two

remarks: first, we note that the equations 7 and 8 can be

gotten by solving the equation 6; secondly the 6 is formulate

in a simple way and requires, thanks to the definitions given

for t-type and u-type matrices, limited space for its storage

and short times for its solution, because we are dealing with

sparse matrices. As a consequence, the derivation history

can be entirely described. Our approach is just a starting

point, we think that guidelines for further work are two-fold:

the first is related to the data model and authoring prob-

lems, the seconcl leads to investigate versionin.g issues in a

coHaborative and distributed environment. As regards the

first point, the net underlying the hypertext should be fully

scrutinized. In fact, the author and the user are greatly in-

terested in compacting the information present in ‘the net in

order to improve the facilities for changes and navigation,

respectively. We think that using suitable metrics [bo:92]

that adequately express the relevant features of the graph

underlying the hypertext, and aliow to tackle problems such

as the reachability of a node or its centrality. The second

point aims at defining a collaborative and distributed envi-

ronment [da:94], where the version control mechanisms be-

come necessary and are part of the set of basic requirements

to be specified [ha:93, wi:93].

References

[ag:93] M. Agosti. Hypertext and Information Re-

trieval. Information Processing & Mclnagement,

Special Issue: Hypertext and Information Re-

trieval, 29(3) :’283-285, May-June, 1993.

[ak:88] R. hf. Akscyn, D. L, McCrac!ien, E. A. Yolder.
I<hfS: A Distributed Hypermedia System for

hlanaging I{nowledge in Organitation. Consmu.

niccs~ions of the ACJI, 31(7):820-835, July 1988.

[bo:n] R. A. Botafogo, E. Rivlin, B. Shneiclerrnan.

Structural Analysis of Hypertext Identifying

Hierarchies and Useful Metrics. A CII{ Trans.
c4ct Ions on Irlj0rnlrztior4 Systems, ,10(2 );142-180,

April 1992.

138



[co:87]

[cla:9.1]

[de:87]

[de:93]

[fa:85]

[ga:88]

[ga:93]

[gi:94]

[go:87]

[ha:92]

[ha:93]

[ha:88]

[ha91]

[ka:90]

J. Conklin. Hypertext: An introduction andsur-

vcy. IEEE Computer, 20(9):17-41, September

1987.

A. Dattolo, V. Lois. Hypermedia Design Issues

in an Actor-based Framework. Technical Report

USDIA-~J-2, hfarzo 1994,

N. Delisle, M. Schwartz. Contexts - A Portioning

Concept for Hypertext. ACM Transactions on

ofice Information Systems, 5(2):168-186, April

1987.

Y. Deug, S. K. Chang, C. A. de Figueired,

A. Perkusich. Integrating Software Engineering

Methods and Petri Nets for the Specification and

Prototyping of Complex Information Systems.

Application and Theory of Petri Nets 19Q3, Lec-

ture Notes in Computer Science (691), Proc.

lJth International Con~erence Chicago-Illinois,

USA, pp. 206-2?3, Marco Ajmone hlarsan (Ed.),

Springer- Verlag, June 1993.

R. Fairley. Software Engineering Concepts.

hIacGraw-Hill, New York, NJ, 1985.

P. I{. Garg. Abstraction mechanisms in Hyper-

text. Communications of the A CM, 31(7):862-

870, July 1988.

F. Garzotto, P. Paolini, B. Schawbe. HDhl - A

Model Based Approach to Hypertext Applica-

tion Design. ACM Trarwachons on Infornmtzon

S~stems, 11(1): 1-26, January 1993.

A. Gisolfi, V. Lois. Designing Complex Systems
within Distributed Architectures. to appear ill

International Journal od Applied A rtificml Intcl-

Iigence 8(3), 1994.

I. Goldstein, D. Bobrow. A layered approach to

software design. Interactive Programming Enw-

ronments, Barstow D., Shrobe H., Sandcwall E

Eds., McGraw-Hill, NewYork, pp 387-413, 1987.

A. Haake. CoVer: A Contextual Version Server

for Hypertext Applications. ECHT.92, Procccd-

ings of the ACM Conference on h~pertczt, Mi -

lano (Italy), November, pp. 43-5?, 1992.

A. Haake, J. Haake. Take Cover: Exploiting Ver-

sion Support in Cooperative Systems. Confer-

ence Proceedzng9 INTER CH193, April 24-29, pp.

406-413, 1993.

F. G. Halasz. Reflections on Notecards: Seven

issues for the next generation of hypermedia sys-

tems. Communications of the ACM, 31(7):836-

852, July 1988.

F. G. Halasz “Seven issues”: revisited. S1ides

from keynote taJk at Hypertezt91, December

1991.

R. H. Katz. Toward a Unified Framewo] k

for Version Modeling in Engineering Databases

ACM Comput,ng Surveys, 22(4):375-408, Dc-

cemher 1990.

[ma:93]

[mu:89]

[0s:92]

[pe:81]

[s11:93]

[st:89]

[st:90]

[ti:85]

[Ut 89]

[W193]

C. Maioli, S. Sola, F. Vitali. Versioning issues m

a Collaborative Distributed Hypertext system.

Technical Report UBL CS-93-6. Aprile 1993.

T. hfurata. Petri Nets: Properties, Analysis and

Applications. Proc. of the IEEE, 77(4):541-580,

April 1989.

K. Osterbye. Structural and Cognitive Prob-

lems in Providing Version Contiol for Hypertext.

ECHT92, Proceedings of the ACM Conference

on hypertezt, hlilano (Italy), h’ovember, pp. 33-
42, lgg~.

J. L. Peterson. Petri Net Theory and the A[odcl-

zng of Systems. Prentice-Hall, Englewood Cliffs,

N. J., 1981.

D. E. Shackelford, J. B. Smith, F. D. Smith.

The architecture and Implementatation of a Dis-

tributed Hypermedia Storage System. A C.lf fJl/-
pertezt93 Proceedings, Seattle, Washington USA,

November 1-13, pp. 14-24, 1993.

P. D. Stotts, R. ?7uruta. Petri-Net-Based Hy-

pertext: Document Structure with Browsing Se-

mantics. A CM TransactSons on In formahon Sys-

tems, 7(1):3-29, January 1989.

P. D. Stotts, R. Furuta. IIierarchy, composition,

scripting languages, and translators for a struc-

tured hypertext. ECHT90, Proceedings of the

ACM Conference on Hypertext 90, Cambridge,

pp. 180-193, 1990.

W. F. Tichy. Rcs - a system for version control.

Sojtware-Experience and Practice, 1985.

K Utting, N Yankeolovich. Context and
Orientation in Hypermedia Networks. ACM
Transactions on Information Systems, 7(1): 58-84,
January 1989.

K U, Wlil, J J. Leggett. Concurrency Control m

Collaborative Hypertext Systems ACM
Hypertext93 Proceedings, Seattle, Washington
USA, November 14-18, pp. 14-24, 1993,

139


